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Abstract—The combination of non-orthogonal multiple access
(NOMA) and cooperative communications can be a suitable
solution for fifth generation (5G) and beyond 5G (B5G) wireless
systems with massive connectivity, because it can provide higher
spectral efficiency, lower energy consumption, and improved
fairness compared to the non-cooperative NOMA. However,
the receiver complexity in the conventional cooperative NOMA
increases with increasing number of users owing to successive
interference cancellation (SIC) at each user. Space time block
code-aided cooperative NOMA (STBC-CNOMA) offers less num-
bers of SIC as compared to that of conventional cooperative
NOMA. In this paper, we evaluate the performance of STBC-
CNOMA under practical challenges such as imperfect SIC, im-
perfect timing synchronization between distributed cooperating
users, and imperfect channel state information (CSI). We derive
closed-form expressions of the received signals in the presence
of such realistic impairments and then use them to evaluate
outage probability. Further, we provide intuitive insights into the
impact of each impairment on the outage performance through
asymptotic analysis at high transmit signal-to-noise ratio. We
also compare the complexity of STBC-CNOMA with existing
cooperative NOMA protocols for a given number of users. In
addition, through analysis and simulation, we observe that the
impact of the imperfect SIC on the outage performance of
STBC-CNOMA is more significant compared to the other two
imperfections. Therefore, considering the smaller number of SIC
in STBC-CNOMA compared to the other cooperative NOMA
protocols, STBC-CNOMA is an effective solution to achieve high
reliability for the same SIC imperfection condition.

Index Terms—STBC, NOMA, cooperative NOMA, SIC, timing
offset.

I. INTRODUCTION

NON-orthogonal multiple access (NOMA) is considered
to be one of the most promising techniques for fifth-

generation (5G) and beyond 5G (B5G) wireless systems to
meet the heterogeneous demands on low latency, high re-
liability, massive connectivity, improved fairness, and high
throughput [1]. The key principle behind NOMA is to exploit
non-orthogonal resource allocation among multiple users at
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the cost of increased receiver complexity, which is required
for separating the non-orthogonal signals [2]. In contrast to
orthogonal multiple access (OMA), multiple users in NOMA
are assigned the same physical resource (e.g., frequency and
time) but with different power, which significantly enhances
spectral efficiency.

Motivated by such advantage of NOMA, various aspects
of NOMA have been actively investigated, engaging industry,
standardization bodies, and academia. Further, as noted in [3],
NOMA can be flexibly combined with various existing and
emerging wireless technologies. In particular, the combination
of NOMA and cooperative communications can be a suit-
able solution for the Internet-of-Things (IoT) networks with
massive connectivity, because it can provide higher spectral
efficiency, lower energy consumption, and improved fairness
compared to the non-cooperative NOMA [4].

In one of the pioneering studies on the NOMA schemes that
incorporates the principles of cooperative communications, the
authors in [5] propose cooperative NOMA, which is subse-
quently referred to as conventional cooperative NOMA (CCN).
In this scheme, strong users with better channel conditions
support weak users with worse channel conditions by serving
as relays, which increases the reliability of the weak users
through diversity gain. In [6], cooperative NOMA is combined
with simultaneous wireless information and power transfer
(SWIPT) to improve energy efficiency through energy har-
vesting. Further, in [7], full duplex relaying-based NOMA
schemes are introduced to reduce the number of time slots
required to relay weak users’ messages. Similarly, cooperation
among users by means of full-duplex device-to-device (D2D)
communication is discussed in [8], where the outage per-
formance of weak users is enhanced with the assistance of
the full-duplex relaying by strong users. In addition, the
authors in [9] propose a two-stage relay selection scheme for
cooperative NOMA, which also provides lower outage rates.
NOMA techniques adopting cooperative relaying systems are
also extensively studied. For example, in [10], the authors
propose an algorithm called cooperative relaying system using
NOMA (CRS-NOMA), in which a decode-and-forward (DF)
relay is adopted. Also, assuming a single DF relay and two far
users, the outage performances of different relaying schemes
are investigated in [11]. Also, NOMA using an amplify-and-
forward (AF) protocol is investigated in [12].
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Despite their effectiveness, the aforementioned NOMA
schemes combined with cooperative communications incur an
excessive number of successive interference cancellation (SIC)
executed at user terminals as compared to the non-cooperative
NOMA [13]. When it comes to the IoT networks with limited
capabilities (e.g., computational resources and power), users
may suffer from prohibitively large energy consumption due
to the excessive number of SIC. To overcome this issue, space
time block code (STBC)-aided cooperative NOMA protocols
are proposed, which benefit from diversity gain with reduced
number of SIC. For instance, the conventional Alamouti (i.e.,
2 × 1) STBC-based NOMA system is investigated in [14],
which uses two antennas at the BS and a single antenna at each
user. This scheme doubles the diversity order as compared
to that of conventional NOMA. Furthermore, in [15], the
authors propose an Alamouti STBC-based CRS-NOMA pro-
tocol for a network with source, relay, and destination, which
are equipped with two transmit antennas, two transmit and
one receive antennas, and one receive antenna, respectively.
It shows higher sum capacity and lower outage probability
compared to the conventional CRS-NOMA in [10]. Instead of
using the co-located (or real) antenna array, the authors in [13],
[16] propose a new cooperative NOMA with a distributed
STBC (i.e., STBC-CNOMA) for the virtual antenna array
created by a group of single antenna users, which can be
readily applied to the IoT networks. In their proposed scheme,
STBC-CNOMA, they employ 2× 2 distributed STBC on the
NOMA system, in which two strong users act as DF relays
and transmit the messages of the weak users by a 2×2 STBC.
They show that STBC-CNOMA can achieve higher throughput
with smaller number of SIC compared to the CCN in [5].

However, some challenges need to be addressed in the
STBC-CNOMA systems in practical scenarios. For instance,
distributed nature of terminals and their mobility cause the
timing offsets, which is especially severe in virtual antenna
array-based approaches including distributed STBC [17], [18].
In addition, reliability performance of NOMA can be sig-
nificantly degraded by imperfect SIC, as reported in [19],
and imperfect CSI [20]–[22]. However, the existing studies
on STBC-CNOMA including [13] and [16] assume the ideal
case without considering such realistic impairments. For this
reason, in this paper, to better evaluate STBC-CNOMA, we
investigate the impacts of the timing offsets, imperfect SIC,
and imperfect CSI on its performance. Our main contributions
can be summarized as follows.

• To the best of our knowledge, it is the first comprehensive
study on practical impairments in STBC-CNOMA. We
present a theoretical framework including signal model
of an arbitrary user under the timing mismatch, imperfect
SIC, and channel estimation error.

• We derive the probability distributions of the signal-to-
interference-plus-noise ratio (SINR) for different combi-
nations of the three impairments, which can be used in
the STBC-CNOMA system design and operation. Based
on the derived distributions, we also provide the closed-
form expressions of outage probabilities, which are not
present in prior arts.
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Figure 1: An example illustration of downlink STBC-CNOMA
with four users.

• We also provide asymptotic rate (or capacity) outage
probability in the high transmit signal-to-noise ratio
(SNR) regime, which offers intuitive insights into how
each of the three impairment hurts the performance of
STBC-CNOMA.

• For the fair comparison with other cooperative NOMA
protocols, we quantify the total number of SIC, the total
number of required time slots, and the total number
of transmissions of STBC-CNOMA with four existing
schemes as functions of the number of user terminals.

• Numerical and simulation results are presented with
different degrees of the three impairments. Through the
comparison between analysis and simulation, we vali-
date our analysis on the SINR distribution, exact and
asymptotic capacity outage probabilities. In addition, we
compare the outage performance of STBC-CNOMA with
CCN and non-cooperative NOMA.

The rest of the paper is organized as follows. In Sec-
tion II, we introduce the system model. Three practical im-
pairments (i.e., timing error, imperfect SIC and imperfect CSI)
and corresponding signal models are presented in Section III.
Section IV provides closed-form expressions of outage rates
both in the absence and in the presence of the imperfections.
Furthermore, we compare the complexity of STBC-CNOMA
with existing cooperative NOMA schemes in Section V. In
Section VI, we present numerical and simulation results, and
conclusions are drawn in Section VII.

Notation: E[·] and Var[·] denote the statistical expectation
and variance, respectively. In addition, |·| denotes the absolute
value of a scalar quantity. Also, the definitions of the variables
used in our analysis are provided in Table I.

II. SYSTEM MODEL

We consider an STBC-based downlink NOMA system as
shown in Fig. 1. Base station (BS) transmits the superimposed
signal to all users in its coverage area. We assume the channel
between the BS and the users and that between any two users
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Table I: Table of Notations

Symbol Definition

hk Channel gain from BS to the kth user
gk,j Channel gain between the kth and the jth user

γk,noma SINR at the kth user to detect its own signal in direct NOMA phase
γk,ccn SINR at the kth user for conventional cooperative NOMA case [5]
γk SINR at the kth user with perfect timing synchronization, perfect SIC (pSIC), and perfect CSI (pCSI)
γηk SINR at the kth user with perfect timing synchronization, imperfect SIC (ipSIC), and perfect CSI (pCSI)
γεk SINR at the kth user with imperfect timing synchronization, perfect SIC (pSIC), and perfect CSI (pCSI)
γε,ηk SINR at the kth user with imperfect timing synchronization, imperfect SIC (ipSIC), and perfect CSI (pCSI)
γχk SINR at the kth user with perfect timing synchronization, perfect SIC (pSIC), and imperfect CSI (ipCSI)
γth SINR threshold
Υ Rate threshold
pk Power received at the kth user from BS
ps Mean power received by the user during STBC cooperation phase
ξk,t Noise received at the kth user during time slot t of the STBC cooperation phase
rk,t Received signal at the kth user during time slot t of the STBC cooperation phase
λh Fading parameter for exponentially distributed variable A
λi Fading parameter for hypo-exponentially distributed variable B
λη Fading parameter for exponentially distributed variable F
λg Fading parameter for Gamma distributed variable Z

erf(.) Error function
Ei(x) Exponential integral of x and Ei(x) =

∫ x
−∞

et

t
dt

to be flat fading Rayleigh channel, as in [5] and [10]. In gen-
eral, the users near the BS experience a strong channel to the
BS, henceforth referred to as the strong users. Similarly, the
users lying at the cell edge have weak channel conditions, and
they are considered as weak users. The user with the weakest
channel conditions is assigned the maximum power, whereas
the user with the strongest channel conditions is assigned the
lowest power. Without loss of generality, it is assumed that
the users are aligned as per descending order of their channel
condition, i.e., |h1| ≥ |h2| ≥ · · · ≥ |hk| ≥ · · · ≥ |hK |, where
|hk| is the channel coefficient from BS to the kth user and K
is the total number of users. We consider User 1, U1, as the
strongest user and User K, UK , as the weakest user, where
{U1, U2, . . . , Uk, . . . , UK} is the set of all users.

Transmission from BS to the users takes place in two
phases. In the first phase, called the direct NOMA phase, BS
sends the superimposed signal to all users. The weakest user
extracts its own signal by considering the signals for all the
other users as noise. Other users employ SIC to cancel the
interference from the weak users and treat the signals for
other strong users as noise. In the second phase, referred to as
cooperative NOMA phase, the first two strongest users, U1 and
U2, make an STBC pair and transmit the messages of next two
users, U3 and U4, by a distributed 2× 2 STBC transmission.
This process of 2× 2 STBC continues until the weakest user
UK is reached.

A. Direct NOMA Phase

As shown in Fig. 2, the direct NOMA phase is accomplished
in the first time slot, when the BS transmits the superimposed
signal to all of the K users. The kth user, such that 1 ≤ k <
K, detects the message of the ith user, where i > k, then
applies SIC to subtract it from the superimposed signal and
finally detects its own message.

STBC User
Pair 1

STBC User
Pair 2

User 1

User 2

User 3

User 4

Figure 2: Cooperation mechanism in the STBC-CNOMA
network with two STBC user pairs.

B. STBC-based Cooperative Transmission Phase

The second phase of the proposed transmission is the STBC-
based cooperative transmission phase. Users are paired as per
their channel conditions, i.e., the first two strongest users make
the first user pair followed by U3 and U4 making the second
user pair until UK−1 and UK making the M th user pair, where
M = K/2 and K is even. For the case K is odd, UK−2

and UK−1 construct the M th user pair, where M = K−1
2 .

In this phase, all of the users cooperate with each other by
employing a distributed 2 × 2 STBC transmission. However,
at the receiving STBC users’ pair, we use 2×1 STBC reception
for the detection of the symbols [23]. Each receiving STBC
user receives two symbols, one for itself and the other for its
neighbor. Thus, a STBC user keeps the decoded symbol for
itself, while the other symbol for its neighbor is discarded.
In the first time slot, t0, BS transmits the composite NOMA
signal to all users in its coverage area. Since the first two
strongest users have decoded the messages for all the other
users, therefore, they can contribute in the STBC cooperation
by transmitting the information for next two users in the next
two time slots. Therefore, during the second and third time
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slots, t1 and t2, U1 and U2 transmit to the users U3 and
U4 using Alamouti code. Similarly, in the two following time
slots, U3 and U4 transmit the STBC signal to U5 and U6 and
this process continues till UK receives its message. Assuming
The SINR at each user of the receiving STBC pair, with perfect
timing synchronization and perfect SIC, is given by

γk =
|hk|2pk

k−1∑
i=1

|hk|2pi + σ2

+
(|gk,k−ι−1|2 + |gk,k−ι−2|2)ps

σ2
, (1)

where 2 < k ≤ K, pk = ΦkPNOMA is the power assigned
to the kth user, Φk is the power coefficient for the kth

user, PNOMA is the power assigned to the composite NOMA
signal and ps is the fraction of power transmitted from the
transmitting users’ pair in STBC cooperation. Also, ι ∈ {0, 1}
denotes the first and the second user of the 2 × 2 STBC
receiving pair, respectively. In case of conventional cooperative
NOMA [5], each strong user, Ui, for any i < k will cooperate
with the weak user, Uk, by means of decode and forward
relay. Assuming maximum-ratio combining (MRC), as in [5],
the SINR at each user in this case is given by

γkccn =
|hk|2pk

k−1∑
i=1

|hk|2pi + σ2

+

k−1∑
j=1

|gk,k−j |2qk,k−j
k−1∑
i=1

|gk,k−j |2qk,k−i + σ2

,

(2)
where γkccn is the SINR at the kth user for conventional
cooperative NOMA and qk,k−j is the power transmitted from
the (k − j)th user to the kth user in the cooperation phase.

III. THREE PRACTICAL IMPAIRMENTS

In this section, we analyze the STBC-CNOMA system in
the presence of the timing mismatch (or synchronization error)
in the STBC cooperation phase, imperfect SIC, and channel
estimation error. We treat the three imperfections in the three
subsections, separately. To better explain the impacts of the
three practical impairments, we use a simple example with four
users (i.e., K = 4) as shown in Fig. 2. Using this example, we
analyze the STBC transmission from U1 and U2 to U3 and U4.
Then, based on the same approach, we extend our analysis to
a general scenario with more number of users (i.e., K > 4).

A. Synchronization Error

Fig. 2 shows an STBC-based downlink NOMA network
for two user pairs. During the first time slot to, each user
receives the composite NOMA signal Xnoma from the base
station. Since U1 and U2 are located in close vicinity of the BS,
they decode their own messages in addition to the messages
of U3 and U4 and send these to U3 and U4 through STBC
transmission. In other words, U1 and U2 send x3 and x4 to
U3 and U4 during time slot t1. During next time slot t2, U1

and U2 send −x∗4 and x∗3, respectively, to U3 and U4. Thus, the
STBC receiving user pair U3 and U4 can detect their respective
messages.

Fig. 3 illustrates the timing diagram with different synchro-
nization conditions. Fig. 3(a) depicts the STBC mechanism at

From User 1 of
STBC

user Pair

From User 2 of
STBC user

Pair

STBC Block

(a) Perfect timing synchronization

STBC Block

From User 1 of
STBC

user Pair

From User 2 of
STBC user

Pair

(b) Imperfect timing synchronization with τ = ε2T

Figure 3: Timing diagram of the received signals.

the receiver with perfect timing synchronization. The symbols
from both users U1 and U2 of STBC pair arrive at the receiver
at same time instant, where T is the symbol duration. On
the other hand, Fig. 3(b) shows the STBC transmission with
timing offset of τ = ε2T . In this case, the symbols from
U1 and U2 does not arrive simultaneously and there is a
substantial inter-symbol-interference (ISI) experienced by the
STBC receiving user pair, which causes the decrease in the
SINR. The STBC block used by U1 and U2 is given by

S =

[
x3 −x∗4
x4 x∗3

]
. (3)

Thus, if U4 is not perfectly synchronized, as shown in
Fig. 3(b), the receiver equations for U3 or U4 of STBC
receiving pair at time slots t1 and t2 are given as

r3,1 = g3,1x3 + g3,2ε1x4 + ξ3,1, (4)
r3,2 = −g3,1x

∗
4 + g3,2ε1x

∗
3 + g3,2ε2x4 + ξ3,2, (5)

r4,1 = g4,1x3 + g4,2ε1x4 + ξ4,1, (6)
r4,2 = −g4,1x

∗
4 + g4,2ε1x

∗
3 + g4,2ε2x4 + ξ4,2, (7)

where rk,t and ξk,t are the received signal and the additive
noise observed at the kth user during time slot t, respectively.
The received signals after combiner at User 3 and User 4 are
given by

ṽ3 = g∗3,1r3,1 + g3,2r
∗
3,2, (8)

ṽ4 = g∗4,2r4,1 − g4,1r
∗
4,2, (9)

which can be expanded as

ṽ3 = (|g3,1|2 + ε1|g3,2|2)x3 + (ε1 − 1)g∗3,1g3,2x4

+ ε2|g3,2|2x∗4 + g∗3,1ξ3,1 + g3,2ξ
∗
3,2, (10)

ṽ4 = (|g4,1|2 + ε1|g4,2|2)x4 + (1− ε1)g4,1g
∗
4,2x3
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− ε2g4,1g
∗
4,2x

∗
4 + g∗4,2ξ4,1 − g4,1ξ

∗
4,2. (11)

As a result, assuming MRC of the received signals in both
direct NOMA and STBC phases, the SINRs of U3 and U4

can be obtained as (12) and (13), respectively. We note that
if timing synchronization is perfect (i.e., ε1 = 1 and ε2 = 0),
the corresponding SINRs in (12) and (13) are reduced into
(1). Furthermore, generalizing this four-user example to a
larger number of users (e.g., K = 6, 8, ...), in the presence
of the synchronization error, the mathematical expressions of
the SINR of the mth and the nth users can be derived as (14)
and (15), respectively, for any m ∈ {3, 5, 7, . . . ,K − 1} and
n ∈ {4, 6, 8, . . . ,K}.

B. Imperfect SIC

Without synchronization error but under the residual inter-
ference caused by imperfect SIC implementation, the SINRs
at the mth and the nth users are given by

γηm =
|hm|2pm

η|gη|2pη +
m−1∑
i=1

|hm|2pi + σ2

+
(|gm,m−1|2 + |gm,m−2|2)ps

σ2
, (20)

and

γηn =
|hn|2pn

η|gη|2pη +
n−1∑
i=1

|hn|2pi + σ2

+
(|gn,n−2|2 + |gn,n−3|2)ps

σ2
, (21)

respectively. Therefore, in the presence of both the synchro-
nization error and imperfect SIC, the SINRs of the mth and
the nth users can be derived as (16) and (17), respectively,
where m ≥ 3 and n ≥ 4 can be any odd and even numbers,
respectively. In addition, it is to be noted that η = 0 and η = 1
represent the perfect and imperfect SIC employed at that user,
respectively. It is noted that the SIC imperfection and timing
error do not affect each other.

C. Imperfect CSI

In this section, we consider the imperfect CSI (i.e., channel
estimation error) along-with imperfect timing synchronization.
We consider ĝk,j = gk,j + ωj , where ĝk,j is the estimate of
gk,j and gk,j is the channel between kth and jth user. ωj is
the channel estimation error and it is assumed to be complex
Gaussian random variable (RV) with zero mean and variance
of σ2

ω . The RV ĝk,j are complex Gaussian with zero mean
and variance σ2

ĝ = σ2
g + σ2

ω . Also, the correlation coefficient
between the estimated channel and the real channel is ρ =
σ2
g/(σ

2
g + σ2

ω). We can write that gk,j = ρĝk,j + %k,j , where
%k,j are independent complex Gaussian RVs with zero mean
and variance σ2

% = σ2
gσ

2
ω/(σ

2
g +σ2

ω) [20], [21]. By putting the
value gk,j = ρ ˆgk,j + %k,j into (8) and (9) [24], we get

ṽχ3 = [(%3,1 + g3,1ρ) (%3,1 + ρg3,1) ∗

+ (%3,2 + g3,2ρ) (%3,2 + ρg3,2) ∗]x3

+ ξ3,1 (%3,1 + ρg3,1) ∗ + ξ∗3,2 (%3,2 + g3,2ρ) , (22)

and

ṽχ4 = [(%4,2 + g4,2ρ) (%4,2 + ρg4,2) ∗

+ (%4,1 + g4,1ρ) (%4,1 + ρg4,1) ∗]x4

ξ4,1 (%4,2 + ρg4,2) ∗ − ξ∗4,2 (%4,1 + g4,1ρ) , (23)

respectively. Assuming the MRC of the received signals at
each user for direct NOMA and STBC cooperation phase,
and solving (22)-(23) for the SINRs, we obtain (18) and (19),
respectively.

IV. OUTAGE PROBABILITY ANALYSIS

In this section, we analyze the outage performance under
the three practical impairments: timing error, imperfect SIC,
and channel estimation error. Because the last user (i.e., User
K) has the weakest channel gain and also suffers from the
impairments, it has the worst outage probability compared to
the other users, as shown in [13], [16]. For this reason, we
focus on the outage performance of User K (e.g., User 4 in
the four-user example in the previous section), which will set
a benchmark for the other users with stronger channel gains.

An outage event occurs when a user cannot achieve the
reliable SINR to detect the signal. Following [13] and [16],
the outage probability of any user k (for k ≤ K) is defined
as

Pout = P(γk < γth) =

∫ γth

0

fΓ(γk)dγk, (24)

where γth is the SINR threshold and fΓ(γk) is the probability
density function (PDF) of SINR received at the kth user with
perfect SIC, perfect timing synchronization, and perfect CSI,
which is derived in (1). We can also use the SINR derived in
the previous section as in (14)-(19) for different cases in order
to find their respective outage probabilities. Similarly, the rate
outage (i.e., capacity outage) probability is defined as

P̃out = P[γk < 2Υ − 1], (25)

where Υ = log2(1 + γth) is the rate threshold. In order to
find the outage probability using (24), we need the PDF of
SINR for different cases. Therefore, as the SINR expressions
in (14)-(19) contain random variables, we consider the fol-
lowing mathematical manipulation and define some composite
random variables for finding the PDF of SINRs for different
cases.

We redefine the variables used in (14)-(19) as A = |hk|2pk,

B =
I∑
i=1

|hk|2pi, C = |gk,k−2|2ps, D = |gk,k−3|2ps, F =

|gη|2pη , Cχ = |Aχ|2ps and Dχ = |Bχ|2ps, where |hk|2, |gη|2,
|gk,k−2|2, |gk,k−3|2, |Aχ|2 and |Bχ|2 follow the exponential
distribution with parameters ζh, ζη , ζgk,k−2

, ζgk,k−3
, ζaχ and

ζbχ , respectively. The variables A, C, D, F , Cχ and Dχ

also follow the exponential distributions with parameters λh,
λgk,k−2

, λgk,k−3
, λη , λaχ and λbχ , respectively. We assume

that λgk,k−2
= λgk,k−3

= λg and λaχ = λbχ = λχ, where
disparate path losses with large-scale fading are compensated
by appropriate power control at the relaying users, as in [25].
The variable B follows the hypo-exponential distribution with
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γε3 =
|h3|2p3

2∑
i=1

|h3|2pi + σ2

+
(|g3,1|2 + ε1|g3,2|2)2ps

|(ε1 − 1)g∗3,1g3,2 + ε2g3,2g∗3,2|2ps + (|g3,1|2 + |g3,2|2)σ2
. (12)

γε4 =
|h4|2p4

3∑
i=1

|h4|2pi + σ2

+
(|g4,1|2 + ε1|g4,2|2)2ps

|(1− ε1)g4,1g∗4,2 − ε2g4,1g∗4,2|2ps + (|g4,1|2 + |g4,2|2)σ2
. (13)

γεm =
|hm|2pm

m−1∑
i=1

|hm|2pi + σ2

+
(|gm,m−2|2 + ε1|gm,m−1|2)2ps

|(ε1 − 1)g∗m,m−2gm,m−1 + ε2gm,m−2g∗m,m−2|2ps + (|gm,m−2|2 + |gm,m−1|2)σ2
. (14)

γεn =
|hn|2pn

n−1∑
i=1

|hn|2pi + σ2

+
(|gn,n−3|2 + ε1|gn,n−2|2)2ps

|(1− ε1)gn,n−3g∗n,n−2 − ε2gn,n−3g∗n,n−2|2ps + (|gn,n−3|2 + |gn,n−2|2)σ2
. (15)

γε,ηm =
|hm|2pm

η|gη|2pη +
m−1∑
i=1

|hm|2pi + σ2

+
(|gm,m−2|2 + ε1|gm,m−1|2)2ps

|(ε1 − 1)g∗m,m−2gm,m−1 + ε2gm,m−2g∗m,m−2|2ps + (|gm,m−2|2 + |gm,m−1|2)σ2
.

(16)

γε,ηn =
|hn|2pn

η|gη|2pη +
n−1∑
i=1

|hn|2pi + σ2

+
(|gn,n−3|2 + ε1|gn,n−2|2)2ps

|(1− ε1)gn,n−3g∗n,n−2 − ε2gn,n−3g∗n,n−2|2ps + (|gn,n−3|2 + |gn,n−2|2)σ2
. (17)

γχm =
|hm|2pm

m−1∑
i=1

|hm|2pi + σ2

+
(|%m,m−2 + gm,m−2ρ|2 + |%m,m−1 + gm,m−1ρ|2)ps

σ2
. (18)

γχn =
|hn|2pn

n−1∑
i=1

|hn|2pi + σ2

+
(|%n,n−3 + gn,n−3ρ|2 + |%n,n−2 + gn,n−2ρ|2)ps

σ2
. (19)

parameters λi, where i ∈ (1, 2, 3, . . . , I) is a set of interfering
users and I = k − 1. We denote λh = 1

pkζh
, λi = 1

piζi
,

λg = 1
psζg

, λη = 1
pηζη

and λχ = 1
pχζχ

, where pη and pχ is
the power of interfering signal (IS) due to imperfect SIC and
power of IS due to imperfect CSI, respectively.

In the following five lemmas and five propositions, we
treat different combinations of the three impairments. In the
lemmas, we derive the exact outage probabilities based on P̃out
in (25). The probability distributions of the SINRs in each
case can be found in its proof. Further, in the propositions,
which correspond to each of the five lemmas, we provide
the asymptotic outage probabilities in the high transmit SNR
regime using P̃out in (25), which provide intuitive insights into
the impacts of the impairments. For mathematical notations
used to derive the lemmas, please refer to Table II.

First, we consider the outage probability in the absence of
any impairments, which can serve as a baseline to quantify
the impact fo the imperfections, in the following lemma.

Lemma 1 . The outage probability for the perfect timing,
perfect SIC, and perfect CSI is given as

Pout =
1

λ2
gλ

2
h

I∑
i=1

[
fe−

λi+λhγth
λgλh

(
λi(λi + λhγth)Ei

(
λi
λgλh

)

− λi(λi + λhγth)Ei
(
γthλh + λi
λgλh

)
+ λgλhe

λi
λgλh((

eγth/λg − 1
)

(λgλh + λi)− λhγth
))]

, (26)

where γth is the SINR threshold and f =
I∑
i=1

∏I
i=1 λi∏I

j=1,i6=j(λj−λi)
.

Proof : See Appendix A.
Since the exact outage expression derived in Lemma 1 is
complicated and does not yield to easy interpretation, we
consider the asymptotic behavior of the rate outage given
in (25), when the transmit SNR, which is denoted by SNR,
is high enough in the following proposition.

Proposition 1 . As SNR→∞, the rate outage probability for
the perfect timing synchronization, perfect SIC, and perfect
CSI becomes

lim
SNR→∞

P̃out ∼
λhg(SNR)

Φk −
k−1∑
i=1

Φi(2Υ − 1)

+ 2λ2
g[g(SNR)]2, (27)

where g(SNR) = 2Υ−1
SNR

.
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Table II: Mathematical Notations

Mathematical Notations used in Corollaries and Appendices

ψ1 =

I∏
j=1

λj , ψη1 = λhλη

I∏
j=1

λj , ψ2 =
I∑
i=1

I∏
j=1,
j 6=i

λj ,

ψη2 = λη + ψ2, ψ3 =
I∑
i=1

log[λi]
I∏

j=1,k=1,
j 6=i,j 6=k,
i 6=k

(λj − λk), ψ4 = λhψa,

ψη3 =
I∑
j=1

log[λi]
I∏

j=1,k=1,
i 6=j,i 6=k,
j 6=k

(λj − λk) + log[λη ]
I∏

j=1,k=1,
i6=j,i 6=k,
j 6=k

(λj − λk)

ψη4 = λh
I∑
j=1

log[λi]

I∏
j=1,k=1,k>j

(λj − λk)(λj − λη),

ψ6 =
I∑
i=1

log[λi]
I∏

j=1,k=1,
j 6=i,i 6=k,
k>j

(λj − λk),

ψ7 =

I∏
j=1,k=1,
k>j

(λj − λk)2, ψ8 =
I∑
i=1

λilog[λi]

I∏
j=1,k=1,
j 6=i,i6=k,
k>j

(λj − λk),

ψη7 =
I∑
i=1

log[λi]
I∏

j=1,k=1,
i 6=j,i 6=k,
i6=η,k>j

(λj − λk)(λj − λη) + log[λη ]
I∏

j=1,k=1,
i6=j,i 6=k,
i 6=η,k>j

(λj − λk),

ψη8 = ψ8 + ληlog(λη)

I∏
j=1,j 6=η

(λj − λη), ψ9 = λ2hψ7,

ψη9 = λ2hψb

I∏
j=1,η=1,
η>j

(λj − λη)2, ψ10 =
I∑
i=1

eλi
I∏

j=1,k=1,
j 6=i,i 6=k,
k>j

(λj − λk)Ei(−λi),

ψη10 = λ2hψ
η
8

ψI =
I∑
i=1

I∑
j>i

· · ·
I∑

s>···>j>i
λs . . . λjλi,

ψa =

I∏
j=1,k=1,
k>j

(λj − λk),ψb =

I∏
j=1,k=1,
k>j

(λj − λk)2

Proof : See Appendix B.
Based on this ideal case, we will investigate how each impair-
ment impacts the outage probability.

Lemma 2 . The outage probability for the perfect timing
synchronization, imperfect SIC, and perfect CSI is given as

P ηout =

I∑
i=1

[
1

λ3
gλ

2
h(λi − λη)

[
f

{
λge
−λη+λi+λhγth

λgλh

[
e

λi
λgλh

{
ληλi(λη + λhγth)Ei

(
λη
λgλh

)
− ληλi

(
λη + λhγth

)
Ei
(
γthλh + λη
λgλh

)
+ λgλ

2
h(λη − λi)(λg + γth)e

λη
λgλh

}
+ ληλi

(
−e

λη
λgλh

)
(λi + λhγth)Ei

(
λi
λgλh

)
+ ληλie

λη
λgλh (λi + λhγth)Ei

(
γthλh + λi
λgλh

)]
+ λ3

gλ
2
h(λi − λη)

}]]
. (28)

Proof : See Appendix C.

Proposition 2 . As SNR→∞, the rate outage probability for
the perfect timing synchronization, imperfect SIC, and perfect
CSI becomes

lim
SNR→∞

P̃ ηout ∼ g̃(SNR) + 2λ2
g[g(SNR)]2, (29)

where g̃(SNR) = λhg(SNR)

Φk−(Φη+
k−1∑
i=1

Φi)(2Υ−1)

and Φη is the coeffi-

cient of power received due to ipSIC.
Proof : See Appendix D.

Compared to the ideal case in (27), we observe that the adverse
effect of Φη introduced by the imperfect SIC is to increase the
outage probability.

Lemma 3 . The outage probability for the imperfect timing
synchronization, perfect SIC, and perfect CSI is given as

P εout =
1

Γ(α)

[(
− 1

β2

)−α
β−α

(
(−1)α

(
1

β

)α
δ(γth)

+

(
− 1

β

)α)(
Γ(α)− Γ

(
α,
γth
β

))]
, (30)

where α and β are given in (62).
Proof : See Appendix E.

Proposition 3 . As SNR→∞, the rate outage probability for
the imperfect timing synchronization (0 < ε1 < 1), perfect
SIC, and perfect CSI becomes

lim
SNR→∞

P̃ εout ∼
λhg(SNR)

Φk −
k−1∑
i=1

Φi(2Υ − 1)

+ gε(SNR). (31)

where gε(SNR) = 2ε1λ
2
g

(
2Υ−1
SNR

)2

.
Proof : See Appendix F.

From this proposition, it is clear that the second term in
(27) quantifies the effect of the timing error on the outage
probability.

Lemma 4 . The outage probability for the imperfect timing
synchronization, imperfect SIC, and perfect CSI is given as

P ε,ηout =
1

Γ(θ)

[(
− 1

φ2

)−θ
φ−θ

(
(−1)θ

(
1

φ

)θ
δ(γth)

+

(
− 1

φ

)θ )(
Γ(θ)− Γ

(
θ,
γth
φ

))]
, (32)

where the values of θ and φ are given in (65).
Proof : See Appendix G.

We note that Lemmas 1, 2, and 3 are special cases of
this lemma. The following asymptotic analysis provides the
corresponding limiting rate outage for SNR→∞.

Proposition 4 . As SNR → ∞, the rate outage probability
for the imperfect timing synchronization, imperfect SIC, and
perfect CSI becomes

lim
SNR→∞

P̃ ε,ηout ∼ g̃(SNR) + gε(SNR). (33)
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Proof : See Appendix H.
In fact, this result in (33) is in line with the composite
degradations found in Propositions 2 and 3. In the following
lemma and proposition, we will investigate the impact of the
imperfect CSI.

Lemma 5 . The outage probability for the perfect timing
synchronization, perfect SIC, and imperfect CSI is given as

Pχout =
1

λ2
χλ

2
h

I∑
i=1

[
fe−

λi+λhγth
λχλh

(
λi(λi + λhγth)Ei

(
λi

λχλh

)
− λi(λi + λhγth)Ei

(
γthλh + λi
λχλh

)
+ λχλhe

λi
λχλh((

eγth/λχ − 1
)

(λχλh + λi)− λhγth
))]

. (34)

Proof : See Appendix I.

Proposition 5 . As SNR→∞, the outage probability for the
perfect timing synchronization, perfect SIC, and imperfect CSI
becomes

lim
SNR→∞

P̃χout ∼
λhg(SNR)

Φk −
k−1∑
i=1

Φi(2Υ − 1)

+ 2λ2
χ[g(SNR)]2, (35)

where λχ = 1/σ2
χ = 1/(σ2

% + ρ2σ2
g).

Proof : See Appendix J.
Since the outage rates are obtained in closed-form expressions
in the five lemmas, it is possible to estimate how the outage
performance of the STBC-CNOMA scheme changes as var-
ious system parameters change. In addition, the asymptotic
analysis in the propositions provide the insights into how
the rate outage is degraded by the three imperfections. Our
analysis in the lemmas and propositions will be validated by
comparing with simulation results in Section VI.

V. COMPLEXITY ANALYSIS

In this section, we will compare the complexity of STBC-
aided cooperative NOMA (STBC-CNOMA) with other coop-
erative NOMA techniques in terms of the number of SIC
performed, which is widely used to evaluate the computa-
tional complexity of NOMA as in [6], [7], [26]–[28]. We
consider five different NOMA schemes: conventional coop-
erative NOMA (CCN) [5], cooperative relay systems using
NOMA (CRS-NOMA) [10], CRS-NOMA novel design (CRS-
NOMA-ND) [29], cooperative relay selection by using STBC
(CRS-STBC-NOMA) [15], and lastly STBC-CNOMA. We
note that this is the first extensive comparison of the five
schemes, which quantifies the total number of SIC performed
for a given number of users K.

The total number of SIC performed by CCN is given by

SICccn =

K−2∑
j=0

[
K−1−j∑
i=1

(K − (i+ j))

]
. (36)

Table III: A comparison of time slots required and number of
transmissions for different cooperative NOMA schemes.

Algorithm No. of
Time Slots

No. of
Transmissions

CCN [5] K K
CRS-NOMA [10] K K

CRS-NOMA-ND [29] K K
CRS-STBC-NOMA [15] 2K 4K

STBC-CNOMA K − 1 2K − 3

Also, the total number of SIC performed by CRS-NOMA,
which uses a half-duplex relay between the source and each
user, is given by

SICcrs−noma =

K∑
j=1

j. (37)

Also, the total number of SIC performed by CRS-STBC-
NOMA, which has a two-phase communication from the
source to each user by means of 2× 1 STBC, is given by

SICcrs−stbc−noma =

K∑
j=1

4j. (38)

In this scheme, the source is equipped with two transmit
antennas, and each relay is equipped with one receive antenna
and two transmit antennas, whereas each user is equipped with
one receive antenna.

On the other hand, the total number of SIC performed by
CRS-NOMA-ND is given by

SICcrs−noma−nd =

K∑
j=1

2j. (39)

In this scheme, two sources transmit two symbols to two users
by means of superposition coding, and each user decodes its
symbol by MRC and SIC. Whereas, the total number of SIC
performed by STBC-CNOMA is given by

SICstbc−cnoma =

K−1∑
i=1

(K − i). (40)

It is noted that (36) and (40) show that for a larger number
of users, complexity of CCN increases due to higher number
of SIC. Whereas, the number of SIC is not increased in
cooperation phase of STBC-CNOMA. Therefore, it achieves
the diversity gain of STBC codes and maintains the number
of SIC same as that of conventional direct NOMA scheme.

In Table III, we compare the number of time slots required
for the complete transmission in various cooperative schemes
for even K ≥ 4. As shown in the table, STBC-CNOMA
requires K − 1 time slots for the complete transmission.
Therefore, saving one time slot as compared to that of in
CCN and CRS-NOMA. This time slot can be utilized in
other types of signaling, which makes STBC-CNOMA more
efficient scheme. In addition, in the last column of Table III,
we compare the number of transmissions, which indicates
the communication overhead. As shown in the table, CRS-
STBC-NOMA has the largest number of transmissions. Due
to the STBC phase, we can find out that STBC-CNOMA also
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Figure 4: The SINR PDFs for the perfect SIC, perfect CSI,
and variable timing offsets, when K = 4.

requires more number of transmissions compared to the other
three scheme for any K ≥ 4.

VI. SIMULATION RESULTS

In this section, we present numerical and simulation results
and validate our analysis in the previous sections. We consider
a downlink NOMA system with one BS and K users. As
in [5], [10], [13], we assume that the channels between the
BS and each user, and inter-users are flat fading Rayleigh
channels. The noise power spectral density is considered as
−174 dBm/Hz. The rate threshold Υ is set to be 2 bits per
channel use (BPCU). Each user is considered as stationary.
The parameters ζh, ζη , ζgk,k−2

, ζgk,k−3
and ζχ are consid-

ered to be unity. Symbol duration T is also considered as
unity for the simplicity. For the STBC-CNOMA scheme, the
transmit power at the BS (i.e., PNOMA) is considered as 45
dBm, whereas the power transmitted during STBC cooperation
phase (i.e., ps) is considered as half of the power transmitted
from the BS. Power coefficients for simulations with K = 4
are Φ1 = 0.1, Φ2 = 0.2, Φ3 = 0.3, and Φ4 = 0.4 for
k ∈ {1, 2, 3, 4}, respectively. It is to be noted that we assume
the same total power budget for all of the schemes in the
simulation for the fair comparison.

Fig. 4 provides the comparison of simulation and analyt-
ical results for the SINR PDFs for different timing offsets,
assuming K = 4 with the perfect SIC and CSI. It can be
noticed that the simulation results closely match the analytical
results for various timing offsets τ ∈ {0, 0.3, 0.6, 0.9}. Thus,
as an essential component for further performance analysis, the
SINR PDFs derived in Section VI have been validated. Also,
as expected, as the timing offset increases, the mean of the
distribution approaches zero. In other words, the average SINR
of the user decreases, as the timing offset τ increases, which
means that the outage probability of the user is an increasing
function of τ .

In Fig. 5, we compare the outage probabilities of NOMA,
CCN, and STBC-CNOMA for τ = {0, 0.5, 0.8} and K = 4.
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Figure 5: Outage probability performance for the perfect SIC,
perfect CSI, and variable timing offsets, when K = 4.
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Figure 6: Outage probability performance for the perfect
timing, perfect CSI, and imperfect SIC = −5dBs, when
K ∈ {4, 8, 16}.

In the figure, the horizontal axis represents the SINR threshold
γth. The simulation and analytical results show great correla-
tion with each other, which validates Lemmas 1 and 3. Further,
in the figure, we observe that the outage probability of NOMA
is the highest for a given γth, because it is a non-cooperative
scheme that does not provide diversity gain. It is also noted
that STBC-CNOMA outperforms the CCN for the low SINR
thresholds. Also, the performance of the STBC-CNOMA with
τ = 0.5 is similar to that of CCN for SINR threshold of up
to 2 dB. Fig. 5 also demonstrates that the outage probability
of the STBC-CNOMA approaches to that of NOMA with the
timing offset, τ approaching to 1. Therefore, for the low SINR
threshold and τ < 0.5, STBC-CNOMA is still an attractive
scheme.

Fig. 6 shows both analytical and simulation results of the
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Figure 7: Outage probability performance with K = 4 for
the imperfect SIC =−5 dBs, perfect CSI, and variable timing
offsets.
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Figure 8: Outage probability of User 4 in STBC-CNOMA with
the imperfect SIC, perfect timing synchronization, and perfect
CSI.

outage performance of the STBC-CNOMA with the total
number of users K ∈ {4, 8, 16}. In the figure, we observe the
outage performance degradation with the increasing number
of users. Further, it is noted that there is not much difference
in the outage performance as K exceeds 8. In other words,
in the absence of any imperfection, the outage performance
of STBC-CNOMA is not much degraded with the increasing
number of users. Also, the analytical and simulation results
closely match, which validates Lemma 2 in Section IV.

Similarly, Fig. 7 shows the analytical and simulation results
for the performance of STBC-CNOMA with different timing
offsets for the perfect CSI and imperfect SIC of −5 dBs,
when K = 4. Fig 8 depicts the outage probability with
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Figure 9: Rate outage probability of User 4 in STBC-CNOMA
at τ = {0, 0.6, 0.7, 0.8, 0.9}, perfect CSI, and perfect SIC.
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Figure 10: Rate outage probability of User 4 in STBC-
CNOMA with the perfect timing synchronization, perfect CSI,
and imperfect SIC.

different levels of the SIC imperfection. In this case, Fig. 7
and Fig 8 show the great correlation between the simulation
and analytical results based on Lemma 4 in Section IV. Also,
as shown in the figures, we observe that the outage probability
increases sharply, as τ and the SIC imperfection increase.

Fig. 9 presents a comparative analysis of the rate outage
performance as function of the transmit SNR, SNR, of User 4
for STBC-CNOMA with the perfect SIC and different values
of timing offsets. We assume that the rate threshold is 2 bits
per channel use (BPCU) and there are 4 users (i.e., K = 4) in
the system. Also, the dotted lines correspond to the asymptotic
rate outage probabilities derived in Section IV. The results
show that the rate outage degrades with the increase in the
timing offset τ , which is in line with the previous simulation
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Figure 11: Rate outage probability of User 4 in STBC-
CNOMA with the timing offset of 0.5, perfect CSI, and
imperfect SIC.
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Figure 12: Rate outage probability of User 4 in STBC-
CNOMA with the timing offset of 0.7, perfect CSI, and
imperfect SIC.

results. The user has the best outage performance for ε1 = 1,
i.e., when there is no timing offset. However, in case that the
users are not perfectly synchronized, the orthogonality of the
received symbols is compromised, which leads to performance
degradation. The user with τ = 1 experiences an outage
probability close to that of non-cooperative NOMA. We also
observe the asymptotic analysis curves based on Propositions
1 and 3, which show good agreement with both simulation
and original analytical results in the high SNR regime.

Fig. 10 shows the rate outage probability of User 4 with
the perfect timing synchronization, perfect CSI, and imperfect
SIC. In the figure, we can find that the performance of User 4
degrades significantly with the increasing impact of imperfect
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Figure 13: Rate outage probability of User 4 in STBC-
CNOMA with the perfect timing synchronization, perfect SIC,
and imperfect CSI.
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Figure 14: A comparison of number of SIC performed in
different flavors of cooperative NOMA.

SIC even with perfect timing synchronization. This implies
that even if the system is perfectly synchronized but with
imperfect SIC, its performance is not reliable. Fig. 11 gives
a snapshot of rate outage probability of User 4 with the
imperfect SIC and timing offset τ of 0.5. As expected, the
figure shows that the outage probability of User 4 degrades
severely with the increasing effect of imperfect SIC. It is
obvious that a small increase in the intensity of imperfect
SIC leads to a higher degradation in the performance of the
system. Furthermore, in both Figs. 10 and 11, as SNR increases,
we observe the asymptotic analysis curves show the almost
identical results as the simulation and exact analysis, which
validates Propositions 2 and 4. Fig. 12 illustrates the rate
outage probability with the timing offset τ of 0.7 and the
imperfect SIC. As expected, the rate outage probability in
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Fig. 12 is higher compared to Fig. 11, which corresponds to
τ = 0.5, for the same SIC condition.

Fig. 13 shows the effect of the channel estimation error (i.e.,
CSI imperfection) on the rate outage performance of STBC-
CNOMA. In the figure, we first observe that the analytical
results indicated by the solid lines have excellent correlation
with the corresponding simulation results, which are indicated
by the different markers. In addition, the dotted lines, which
correspond to the asymptotic analysis, approach to the solid
lines and markers, as SNR increases. Thus, both Lemma 5
and Proposition 5 have been validated. Also, in the figure,
the performance degrades rapidly with the increase in the
magnitude of the imperfection in the channel estimation. By
comparing the results in Figs. 10 and 13, it is observed that the
impact of the imperfect SIC is greater compared to that of the
imperfect CSI. This is due to the fact that the SIC imperfection
degrades the SINR performance in direct NOMA phase as well
as in cooperative NOMA phase, because accurate detection of
weak users’ symbols in direct NOMA phase depends on the
level of perfection in SIC. The imperfection in the detected
weak users’ symbols leads to decrease in SINR in cooperative
NOMA phase. In addition, comparing the results in Figs. 9
and 13, we can conclude that the system with the perfect
SIC and the timing offset of 0.7 performs better than the
system with the imperfect SIC of −30 dB and perfect timing
synchronization. This shows that the impact of the imperfect
SIC is more significant compared to that of imperfect timing
synchronization or imperfect CSI.

Lastly, Fig. 14 shows the complexity comparison in Section
V. As shown in the figure, it is obvious that the CCN becomes
computationally expensive for higher number of users due to
its exponential increase in the number of SIC to be performed.
On the other hand, STBC-CNOMA has substantially reduced
the number of SIC. For example, when the total number
of users is 6, the CCN requires 35 SIC whereas in STBC-
CNOMA, the number of SIC required is 15, making a 57%
reduction in number of SIC performed. This reduction of SIC
increases to 72.72 % and 83.17% as the number of users
increases to 10 and 18, respectively. We can say that the
CRS-STBC-NOMA has the worst performance in terms of
complexity for low and medium numbers of users. But, for
higher number of users, i.e., K > 13, conventional cooperative
NOMA has the worst performance in terms of complexity.
The proposed scheme, STBC-CNOMA, outperforms all of the
other schemes in terms of numbers of SIC performed, which
is desirable in hardware-limited networks.

VII. CONCLUSIONS

In this paper, we have provided the theoretical framework
to incorporate three realistic impairments, which are timing
error, SIC imperfection, and CSI impairment, with outage
performance. We have derived the closed-form expressions of
the outage probabilities for the different combinations of the
three impairments. Further, the complexity of STBC-CNOMA
has been compared with existing cooperative NOMA protocols
such as CCN, CRS-NOMA, CRS-STBC-NOMA and CRS-
NOMA-ND in terms of the total number of SIC. Through

both analysis and simulation, we show that STBC-CNOMA
can be an attractive solution for systems with higher number
of users or devices and having low power constraints. The
simulation results also have shown that for a small number of
users (i.e., K ≤ 4) STBC-CNOMA without any imperfection
outperforms CCN, until the SINR threshold exceeds a certain
value. Even with moderate timing offset τ < 0.5, we have
observed that the outage performance degradation of STBC-
CNOMA relative to CCN is not significant. On the other hand,
the impact of the imperfect SIC on the outage performance of
STBC-CNOMA is more significant compared to those of the
timing offset and the imperfect CSI. Therefore, considering
the smaller number of SIC in STBC-CNOMA compared to
the other cooperative NOMA protocols, we can conclude
that STBC-CNOMA is an effective solution to achieve high
reliability for the same SIC imperfection condition.

APPENDIX A: PROOF OF LEMMA 1

Suppose that A ∼ Exp(λh) and B is the sum of
exponential RVs resulting in a hypo-exponential RV, i.e.,
B ∼ hypoexp(λi) with λi is a vector given as λi =
{λ1, λ2, λ3, . . . , λI}, as described in Section IV-A, then the
PDF of A is given by

fA(a) = λhe
−λha, a ≥ 0. (41)

In case of only one interfering user, the PDF of B is given as

fB(b) = λ1e
−λ1b, b ≥ 0. (42)

For more than one interferers, the PDF of B is given as

fB(b) =

(
I∏
i=1

λi

)[
I∑
i=1

e−λib∏I
j=1,i6=j(λj − λi)

]
, (43)

where b > 0 and I is the total number of interferers. The PDF
of Q1 = A

B can be expressed as

fQ1
(q) =

∫ ∞
0

bfA(bq)fB(b)db. (44)

By substituting (41) and (43) into (44), we get the form
in (45). Then, as in [30], the PDF of Q1 = A

B is given by

fQ1
(q) =

λhψ1

[
ψ2 + qλh

(
I∑
i=1

(i+ 1)qi−1λi−1
h ψI−i−1

)]
∏I
j=1(λhq + λj)2

,

(45)

where q > 0. Hence, using this PDF, the mean and variance
of Q1 can be obtained as E[Q1] = ψ1ψ3

ψ4
and Var[Q1] =

λhψ1(λhψ1ψ
2
6+2ψ7ψ8)

ψ9
, respectively. Similarly, for the perfect

timing synchronization, let Z = C + D, which is the sum
of two exponential RVs. Thus, Z ∼ Gamma(λg), which
corresponds to the following PDF of Z

fZ(z) =
z

λ2
g

e−zλg , z > 0. (46)

Without any imperfection, we can write (1) as L = Q1 + Z,
where the PDF of Q1 is given as (45). By convolving the
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PDFs of Q1 and Z, we obtain the PDF of L = Q1 +Z, which
can be found in [30] as

fL(l) =
1

λ3
gλ

2
h

I∑
i=1

[
fe−

λi+λhl

λgλh

(
λi(−λgλh + λi + λhl)(

Ei
(
lλh + λi
λgλh

)
− Ei

(
λi
λgλh

))
+

λgλhe
λi

λgλh

(
λi − λiel/λg + λhl

))]
, (47)

where l > 0 and Ei(x) =
∫ x
−∞

et

t dt. Hence, the outage
probability is given as

P (L < γth) =

∫ γth

0

fL(l)dl. (48)

Consequently, based on the PDF of L in (47), the outage
probability can be derived as (26).

APPENDIX B: PROOF OF PROPOSITION 1

Based on (1) and (25), the rate outage probability for the
perfect timing synchronization, perfect SIC, and perfect CSI
can be expressed as

P̃out = P[γk < 2Υ − 1]

=P

[
[

|hk|2pk

|hk|2
k−1∑
i=1

pi + σ2

+
(|gk,k−ι−1|2 + |gk,k−ι−2|2)ps

σ2
] < 2Υ − 1

]
. (49)

As described in Section IV, |hk|2, |gk,k−ι−2|2, and |gk,k−ι−1|2
follow the exponential distributions with parameters λh, λg1,
and λg2, respectively. Therefore, we can rewrite (49) in terms
of SNR as

P̃out = P
[
[X̃ + Ỹ ] < g(SNR)

]
, (50)

where X̃ = |hk|2Φk

SNR |hk|2
k−1∑
i=1

Φi+1

and Ỹ =
|gk,k−ι−1|2+|gk,k−ι−2|2

2 .

Because of the independent channel gains, P[X̃ + Ỹ <
g(SNR)] ≤ P[X̃ < g(SNR)] + P[Ỹ < g(SNR)]. At high SNR,

λh(2Υ−1)

SNR[Φk−
k−1∑
i=1

Φi(2Υ−1)]

→ 0. Using the power series expan-

sion [31], we first have

P[X̃ < g(SNR)] =1− exp

[
− λhg(SNR)

Φk −
k−1∑
i=1

Φi(2Υ − 1)

]

= 1− exp

[
− λh(2Υ − 1)

SNR
(
Φk −

k−1∑
i=1

Φi(2Υ − 1)
)
]

∼
λh

Φk −
k−1∑
i=1

Φi(2Υ − 1)

(
2Υ − 1

SNR

)
. (51)

In addition, based on Fact-1 and Fact-2 in Appendix-I and Eq.
(26) of [32] to find the outage behavior when SNR→∞, we
obtain

P[Ỹ < g(SNR)] ∼ 2λ2
g

(
2Υ − 1

SNR

)2

. (52)

By substituting (51) and (52) into (50), we have the asymptotic
rate outage probability in (27).

APPENDIX C: PROOF OF LEMMA 2

For the imperfect SIC, perfect timing synchronization and
perfect CSI, we can rewrite (21) as Lη = A

F+B + Z. Let A
and B be the RVs as defined in (41) and (43). Also, suppose
F ∼ Exp(λη) and $ = F +B. Then, the PDF of $ is given
as

f$($) = λη

I∏
i=1

λi

[
I∑
i=1

(
e−λi$∏I

j=1,i6=j,η 6=j(λj − λi)(λj − λη)

+
e−λη$∏I

j=1,i6=j,η 6=j(λj − λi)(λj − λη)

)]
, (53)

where $ > 0. The PDF of Qη = A
$ is given as

fQη (q) =

∫ ∞
0

$fA($q)f$($)d$. (54)

By substituting (41) and (53) into (54), we obtain the PDF [30]
of Qη = A

F+B is given as

fQη (q) =

ψη1

[
ψη2 + qλh

(
I∑
i=1

(i+ 2)qiλihψ
I−i
η

)]
(λhq + λη)2

∏I
j=1(λhq + λj)2

, (55)

where q > 0. Thus, the mean and variance of Qη are given
by E[Qη] =

ψη1ψ
η
3

ψη4
, and Var[Qη] =

ψη1 (ψη1 (ψη7 )2+2ψη8ψ
η
9 )

ψη10
,

respectively. By convolving (55) and (46) [30], We get the
PDF [30] of Lη = A

F+B + Z given as

fLη (l) =

I∑
i=1

[
fe−

λη+λi+λhl

λgλh

λ3
gλ

2
h(λi − λη)

(
e

λi
λgλh

(
− ληλiEi

(
λη
λgλh

)
(−λgλh + λη + λhl) + ληλi(−λgλh + λη + λhl)

Ei
(
lλh + λη
λgλh

)
+ λgλ

2
hl(λη − λi)

(
−e

λη
λgλh

))

+ ληλi

(
−e

λη
λgλh

)
Ei
(

λi
λgλh

)(
λgλh

− λi + λh(−l)
)

+ ληλie
λη
λgλh (λgλh − λi

+ λh(−l))Ei
(
lλh + λi
λgλh

))]
, (56)

where l > 0. By substituting (47) into (48), we get the outage
probability [30] as shown in (28).



14

Table IV: K-S Test Results for Lemma 3

Distrns. Mean and Variance Estimated Para. MSE
µ Var. κ̂1 κ̂2 eκ1 eκ2

Gamma 5.9834 23.87 1.498 3.9893 0.0061 0.0192
Wei-bull 6.0164 24.9705 6.4089 1.2095 0.0177 0.0028

Exponential 5.9834 35.8037 5.9834 0.0189
Rayleigh 7.2006 14.1672 5.7452 0.0092

Rician 7.2010 14.1687 0.1753 5.7442 0.3146 0.0102
Nakagami 6.4162 24.8484 0.4744 66.016 0.0017 0.3030

APPENDIX D: PROOF OF PROPOSITION 2

Based on (21) and (25), the rate outage probability for the
perfect timing synchronization, imperfect SIC, and perfect CSI
can be rewritten as

P̃ ηout = P[γηk < 2Υ − 1]

=P

[
|hk|2Φk

SNR(η|gη|2Φη +
k−1∑
i=1

|hk|2Φi) + 1

+
|gk,k−ι−1|2 + |gk,k−ι−2|2

2
<

2Υ − 1

SNR

]
. (57)

If Z̃ = |hk|2Φk

SNR(η|gη|2Φη+
k−1∑
i=1
|hk|2Φi)+1

, using power series expan-

sion, we have

P[Z̃ < g(SNR)] = 1− exp
[
− g̃(SNR)

]
∼ g̃(SNR). (58)

By substituting (58) and (52) into (57), we can approximate
the outage behaviour when SNR→∞ as in (29).

APPENDIX E: PROOF OF LEMMA 3

For the perfect SIC, imperfect timing synchronization, and
perfect CSI, we can rewrite (15) as V = Q1 + R. Further,
the second part of (13) can be expressed as R = ν

Λ
,

where ν = (C+ε1D)2

C+D and Λ = |ℵ|2
C+D with |ℵ|2 = |(1 −

ε1)g4,1g
∗
4,2 − ε2g4,1g

∗
4,2|2. It can be shown from [33] that

ν is the Generalized Gamma distribution. Whereas, let Λ
be a Gamma distribution. Then, the PDF of Λ is Gamma
distribution [34]. Also, R is a ratio of Generalized Gamma
Distribution and Gamma Distribution [33]. Thus, the PDF of
R is given as in (59). Similarly, suppose C ∼ Exp(λg),
D ∼ Exp(λg) , 0 < ε1 ≤ 1, and 0 < ε2 ≤ 1. Then, the PDF
of R = (C+ε1D)2

(1−ε1)2CD+ε22CD+C+D
is

fR(r) =
1

4(ε1 − 1)
λg

[
1√
λgr

(
√
πerf

(√
λgr
)

− erf

(√
λgr

ε1

))
+

2e
−λgr

ε21

ε1
− 2eλg(−r)

]
, (59)

where r > 0. Also, using this PDF, we can obtain the mean
and variance as

E[R] =
2(1 + ε1 + ε2

1)

3λg
, (60)

and

Var[R] =
2(17 + 7ε1 − 3ε2

1 + 7ε3
1 + 17ε4

1)

45λ2
g

, (61)

respectively. By applying the Kolmogorov–Smirnov test (K-
S test) [35], [36] on the distribution of V = Q1 + R, it is
determined that V ∼ Γ(α, β). Further, the PDF of V = Q1+R
is given as

fV (v) =
β−αvα−1e−

v
β

Γ(α)
, v > 0, (62)

where α = E[V ]2

Var[V ] and β = Var[V ]
E[V ] are the parameters

of Gamma distribution. Also, Γ(x) is the gamma function
given as Γ(x) = (x − 1)!. By applying the mathematical
operation [30] and [37], as given in (48) on the PDF of V
in (62), we obtain the outage probability as shown in (30).

APPENDIX F: PROOF OF PROPOSITION 3
Based on (15) and (25), the rate outage probability for the

imperfect timing synchronization, perfect SIC, and perfect CSI
can be expressed as

P̃ εout = P[γεk < 2Υ − 1]

=P

[
|hk|2Φk

SNR
k−1∑
i=1

|hk|2Φi + 1

+
(|ϕ1|2 + ε1|ϕ2|2)2

SNR |ϕε|2 + 2(|ϕ1|2 + |ϕ2|2)
<

2Υ − 1

SNR

]
, (63)

where ϕ1 = |gk,k−ι−1|2, ϕ2 = |gk,k−ι−2|2, and |ϕε|2 =
|(1 − ε1)gk,k−ι−2g

∗
k,k−ι−1 − ε2gk,k−ι−2g

∗
k,k−ι−1|2. Letting

W̃ = (|ϕ1|2+ε1|ϕ2|2)2

SNR |ϕε|2+2(|ϕ1|2+|ϕ2|2) , based on Fact-1 and Fact-2 in
Appendix-I of [32], we can obtain

P[W̃ < g(SNR)] ∼ gε(SNR), (64)

where gε(SNR) = 2ε1λ
2
g

(
2Υ−1
SNR

)2

. By substituting (64) and
(51) into (63), we can approximate the outage behaviour when
SNR→∞ as in (31).

APPENDIX G: PROOF OF LEMMA 4
For the imperfect SIC, imperfect timing synchronization,

and perfect CSI, we first rewrite (17) as Vη = Qη +R, where
the PDFs of Qη and R are given in (55) and (59), respectively.
Applying the Kolmogorov–Smirnov test (K-S test) [35], [36]
on the distribution of Vη = Qη + R, it is determined that
Vη ∼ Γ(θ, φ), which corresponds to the following PDF

fVη (v) =
φ−θ (v)

θ−1
e−

(v)
φ

Γ(θ)
, (65)

where v > 0. In addition, θ =
(E[Vη ])2

Var[Vη ] and φ =
Var[Vη ]
E[Vη ] are

the parameters of Gamma distribution, where the mean and
the variance of the Vη are given by

E[Vη] =

∫ ∞
0

vfVη (v)dv =
ψη1ψ

η
3

λhψ
η
a

+
2
(
ε2

1 + ε1 + 1
)

3λg
(66)
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and

Var[Vη] =

∫ ∞
0

v2fVη (v)dV − E[Vη]2

=
ψη1 (ψη1 (ψη3 )2 + 2ψη7ψ

η
8 )

ψη9
+

2
(
17ε4

1 + 7ε3
1 − 3ε2

1 + 7ε1 + 17
)

45λ2
g

,

(67)

respectively. By substituting (65) into (48), as in [30], we can
derive the outage probability as shown in (32).

APPENDIX H: PROOF OF PROPOSITION 4

With (17) and (25), the rate outage probability for the
imperfect timing synchronization, imperfect SIC, and perfect
CSI can be found as (17) is less than γth, which can be written
as

P̃ η,εout = P[γη,εk < 2Υ − 1]

=P

[
[

|hk|2Φk

SNR(η|gη|2Φη +
k−1∑
i=1

|hk|2Φi) + 1

+
(|ϕ1|2 + ε1|ϕ2|2)2

SNR |ϕε|2 + 2(|ϕ1|2 + |ϕ2|2)
] <

2Υ − 1

SNR

]
. (68)

By substituting (52) and (64) into (68), we can obtain (33).

APPENDIX I: PROOF OF LEMMA 5

For the perfect SIC, perfect timing synchronization, and
imperfect CSI given in (19), let A% = %n,n−3, Ag = gn,n−3,
B% = %n,n−2, Bg = gn,n−2, Cχ = |Aχ|2ps, and Dχ =
|Bχ|2ps, where Aχ = A% + ρAg and Bχ = B% + ρBg .
As described in Section III-C, A% ∼ CN(0, σ2

%), Ag ∼
CN(0, σ2

g), B% ∼ CN(0, σ2
%), Bg ∼ CN(0, σ2

g). There-
fore, we can find out that Aχ ∼ CN(0, σ2

% + ρ2σ2
g) and

Bχ ∼ CN(0, σ2
% + ρ2σ2

g). We model Aχ and Bχ as mutually
independent complex Gaussian RVs with variance σ2

χ. Then,
their magnitudes (i.e., |Aχ| and |Bχ|) follow the Rayleigh
distribution, and their squared magnitudes (i.e., |Aχ|2 and
|Bχ|2) follow the exponential distributions with the parameter
λχ, where λχ = 1/σ2

χ = 1/(σ2
% + ρ2σ2

g) [21], [22]. The PDFs

of Cχ and Dχ are given as fCχ(c) = e
− c
λχ

λχ
, c > 0, and

fDχ(d) = e
− d
λχ

λχ
, d > 0, respectively. If we define another

variable Zχ = Cχ+Dχ, it follows a Gamma distribution, and
its PDF is obtained by convolving fCχ(c) and fDχ(d) as

fZχ(z) =
ze
− z
λχ

λ2
χ

, z > 0. (69)

For the perfect SIC, perfect timings and imperfect CSI, (19)
can be written as Lχ = Q1+Zχ and the PDF of Lχ is obtained
by convolving (45) and (69), which is given as

fLχ(l) =
1

λ3
χλ

2
h

I∑
i=1

[
fe−

λi+λhl

λχλh

(
λi(−λχλh + λi + λhl)

(
Ei
(
lλh + λi
λχλh

)
− Ei

(
λi

λχλh

))
+

λχλhe
λi

λχλh

(
λi − λiel/λχ + λhl

))]
, l > 0.

(70)

As a result, the corresponding outage probability is obtained
as (34).

APPENDIX J: PROOF OF PROPOSITION 5
From (19) and (25), the rate outage probability for the

perfect timing synchronization, perfect SIC, and imperfect CSI
can be expressed as

P̃χout = P[γχk < 2Υ − 1]

=P

[
[

|hk|2Φk

SNR
k−1∑
i=1

|hk|2Φi + 1

+
(|Aχ|2 + |Bχ|2)

2
] <

2Υ − 1

SNR

]
.

(71)

Following the same procedure as in (52), we obtain the PDF
of Zχ as

P[Z̃χ < g(SNR)] ∼ 2λ2
χ

(
2Υ − 1

SNR

)2

. (72)

Replacing (52) and (72) into (71), we have the asymptotic rate
outage probability in (35).

REFERENCES

[1] Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. K.
Bhargava, “A survey on non-orthogonal multiple access for 5G networks:
Research challenges and future trends,” IEEE J. on Sel. Commun.,
vol. 35, no. 10, pp. 2181–2195, Oct. 2017.

[2] L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, and L. Hanzo, “A survey
of non-orthogonal multiple access for 5G,” IEEE Commun. Surveys
Tutorials, vol. 20, no. 3, pp. 2294–2323, 2018.

[3] M. Vaezi, G. A. Aruma Baduge, Y. Liu, A. Arafa, F. Fang, and Z. Ding,
“Interplay between NOMA and other emerging technologies: A survey,”
IEEE Trans. Cognitive Commun. and Networking, vol. 5, no. 4, pp. 900–
919, Dec. 2019.

[4] D. Wan, M. Wen, F. Ji, H. Yu, and F. Chen, “Non-orthogonal multiple
access for cooperative communications: Challenges, opportunities, and
trends,” IEEE Wireless Commun., vol. 25, no. 2, pp. 109–117, Apr. 2018.

[5] Z. Ding, M. Peng, and H. V. Poor, “Cooperative non-orthogonal multiple
access in 5G systems,” IEEE Commun. Lett., vol. 19, no. 8, pp. 1462–
1465, Aug. 2015.

[6] Y. Liu, Z. Ding, M. Elkashlan, and H. V. Poor, “Cooperative non-
orthogonal multiple access with simultaneous wireless information and
power transfer,” IEEE J. on Sel. Commun., vol. 34, no. 4, pp. 938–953,
2016.

[7] C. Zhong and Z. Zhang, “Non-orthogonal multiple access with coop-
erative full-duplex relaying,” IEEE Commun. Lett., vol. 20, no. 12, pp.
2478–2481, 2016.

[8] Z. Zhang, Z. Ma, M. Xiao, Z. Ding, and P. Fan, “Full-duplex device-to-
device-aided cooperative non-orthogonal multiple access,” IEEE Trans.
Vehicular Tech., vol. 66, no. 5, pp. 4467–4471, May 2017.

[9] Z. Ding, H. Dai, and H. V. Poor, “Relay selection for cooperative
NOMA,” IEEE Wireless Commun. Lett., vol. 5, no. 4, pp. 416–419,
Aug. 2016.

[10] J. Kim and I. Lee, “Capacity analysis of cooperative relaying systems
using non-orthogonal multiple access,” IEEE Commun. Lett., vol. 19,
no. 11, pp. 1949–1952, Nov. 2015.

[11] H. Liu, Z. Ding, K. J. Kim, K. S. Kwak, and H. V. Poor, “Decode-
and-forward relaying for cooperative NOMA systems with direct links,”
IEEE Trans. Wireless Commun., vol. 17, no. 12, pp. 8077–8093, Oct.
2018.



16

[12] X. Liang, Y. Wu, D. W. K. Ng, Y. Zuo, S. Jin, and H. Zhu, “Outage
performance for cooperative NOMA transmission with an AF relay,”
IEEE Commun. Lett., vol. 21, no. 11, pp. 2428–2431, Nov. 2017.

[13] M. N. Jamal, S. A. Hassan, D. N. K. Jayakody, and J. J. Rodrigues,
“Efficient nonorthogonal multiple access: Cooperative use of distributed
space-time block coding,” IEEE Vehicular Tech. Mag., vol. 13, no. 4,
pp. 70–77, Dec. 2018.

[14] M. Toka and O. Kucur, “Non-orthogonal multiple access with Alamouti
space–time block coding,” IEEE Commun. Lett., vol. 22, no. 9, pp. 1954–
1957, Sep. 2018.

[15] M. F. Kader and S. Y. Shin, “Cooperative relaying using space-time
block coded non-orthogonal multiple access,” IEEE Trans. Vehicular
Tech., vol. 66, no. 7, pp. 5894–5903, Jul. 2016.

[16] M. N. Jamal, S. A. Hassan, and D. N. K. Jayakody, “A new approach to
cooperative NOMA using distributed space time block coding,” in Proc.
IEEE PIMRC, pp. 1–5, Oct. 2017.

[17] M. R. Avendi, S. Poorkasmaei, and H. Jafarkhani, “Differential dis-
tributed space-time coding with imperfect synchronization,” in Proc.
IEEE GLOBECOM, pp. 3186–3191, 2014.

[18] M. Hussain and S. A. Hassan, “Analysis of bit error probability for
imperfect timing synchronization in virtual MISO networks,” in Proc.
IFIP Wireless Days (WD), pp. 1–6, Nov. 2014.

[19] M. R. Usman, A. Khan, M. A. Usman, Y. S. Jang, and S. Y. Shin, “On
the performance of perfect and imperfect sic in downlink non orthogonal
multiple access (NOMA),” in Proc. Int. Conf. on Smart Green Tech. in
Electrical and Info. Sys. (ICSGTEIS), pp. 102–106, Oct. 2016.

[20] H. T. Cheng, H. Mheidat, M. Uysal, and T. M. Lok, “Distributed space-
time block coding with imperfect channel estimation,” in Proc. IEEE
ICC, pp. 583–587, 2005.

[21] D. Gu and C. Leung, “Performance analysis of transmit diversity scheme
with imperfect channel estimation,” Electronics Lett., vol. 39, no. 4, pp.
402–403, 2003.

[22] J. N. Laneman, “Limiting analysis of outage probabilities for diversity
schemes in fading channels,” in Proc. IEEE GLOBECOM, pp. 1242–
1246, 2003.

[23] S. M. Alamouti, “A simple transmit diversity technique for wireless
communications,” IEEE J. on Sel. Commun., vol. 16, no. 8, pp. 1451–
1458, Oct 1998.

[24] G. Ganesan and P. Stoica, “Space-time block codes: A maximum SNR
approach,” IEEE Trans. Info. Theory, vol. 47, no. 4, pp. 1650–1656,
2001.

[25] H. Mheidat and M. Uysal, “Non-coherent and mismatched-coherent

receivers for distributed STBCs with amplify-and-forward relaying,”
IEEE Trans. Wireless Commun., vol. 6, no. 11, pp. 4060–4070, 2007.

[26] L. Lv, J. Chen, and Q. Ni, “Cooperative non-orthogonal multiple access
in cognitive radio,” IEEE Commun. Lett., vol. 20, no. 10, pp. 2059–2062,
2016.

[27] Z. Zhang, Z. Ma, M. Xiao, Z. Ding, and P. Fan, “Full-duplex device-to-
device-aided cooperative nonorthogonal multiple access,” IEEE Trans.
Vehicular Tech., vol. 66, no. 5, pp. 4467–4471, 2016.

[28] L. Lv, J. Chen, Q. Ni, and Z. Ding, “Design of cooperative non-
orthogonal multicast cognitive multiple access for 5G systems: User
scheduling and performance analysis,” IEEE Trans. Commun., vol. 65,
no. 6, pp. 2641–2656, 2017.

[29] M. Xu, F. Ji, M. Wen, and W. Duan, “Novel receiver design for the
cooperative relaying system with non-orthogonal multiple access,” IEEE
Commun. Lett., vol. 20, no. 8, pp. 1679–1682, Aug. 2016.

[30] R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye, Probability and
statistics for engineers and scientists. Macmillan New York, 1993,
vol. 5.

[31] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and
products. Academic press, 2014.

[32] J. N. Laneman, D. N. Tse, and G. W. Wornell, “Cooperative diversity
in wireless networks: Efficient protocols and outage behavior,” IEEE
Trans. Info. Theory, vol. 50, no. 12, pp. 3062–3080, 2004.

[33] C. A. Coelho and J. T. Mexia, “On the distribution of the
product and ratio of independent generalized gamma-ratio random
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