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Abstract—In this paper, we investigate the latency performance
of non-orthogonal multiple access (NOMA) and orthogonal multi-
ple access (OMA) technologies in finite blocklength regime. In the
comparative study, we derive the achievable effective capacity of
two-user NOMA and its OMA counterpart under delay quality-
of-service constraints. We then obtain closed-form expressions
for the achievable effective capacity of the weak and strong
users in both scenarios considering transmissions over Rayleigh
fading channels. Numerical results are provided. In particular, it
is shown that at low signal-to-noise ratios (SNRs), the OMA user
with better channel condition outperforms both NOMA users.
We also evaluate the impact of fixed power allocation scheme
on the achievable effective capacity of two-user NOMA. The
comparative analysis of the total link-layer rate shows that at high
SNRs, the total link-layer rate of NOMA with finite blocklength
outperforms the one of OMA when the delay exponent is loose.

Index Terms—NOMA, OMA, effective capacity, finite block-
length, low-latency communications.

I. INTRODUCTION

Transition from ultra-low latency to massive ultra reliable

and low latency communications (mURLLC) for beyond 5G

(B5G) applications demands the researchers from both indus-

try and academia to revisit the enabling technologies. Future

smart cities, autonomous robotics, holographic communica-

tions, blockchain, and massive sensing are few examples to

name that require the mURLLC service class of B5G [1].

However, achieving mURLLC for the target future applica-

tions is a challenging task. While the non-orthogonal multiple

access (NOMA) in conjunction with finite blocklength (short

packet) communications is considered as an enabler for low-

latency communications [2], further research is required to

quantify the end-to-end latency in these systems. Also, the

scalability of this technology is yet to be investigated.

NOMA with finite blocklength has the potential to allow

ultra-low latency, massive connectivity, and higher throughput

under favorable conditions [3]. The principle of NOMA in

finite blocklength regime follows the conventional concept

of NOMA, with superposition coding at the transmitter and

successive interference cancellation (SIC) at the receiver [4].

However, when operating with finite blocklength packets, the

Shannon formula is not a good approximate for the achievable

rate of NOMA, and alternative solutions are needed. In this

vein, the authors in [5] provided a framework to approximate
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the achievable rate of a point-to-point communication link in

finite blocklength regime.

Can the latency requirements of mURLLC for B5G ser-

vices be satisfied with NOMA in finite blocklength regime?

This question needs a detailed delay performance analysis

of NOMA in finite blocklength regime. In this regard, the

authors in [6] investigated the performance of NOMA with

short-packet communications subject to reliability constraint.

More specifically, the mentioned work showed the reduction

in physical-layer transmission latency while using NOMA

in conjunction with short-packet communications. The la-

tency performance of NOMA with finite blocklength was

further investigated in [7], which confirmed the improved

performance of NOMA in terms of reducing latency and

improving throughput, in comparison to orthogonal multiple

access (OMA).

Also, a comparative view of the achievable effective ca-

pacity (EC) of uplink two-user NOMA and OMA was con-

ducted in [8], but not for transmissions in finite blocklength

regime. Later in [9], the achievable EC for systems with finite

blocklength was analyzed, and it was shown that the proposed

system within short blocklength and reliability constraint can

reduce latency, hence establishing the importance of short-

packet communications for achieving low latency. Focusing

on the importance of short packet communications, the achiev-

able EC for finite blocklength machine-type communications

(MTC) under delay constraint was derived in [10]. In that

work, the optimum error probability was characterized under

the effect of signal-to-noise ratio (SNR) variations to maximize

the achievable EC, and it was confirmed that under strict

delay constraints, the SINR variations have less effect on the

achievable EC of MTC.

In this work, we investigate the latency performance of

NOMA and OMA with short-packet communications. The

major contributions of this paper can be summarized as fol-

lows: (i) We derive the achievable EC of two-user NOMA and

OMA in finite blocklength regime.1 Specifically, the achiev-

able EC (link-layer rate) of NOMA users is investigated in

finite blocklength regime under heterogeneous delay quality-

of-service (QoS) requirements, in comparison with the OMA

counterpart. (ii) We further obtain closed-form expressions

for the individual users’ EC in the two-user NOMA and

OMA networks, and confirm their accuracy using Monte-

Carlo simulations. (iii) We show that the OMA user with

better channel conditions outperform both NOMA users at low

1Two-user NOMA has been included as a building block in third generation
partnership project long-term evolution advanced (3GPP-LTE-A) networks
[11].

http://arxiv.org/abs/1912.08119v2


SNRs, while the total link-layer rate of NOMA outperforms

the one of OMA under loose delay constraints.

II. TRANSMISSION FRAMEWORK AND FUNDAMENTALS

Consider a downlink two-user NOMA network with finite

blocklength. The users, denoted by vi, i = {1, 2}, are

equipped with single antennas and communicate with a single

base station (BS). The channel coefficient between the BS

and vi at time τ is referred to by hi(τ). The two users

are classified based on their channel conditions as strong

and weak users and, without loss of generality, we assume

|h1(τ)|2 ≥ |h2(τ)|2.

Following the NOMA principle, the BS broadcasts a com-

bined message
∑2

i=1

√
αiPui(τ) to its users, where ui is

the message corresponding to user vi, P is the BS’s total

transmit power, and αi is the power coefficient for user vi.

With fixed power allocation policy at the BS, the power

coefficients for the two users are such that α1 ≤ α2.

The received signal at user vi can now be formulated as

yi = hi
∑2

i=1

√
αiPui+mi,

2 where mi is the additive white

Gaussian noise (AWGN) at vi, i ∈ {1, 2}.

At the receiving side, the strong user (v1) first performs

SIC to remove interference (u2) from its received signal (y1),
and then decodes its own message. Therefore, for user v1, the

received SNR, denoted by SNRN
1 ,3 can be found as

SNRN
1 = α1ρ |h1|2 , (1)

where ρ is the transmit SNR, namely ρ = P
NoB

, in which NoB

denotes the noise power.

On the other hand, the weak user (v2) treats u1 as interfer-

ence and decodes its own message directly. Hence, its resulting

signal-to-interference-plus-noise ratio (SINR) can be derived

as

SINRN
2 =

α2ρ |h2|2

α1ρ |h2|2 + 1
. (2)

Channel gains of both users are modeled as Rayleigh dis-

tributions with unit variance. Following the NOMA operation,

the users v1 and v2 are sorted based on their ordered channel

gains. Therefore, the probability density function (PDF) of the

ordered channel power gains can be obtained using the order

statistics [12]. In this regard, using ρ |hi|2 = γi and denoting

its PDF as f (γi), we apply the order statistics to get

fγ1:2 (γ1) = ξ1f (γ1)F (γ1) ,

fγ2:2 (γ2) = ξ2f (γ2) (1− F (γ2)) ,
(3)

where fγi:2 is the PDF of the ordered γi out of two users,

ξi =
1

B(i,2−i+1) , in which B(a, b) is the Beta function [13],

and i ∈ {1, 2}.

For the case with OMA operation, both users have access

to the same spectrum bandwidth as in the NOMA case but

each user can only occupy half of the transmission time slot.

Using the results of [5] as starting point, the users’ achievable

2As the channel coefficients are assumed stationary and ergodic random
processes, the time index τ is omitted hereafter for simplicity of presentation.

3Superscript N indicates NOMA. Later, notation O will be used to indicate
the OMA operation.

rates with finite blocklength in the NOMA and OMA cases

under study can be formulated, in b/s/Hz, as

rN1 = log2 (1 + α1γ1)−
√

V N
1

n
Q−1(ǫ), (4)

rN2 = log2

(

1 +
α2γ2

α1γ2 + 1

)

−
√

V N
2

n
Q−1(ǫ), (5)

rOi =
1

2

(

log2 (1 + γi)−
√

V O
i

n
Q−1(ǫ)

)

, i ∈ {1, 2}, (6)

where rN1 , rN2 and rOi are the achievable rates of the NOMA

strong user, NOMA weak user, and OMA users, respectively,

n is the blocklength, ǫ is the transmission error probability, and

Q−1(.) is the inverse of Gaussian Q-function with Q (x) =
∫∞
x

1√
2π
e−

w2

2 dw [14]. Also, V N
1 = 1− (1 + α1γ1)

−2
, V N

2 =

1−
(

1 + α2γ2
α1γ2+1

)−2

, and V O
i = 1−(1 + γi)

−2
are the channel

dispersions of the NOMA strong user, NOMA weak user, and

OMA users, respectively.

A. Theory of Effective Capacity

In this subsection, we explain the basic concepts related to

the theory of EC. This metric is used to find the maximum

arrival rate for a given service rate while satisfying a certain

delay-outage probability constraint [15].

We assume that the transmission scheme in our network is

required to satisfy statistical delay QoS constraints. It is shown

that if a queue length exceeds a certain threshold (x), then by

using the large deviation theorem [16] the probability of buffer

overflow will hold the following equality

− lim
x→∞

ln (Pr {qi(∞) > x})
x

= θi, (7)

where qi(∞) is the steady-state transmit buffer of user vi, θi
is this user’s delay exponent, and Pr{a > b} is the probability

that a > b holds. Following (7), the queueing delay violation

probability can be estimated as [15]

Pr
{
Di > Di

max

}
≈ Pr {qi(∞) > 0} e−θiµiDimax , i ∈ {1, 2},

(8)

where, for user vi, Di
max is the maximum delay,

Pr {qi(∞) > 0} is the probability of non-empty buffer, and

µi is the maximum arrival rate.

III. EFFECTIVE CAPACITY OF NOMA AND OMA IN

FINITE BLOCKLENGTH REGIME

In this section, we derive the achievable EC of the two-

user NOMA and OMA networks described above in finite

blocklength communication regime. We then provide closed-

form expressions for the EC.

By following [9] and [17], the achievable EC of the two-

user NOMA and the OMA counterpart in finite blocklength

regime can be formulated as

CN
i = − 1

θin
ln
(

E

[

ǫ+ (1− ǫ) e−θinr
N

i

])

, (9)

CO
i = − 1

θin
ln
(

E

[

ǫ+ (1− ǫ) e−θinr
O

i

])

, (10)



where CN
i and CO

i represent the EC of user vi in finite

blocklength regime, for NOMA and OMA, respectively, and

E[.] is the expectation operator.

By considering the service rate rNi for users vi in finite

blocklength regime from (4) and (5), the achievable EC of

the NOMA strong user and the NOMA weak user can be

approximated as

CN
1 = − 1

θ1n
ln
(

E

[

ǫ+ (1− ǫ) (1 + α1γ1)
2Υ1 eψ1

√
V N
1

])

,

(11)

and

CN
2 = − 1

θ2n

× ln

(

E

[

ǫ+ (1− ǫ)
(

1 +
α2γ2

α1γ2 + 1

)2Υ2

eψ2

√
V N
2

])

,

(12)

respectively, where Υi = − θin
2ln2 , and ψi = θi

√
nQ−1(ǫ).

As specified, users v1 and v2 can also operate according

to OMA, by transmitting their messages using time division

multiple access (TDMA). For the OMA case, using (6) the

achievable EC of the two users can be approximated as

CO
i = − 1

θin
ln

(

E

[

ǫ+ (1− ǫ) (1 + γi)
Υi e

ψi

√
V O
i

2

])

.

(13)

The above derived individual EC expressions of the two

users with NOMA or OMA in finite blocklength regime can

be used to analyze and compare the delay performance in both

operation scenarios.

To further simplify the above expressions, we derive closed-

form expressions for the individual EC of the strong and

weak NOMA and OMA users in finite blocklength regime.

Specifically, using the order statistics from (3), the final

closed-form expressions for the two users, in NOMA and

OMA, can be obtained as shown in (14) to (17), where

H(a, b, z) = 1
Γ(a)

∫∞
0
e−ztta−1 (1 + t)

b−a−1
dt is the conflu-

ent hypergeometric function of the second kind [13], and Ei(.)
is the exponential integral [14]. Details on the derivation of

the closed-form expressions for CN
1 , CO

1 and CO
2 are provided

in Appendix A, while the proof for deriving the closed-form

expression for CN
2 is presented in Appendix B.

IV. NUMERICAL RESULTS

We performed extensive simulations to compare the per-

formance of the two-user NOMA and two-user OMA in

finite blocklength regime. In this section, numerical results are

discussed and compared, considering the users’ power coeffi-

cients α2 = 0.7 and α1 = 0.3, the blocklength n = 400, and

a transmission error probability ǫ = 10−6, unless otherwise

specified.

Fig. 1 shows the plots of the achievable EC of two-user

NOMA and two-user OMA in finite blocklength regime as a

function of the transmit SNR (ρ) in dB. For this evaluation,

we set θ = 0.01. The accuracy of the derived closed-form

expressions is confirmed. The figure also shows that, at very

low transmit SNRs, the OMA strong user outperforms both

NOMA users. However, as ρ increases, the achievable EC of

NOMA and OMA does not increase further and saturates at

very high values of the SNR. At low SNRs, the achievable EC

of the weak user is approximately the same in both NOMA and

OMA, whereas at high SNRs the weak user OMA dominates

with a big gap.

Fig. 2 shows the plots of the total achievable EC versus the

transmit SNR (ρ). The results reveal that the total achievable

rate of NOMA outperforms the one for OMA at high SNRs

when θ = 0.001. On the other hand, when the delay exponent

becomes stringent, i.e., changes from θ → 0.001 to θ → 0.01,

the total link-layer rate of OMA outperforms the one of

NOMA at high SNRs. However, at the low SNRs, the total

link-layer rate of NOMA and OMA are approximately the

same irrespective of the delay constraints.

Fig. 3 provides a comparative view of the total achievable

EC of multiple NOMA and OMA pairs when service is pro-

vided to 6 users out of 12 possible users, and θ = [0.001, 0.01].
Within a pair, NOMA scheme has been implemented, while

the inter-pair multiple access has been achieved using TDMA.

It is clear from the curves that the multiple-user NOMA

network outperforms the OMA one under different delay re-

quirements. The figure also reveals that multiple-user NOMA

and OMA perform better than the two-user access cases when

the delay exponent becomes stringent.

Fig. 4 plots the simulation results of individual user’s

achievable EC of two-user NOMA and OMA versus the delay

exponent θ when the transmit SNR ρ = 20dB. This figure

shows that the NOMA users outperform the OMA users

when the delay exponent is very loose. However, when the

delay exponent becomes stringent, the NOMA users show a

considerable loss in EC as compared to the OMA case.

Finally, Fig. 5 shows the curves of the achievable EC of

two-user NOMA versus the transmit SNR (ρ) with different

values of the power coefficients (α1,α2), when θ = 0.01.

Compared to the flexible power allocation scheme, this figure

shows how the different sets of fixed power coefficients impact

the performance of the two-user NOMA network. With the

increase in the power coefficients, the achievable EC of both

the strong user and the weak user with NOMA also increases.

This also confirms that the changing power coefficients has

also a significant impact on the two-users NOMA netowrk

under delay constraint.

V. CONCLUSION

In this paper, considering NOMA and OMA with two

users, we formulated the individual user’s achievable EC in

finite blocklength regime. We derived closed-form expres-

sions for the individual EC of both users, in NOMA and

OMA separately, and confirmed their accuracy using Monte-

Carlo simulations. We investigated the performance of NOMA

in comparison with OMA under heterogeneous delay QoS

constraints. The performance comparison showed that at low

SNRs the strong user OMA outperforms both NOMA users,

while the total link-layer rate of NOMA outperforms the one

of OMA at high SNRs.



CN
1 = − 1

θ1n
ln

(

ǫ+ (1− ǫ)
2

α1ρ
eψ1

(

H

(

1, 2 + 2Υ1,
1

α1ρ

)

−H

(

1, 2 + 2Υ1,
2

α1ρ

)))

. (14)

CN
2 =− 1

θ2n
ln

(

ǫ+ (1− ǫ)
2α−2Υ2

1

ρ
eψ2

(

H

(

1, 2,
2

ρ

)

+
nθ2 (α1 − 1)

α1ln2
e

2

α1ρEi

(

− 2

α1ρ

)

+

∞∑

k=2

(
2Υ2

k

)(
α1 − 1

α1

)k

×
(∑k−1

j=1
(j−1)!

α
−j
1

(

− 2
ρ

)k−j−1

−
(

− 2
ρ

)k−1

(k − 1)!
e

2

α1ρEi

(

− 2

α1ρ

))))

.

(15)

CO
1 = − 1

θ1n
ln

(

ǫ+ (1− ǫ)
2

ρ
e
ψ1

2

(

H

(

1, 2 + Υ1,
1

ρ

)

−H

(

1, 2 + Υ1,
2

ρ

)))

. (16)

CO
2 = − 1

θ2n
ln

(

ǫ+ (1− ǫ)
2

ρ
e
ψ2

2 H

(

1, 2 + Υ2,
1

ρ

))

. (17)

5 10 15 20 25 30 35 40

 (dB)

0

0.5

1

1.5

2

2.5

3

3.5

E
ffe

ct
iv

e 
C

ap
ac

ity
 (

b/
s/

H
z)

NOMA strong user Monte-Carlo
NOMA strong user closed-form
NOMA weak user Monte-Carlo
NOMA weak user closed-form
OMA strong user Monte-Carlo
OMA strong user closed-form
OMA weak user Monte-Carlo
OMA weak user closed-form

Fig. 1. Achievable EC of two-user NOMA and
two-user OMA versus the transmit SNR.

-10 -5 0 5 10 15 20 25 30 35 40

 (dB)

0

2

4

6

8

10

12

14

T
ot

al
 E

ffe
ct

iv
e 

C
ap

ac
ity

 (
b/

s/
H

z)

Two-user NOMA
Two-user OMA

=0.01

=0.001

Fig. 2. Total achievable EC of two-user NOMA
and two-user OMA versus the transmit SNR.

-10 -5 0 5 10 15 20 25 30 35 40

 (dB)

0

2

4

6

8

10

12

T
ot

al
 E

ffe
ct

iv
e 

C
ap

ac
ity

 (
b/

s/
H

z)

6-user NOMA (3 pairs), =0.001
6-user OMA, =0.001
6-user NOMA (3 pairs), =0.01
6-user OMA, =0.01

Fig. 3. Total achievable EC of multiple NOMA
pairs and multiple OMA users versus the transmit
SNR with 6 users out of 12 users.

10-4 10-3 10-2 10-1 100 101

Delay Exponent ( )

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
ffe

ct
iv

e 
C

ap
ac

ity
 (

b/
s/

H
z)

NOMA strong user
OMA strong user
NOMA weak user
OMA weak user

Fig. 4. Achievable EC of two-user NOMA and two-user OMA versus delay
exponent (θ).

APPENDIX A

To obtain the closed-form expressions for CN
1 , CO

1 , and CO
2 ,

we first consider the simple case of CO
1 . Following the order

statistics from (3), CO
1 (from (13)) can be expanded as

CO
1 = − 1

θ1n
ln

(
∫ ∞

0

(

ǫ + (1− ǫ)(1 + γ1)
Υ1e

ψ1V
O
1

2

)

× fγ1:2(γ1)dγ1

)

, (18)
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where f (γ1) =
1
ρ
e−

γ1
ρ , F (γ1) = 1 − e−

γ1
ρ , and we assume

at high SNR
√

V Ni ≈ 1,
√

V Oi ≈ 1 [5]. Thus, we get

C
O

1 = −

1

θ1n
ln

(

ǫ+(1− ǫ)
2

ρ
e
ψ1

2

(∫ ∞

0

(1 + γ1)
Υ1 e

−

γ1
ρ dγs

︸ ︷︷ ︸

I1

−

∫
∞

0

(1 + γ1)
Υ1 e

−
2γ1
ρ dγ1

︸ ︷︷ ︸

I2

)
)

. (19)



We recall the confluent hypergeometric function of the second

kind [13], namely,

H(a, b, z) =
1

Γ (a)

∫ ∞

0

e−ztta−1 (1 + t)b−a−1
dt. (20)

By using (20), the integrals I1 and I2 shown in (19) can be

solved as

I1 = H
(

1, 2 + Υ1,
1

ρ

)

, I2 = H
(

1, 2 + Υ1,
2

ρ

)

. (21)

Following the above steps, the closed-form expressions for

CN
1 and CO

2 , given in (14) and (17), respectively, can also be

obtained.

APPENDIX B

Following the order statistics from (3), the achievable EC

of the weak NOMA user shown in (12) can be expanded as

CN
2 = − 1

θ2n
ln

(
∫ ∞

0

(

ǫ+(1− ǫ)

(
γ2 + 1

α1γ2 + 1

)2Υ2

× eψ2V
N
2

)

fγ2:2(γ2)dγ2

)

, (22)

where f (γ2) =
1
ρ
e−

γ2
ρ , F (γ2) = 1 − e−

γ2
ρ , and we assume

at high SNR V N2 ≈ 1 [5]. Thus, we get

CN
2 = − 1

θ2n
ln

(

ǫ + (1− ǫ)
2

ρ
eψ2

∫ ∞

0

(
γ2 + 1

α1γ2 + 1

)2Υ2

× e−
2γ2
ρ dγ2

)

. (23)

Following the generalized binomial expansion, we can

write
(

γ2+1
α1γ2+1

)2Υ2

=
(

1
α1

)2Υ2
(

1 + α1−1
α1γ2+1

)2Υ2

, where

the expression
(

1 + α1−1
α1γ2+1

)2Υ2

can further be expanded as
(

1 + α1+1
α1γ2+1

)2Υ2

=
∑∞

k=0

(
2Υ2

k

) (
α1−1
α1γ2+1

)k

.

Using the above expansions, (23) can be rewritten as

CN
2 = − 1

θ2n
ln

(

ǫ+ (1− ǫ)
2α−2Υ2

1

ρ
eψ2

(
∫ ∞

0

e−
2γ2
ρ dγ2

︸ ︷︷ ︸

Ia (k = 0)

+

∫ ∞

0

2Υ2
α1 − 1

α1γ2 + 1
e−

2γ2
ρ dγ2

︸ ︷︷ ︸

Ib (k = 1)

+

∫ ∞

0

∞∑

k=2

(
2Υ2

k

)(
α1 − 1

α1γ2 + 1

)k

e−
2γ2
ρ dγ2

︸ ︷︷ ︸

Ic (k ≥ 2)

))

. (24)

Using (20), we get Ia = H
(

1, 2, 2
ρ

)

. For the integrals Ib and

Ic, we use (3.353.2) and (3.352.4) from [14], which yields
∫ ∞

0

e−zt

t+ b
dt = −ebzEi(−bz), [|arg b| < π, Re(z) > 0] ,

(25)

and

∫ ∞

0

e−zt

(t+ b)l
dt =

1

(l − 1)!

l−1∑

j=1

(j − 1)!(−z)l−j−1(b−j)

− (−z)l−1

(l − 1)!
ebzEi(−bz), [l ≥ 2, |arg b| < π, Re z > 0] ,

(26)

where Ei(.) is the exponential integral [14]. Finally, using (25)

and (26), the closed-form expression for CN
2 can be found as

shown in (15).
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