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Abstract—User-centric (UC) clustering has recently emerged as
a promising paradigm for enhancing the connectivity of mobile
users by grouping an appropriate number of access points (APs),
thus paving the way for seamlessly connected vehicular networks.
However, for a high-velocity vehicular user, UC clustering may
lead to overly frequent handovers (HOs), which increases the risk
of throughput-reduction, call dropping and energy wastage. To
mitigate this problem, we aim for reducing the HO overhead
imposed on the heterogeneous UC (HUC) cluster migration
process of vehicular networks. Specifically, we first conceive a
novel hybrid HUC cluster migration strategy that adaptively
switches between horizontal and vertical HOs for supporting
both vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communication. Then, a dynamic decision-making problem is
formulated for balancing the benefits of HUC cluster migration
and the total HO overhead, subject to realistic HUC clustering
constraints. In the face of unknown vehicular mobility, we
propose a sequential HUC cluster migration solution based on
max-bipartite matching theory imposing a low complexity. As
a design alternative, we also propose a holistic solution relying
on model-free deep reinforcement learning (DRL). Finally, our
numerical results reveal the superiority of the proposed cluster
migration design in terms of striking a compelling trade-off
between the per-user average data rate (PAR) and the number
of HOs in different scenarios.

Index Terms—User-centric clustering, vehicular networks, het-
erogeneous, handover, max-bipartite matching, deep reinforce-
ment learning.
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I. INTRODUCTION

Vehicle-to-everything (V2X) communication has become
one of the key enablers in enhancing comfort, safety and
road traffic efficiency. With the rapid evolution of wireless
communication, cellular V2X (C-V2X) technology together
with next-generation networking (NGN) support vehicle-to-
infrastructure (V2I), vehicle-to-vehicle (V2V) and vehicle-
to-pedestrian (V2P) communications [1]–[4]. To meet the
latency, capacity and reliability demands of V2X communi-
cation, a high data rate requirement must be guaranteed [5]–
[9]. However, due to the drastic escalation of road traffic,
vehicles should communicate with road unit sides (RSUs)
and/or among themselves, which significantly alleviates the
load of cellular base stations (BSs) [10]–[14].

As a popular candidate for enhancing connectivity, user-
centric (UC) clustering has shown merits in terms of assist-
ing the emerging NGNs by lending users as an empowered
role [15] [16]. More explicitly, UC clustering is capable of
seamlessly adapting to dynamic network topology fluctuation,
hence still guaranteeing each user’s data rate in the face of tele-
traffic fluctuations. By grouping the most appropriate number
of access points (APs), UC clusters are formed in the close
proximity of users by exploiting their cooperation to support
users at high data rate [17] [18]. In general, the selection of
APs depends both on the network topology and on the data
rate requirements, and their beneficial cooperation relies on
the joint transmission technique. As a result, this architecture
is eminently suitable for supporting substantial cell coverage
expansion by eliminating any deleterious edge-effect, whilst
controlling the latency and data rate, as well as balancing the
tele-traffic in demanding communication scenarios [19]–[21].
In this light, the UC cluster supporting a specific vehicle has to
accommodate its movements. Nevertheless, in vehicular net-
works, both RSUs and vehicles can play the role of APs, and
vehicular APs (VAPs) can improve the reliability as a benefit
of their close proximity. Based on the above characteristics,
the UC clustering process conceived for supporting vehicular
user equipment (VUE) constitutes a heterogeneous UC (HUC)
cluster migration process, which is capable of substantially
improving the connectivity probability of VUEs with the aid
of both RSU cooperation and VAPs.

However, overly frequent HUC cluster migrations of VUEs
lead to excessive handover (HO) overheads [22]–[25]. Specifi-
cally, the multiple-RSU association events result in an increase
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in the number of reconfigured connections, while the VAP-
VUE association may encounter more frequently HOs due to
the high mobility of vehicles. The increased HO overheads
may increase the risk of throughput-reduction and of call
dropping, and increase the energy consumption [26] [27].
Fortunately, the HUC cluster migration process allows VUEs
to perform smooth, seamless soft HOs, when they are asso-
ciated with multiple RSUs. Additionally, as the VAPs move
together with VUEs at a similar velocity along the road, the
VAP-VUE association may maintain longer durations than
the VAP-RSU association, thus providing an opportunity for
reducing the frequency of HOs. Hence, the trade-off between
the connectivity benefiting from HUC clustering and the HO
overhead imposed has to be jointly considered in vehicular
networks.

Although substantial attention has been dedicated to the HO
problem of vehicular networks [28], most of the existing HO
policies are cell-centric, based on the conventional single-AP
association principle and hard HO. Moreover, the existing HO
policies are typically based on two categories: horizontal HO
and vertical HO [29] [30]. More explicitly, the horizontal HO
takes place within the same access network, for maintaining
the connections among either the VAPs or RSUs. By con-
trast, a vertical HO represents switching to a different access
network, when a vehicle is roaming in an overlapping area
of different multiple access networks, as in V2I and V2V
communication. Hence we combine horizontal and vertical
HOs into hybrid HO in the context of the above HUC
cluster migration problem of vehicular networks. Nevertheless,
this hybrid HO design encounters practical issues, including
unknown vehicular mobility and association with multiple
RSUs for supporting soft HOs. To the best of our knowledge,
the hybrid HO problem of HUC clustering-based vehicular
networks is still an open issue at the time of writing.

Against the above backdrop, in this paper, we solve this
wide open HUC cluster migration problem of vehicular net-
works, and strike a compelling trade-off between the connec-
tivity benefits of HUC clustering and the overhead imposed
by the hybrid HO. Our decision-making problem focuses on
striking an attractive trade-off between the sum data rate
and the number of HOs within a finite time interval, while
satisfying the minimum data rate requirement and the rele-
vant association constraints per time slot (TS). Explicitly, the
contributions of this paper are summarized as follows:

1) A novel HUC cluster migration framework is conceived
for vehicular networks relying on hybrid HOs, which
exploits the benefits of RSU cooperation and moving
VAPs for improving the connectivity.

2) To strike the most appropriate trade-off between the
connectivity and the HO overhead imposed, we formulate
a decision-making optimization problem within a finite
time interval, while satisfying the minimum data rate and
the association constraints.

3) Based upon max-bipartite matching theory, a low-
complexity sequential HUC cluster migration solution is
developed in the face of unknown vehicular mobility.
Then, a holistic solution is proposed for training the HUC
cluster migration design with the aid of model-free deep

reinforcement learning (DRL) [31].
4) Numerically, our results highlight the quantitative benefits

of the proposed HUC cluster migration design over the
state-of-the-art. It is shown that the DRL-aided holistic
solution offers superior performance compared to the
sequential one in terms of increasing the average data
rate, whilst relying on the most appropriate number of
HOs at the cost of a certain training overhead.

The rest of the paper is organized as follows: Section II
introduces the related contributions, while Section III describes
both the system model and our assumptions. Section IV for-
mulates the design problem of HUC cluster migration. Then,
Section V and Section VI detail the max-bipartite matching
based sequential solution and the DRL-aided holistic solution,
respectively. Our numerical results are provided in Section VII,
and finally Section VIII concludes the paper.

II. RELATED CONTRIBUTIONS

The HO problem of vehicular networks has received in-
creasing research attention [28]. Most prior studies deal with
the design of vertical HOs in heterogeneous vehicular net-
works consisting of cellular plus a range of other access
techniques. For instance, Dwijaksara et al. [32] studied the HO
problem of WiFi-aided vehicular networks, and a HO solution
based on a real road topology was proposed. With the aim
of maximizing the WiFi-based connection time, the proposed
solution is capable of reducing the HO latency. Nevertheless,
these researches have only considered cell-centric designs
relying on a UE-AP association and the vertical HO, but they
have neglected the benefits of HUC clustering as well as the
trade-off between connectivity and hybrid HO overhead, which
constitute the main focus of our paper.

Given the challenges of user mobility, numerous studies
have aimed for balancing the mobility and connectivity in
heterogeneous cellular networks. It has been shown in [33]
and [34] that increasing the number of APs is beneficial for
reducing the HO overhead and latency. As a further advance,
Xu et al. [35] struck a trade-off between the effective capacity
and the blocking probability. Based on convex optimization
techniques, the proposed solution succeeded in reducing the
blocking probability without widely reducing the effective
capacity. The issue of optimizing the HO overhead is also a
popular research topic in literature [36]–[38]. To seek the best
HO target, the authors of [36] sought the most appropriate
HO solution using a sophisticated analytical technique by
ranking all available HO target options, which relies on the
predicted user mobility. It has been shown that this solution is
capable of mitigating frequent HOs as well as simultaneously
enhancing the energy efficiency. Subsequently, Hasan et al.
[37] conceived an algorithm for reducing the HO overhead
by classifying the users as fast-moving or slow-moving users,
where the fast-moving users remain connected to the macro
BS, while the slow-moving users perform HO to the APs.
They attained 79.56% of HO probability mitigation along with
10.82% network throughput increase. Moreover, in order to
exploit AP cooperation, a network topology based HO solution
was proposed in [38] for reducing the HO overhead, while
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maintaining a good average throughput. However, the solutions
found in [36]–[38] are unable to seamlessly accommodate
unknown mobility scenarios and only support HOs within
conventional cellular networks. Moreover, [37] and [38] only
analyzed the HO performance using a heuristic method, rather
than solving the problem formulated by formally optimizing
the HO performance. Hence we formally formulate the HO
overhead optimization problem in this paper, which allows us
to strike a feasible trade-off.

DRL has been widely exploited for solving diverse decision-
making problems in wireless communication [43] [44], in-
cluding the solution of HO problems, because DRL learns
from experience and it is capable of finding a near-optimal
or optimal policy even in the absence of knowing the envi-
ronmental dynamics in advance. For instance, Wang et al.
[39] developed an asynchronous multi-user DRL-aided HO
scheme for reducing the HO overhead of a traditional cellu-
lar network, while guaranteeing a certain minimum network
throughput. As a further advance, Ye et al. [40] adopted a
deep deterministic policy gradient (DDPG) based solution for
dealing with the AP on/off switching problem in heteroge-
neous cellular networks. Additionally, Zhao et al. of [41]
utilized a double-deep Q-network for finding a near-optimal
solution for jointly designing user association and resource
allocation, which aims for maximizing the long-term network
utility while ensuring the required signal to interference plus
noise ratio (SINR). Khan et al. [42] investigated a vehicle-cell
association problem and adopted an asynchronous actor-critic
DRL algorithm for maximizing the time-averaged data rate
per VUE, while ensuring the minimum data rate for all VUEs
at a low signaling overhead, rather than HO overhead. Their
asynchronous solution has assumed that all VUEs can perform
training independently without any information exchange, and
have not considered the association conflict encountered by
multiple VUEs. However, none of these sophisticated DRL-
aided HO solutions have taken the benefits of HUC clustering
into account.

The comparisons between our contributions and the state-
of-the-art are outlined at a glance in Table I, which allows the
readers to capture their main differences.

III. HUC CLUSTERING BASED SYSTEM MODEL

In this section, the notations used are introduced and then
our HUC clustering based system model is presented.

A. Notations

Matrices and vectors are expressed in italic bold letter, and
scalar variables are denoted by italic symbols. |A| denotes the
cardinality of a set A and |A| represents the absolute value of
a scalar A. A×A′ denotes the cartesian product of the sets A
and A′. CN×M represents the space of all N ×M matrices
having complex entries. (·)T denotes the transpose of a matrix
or a vector. The notations of the system model are listed in
Table II.

B. Network Model

As illustrated in Fig. 1, we consider a downlink V2X
network in an urban multi-lane freeway scenario, where a set
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Fig. 1: An example of a HUC clustering V2X network.

R of R RSUs are uniformly distributed and a set of vehicles
travel along the road in the same direction. The vehicles are
classified into a pair of categories: VUEs and VAPs. The sets
of VUEs and of VAPs are denoted by U = {1, ..., U} and
by A = {1, ..., A}, respectively. The system relies on equal-
duration TSs with the index set of T = {1, ..., T}, where
the network topology and parameters remain unchanged for
the duration of each TS. In Fig. 1, the moving trajectories of
vehicles are depicted as the locations at the beginning of each
TS.

C. Vehicle Mobility Model

The network’s performance critically depends on the mod-
eling of mobility, albeit it is generally stochastic and unknown.
In practice, the velocities of vehicles at adjacent TSs are
correlated due to the physical laws of motion. More explicitly,
a vehicle’s current velocity depends upon the previous velocity.
In our work, the velocity of vehicles is modeled as a Gauss-
Markov stochastic process [45]. Specifically, when an initial
velocity vi,0 is assigned to vehicle i, the velocity vi,t of vehicle
i at TS t is calculated based upon the velocity vi,t−1 at TS
t−1, the asymptotic velocity and a random variable, given by

vi,t = αivi,t−1 + (1− αi)v̄i + σ̄i
√

(1− αi2)n. (1)

Herein, v̄i and σ̄i are the corresponding asymptotic mean and
standard deviation of vehicle i’s velocity. The parameter αi ∈
[0, 1] denotes the memory-depth of past velocities determining
the temporal correlation in movements of vehicle i. Note that
as αi tends to 1, the current velocity of vehicle i becomes
more dependent on the previous velocity. Moreover, n is an
uncorrelated random Gaussian process with zero mean and
variance σ2

n.

D. HUC Cluster Migration Model

In order to achieve seamless connections in vehicular net-
works, the UC clustering architecture [15] [16] is adopted,
where each VUE can be associated with a set of RSUs in
its close proximity both for improving the data rate and for
receiving the latest road traffic information. For supporting
both V2I and V2V communication, we define the HUC cluster,
which may either be a limited number of RSUs or a single
VAP. In the example of Fig. 1, the HUC clusters consist of
RSUs at TS t1, t4 and t5, while the VUE is supported by the
VAP at TS t2 and t3.
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TABLE I: Related Contributions

[32]
-2018

[33]
-2018

[34]
-2019

[35]
-2019

[36]
-2019

[37]
-2019

[38]
-2018

[39]
-2018

[40]
-2020

[41]
-2019

[42]
-2019

this
paper

cellular network X X X X X X X X X

vehicular network X X X

user mobility X X X X X X X X X X

multiple-association X X X X X

data rate X X X X X X

HO overhead X X X X X X

vertical HO X X X X X

horizontal HO X X X X X X X X

HO performance analysis X X

heuristic HO solution X X X X

DRL-aided HO solution X X X X X

TABLE II: Notation Definitions

R RSU set of {1, ..., R}
A VAP set of {1, ..., A}
U VUE set of {1, ..., U}
T TS set of {1, ..., T}
vi,t the velocity of vehicle i at TS t

S̄max the maximum number of RSUs associated
with each VUE

d̄R
t the coverage distance threshold for RSU

association

d̄A
t the coverage distance threshold for VAP

association

Ci,t the HUC cluster supporting VUE i at TS t

pc the transmit power of transmitter c ∈ R∪A
hc,i,t the channel gains spanning from transmitter

c to VUE i at TS t

ei,t the number of HOs, i.e. the number of
connections changing their A/P status when
VUE i moves at TS t

Ri,t the achievable data rate of VUE i at TS t

R̄i the minimum data rate requirement of VUE
i at each TS

Based upon the above fact, the HUC cluster migration
strategy is adopted by supporting hybrid HOs, which adap-
tively switches between the horizontal and vertical HOs.
An illustration of HUC cluster migration is depicted in the
example of Fig. 1, wherein it has the options of horizontal
and vertical HOs at each TS. For instance, the VUE selects
the horizontal HO when it moves from t2 to t3 and from t4
to t5. By contrast, the components of its HUC cluster switch
between RSUs and VAP from t1 to t2 and from t3 to t4, thus
resulting in vertical HOs.

We set the maximum number of RSUs associated with
each VUE as S̄max, and set the coverage distance threshold
as d̄R

t for RSU association and as d̄A
t for VAP association,

respectively. We let Ci,t denote the HUC cluster supporting
VUE i ∈ U at TS t, and |Ci,t| represent the size of the HUC
cluster for VUE i at TS t. Thus, the HUC cluster Ci,t obeys
Ci,t ⊂ R ∪ A as well as |Ci,t| ≤ S̄max due to the association
restriction. Our assumption is that the HUC cluster migration
of each VUE takes place right at the beginning of each TS. In
contrast to the traditional hard and horizontal HO relying on
a single connection, HUC cluster migration takes place, when

any one of the links from different access networks supporting
a VUE changes its status from active (A) to passive (P) or vice
versa. Hence, the HO overhead imposed can be represented by
the specific number of connections changing their A/P status,
when VUE i moves at TS t, given by

ei,t = max{|Ci,t−1|, |Ci,t|} − |Ci,t−1 ∩ Ci,t|. (2)

Herein, the first item denotes the maximum number of con-
nections for VUE i during HO at TS t, whilst the second item
is the specific number of the same connections. Notably, due
to |Ci,t| ≤ S̄max, the HO overhead per TS shall not exceed
S̄max.

E. Wireless Communication Model

For simplicity, all RSUs and vehicles are assumed to be
equipped with a single antenna. We assume that the real-time
locations of both the vehicles and the RSUs are known relying
on pre-installed sensors and positioning technology. In order
to mitigate the inter-vehicle interference, multiple orthogonal
resource blocks are employed to support the vehicles.

For VUE i, we let pc denote the transmit power of its
transmitter c and let hc,i,t denote the channel gains of the link
spanning from transmitter c to VUE i at TS t. In this model,
we only consider the small-scale fading and path loss of V2V
communication and of V2I communication, but neglect the
effects of shadow fading. Accordingly, the achievable data rate
of VUE i at TS t is represented by

Ri,t = log2(1 +

∑
c∈Ci,t pchc,i,t

σ2
), (3)

where σ2 is the variance of the additive Gaussian white noise
(AWGN).

IV. PROBLEM FORMULATION

Based upon the above HUC cluster migration strategy, we
have to strike a trade-off between the total hybrid HO overhead
and the quantitative connectivity benefits of HUC clustering.
Firstly, let us define the variables XXXi,t = {xi,j,t}j∈R∪A
representing the HUC clustering policy of VUE i at TS t.
Explicitly, xi,j,t = 1 indicates that transmitter j belongs to
the HUC cluster Ci,t of VUE i at TS t, i.e.

Ci,t = {j|xi,j,t = 1, j ∈ R ∪A}. (4)
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Next, the constraints of the optimization problem are formu-
lated. Due to the above definition, the HUC clustering policy
should obey

C1 : xi,j,t = {0, 1},∀i ∈ U , ∀j ∈ R ∪A,∀t ∈ T . (5)

When the HUC cluster is a set of RSUs at a TS, the VUE
should be associated with no more than S̄max RSUs, thus we
have

C2 :
∑
j∈R

xi,j,t ≤ S̄max, ∀i ∈ U , ∀t ∈ T . (6)

Similarly, as a VAP plays a role of the transmitter at a TS, the
VUE can only connect with a single VAP, whilst each VAP
can serve at most one VUE simultaneously. In this case, the
HUC clustering constraints become

C3 :
∑
j∈A

xi,j,t ≤ 1, ∀i ∈ U , ∀t ∈ T (7)

and

C4 :
∑
i∈U

xi,j,t ≤ 1, ∀j ∈ A, ∀t ∈ T . (8)

Moreover, we assume that the RSUs and the VAP cannot serve
the VUE simultaneously. Accordingly, the HUC clustering
policy is subjected to

C5 :
∑
j∈A

xi,j,t = 0, if
∑
j∈R

xi,j,t ≥ 1,∀i ∈ U , ∀t ∈ T (9)

and

C6 :
∑
j∈R

xi,j,t = 0, if
∑
j∈A

xi,j,t = 1,∀i ∈ U , ∀t ∈ T . (10)

Additionally, in order to guarantee a seamless connection, the
data rate at each TS has to reach

C7 : Ri,t ≥ R̄i, ∀i ∈ U , ∀t ∈ T . (11)

Herein, R̄i denotes the minimum data rate required by VUE
i at each TS.

In order to formulate our optimization problem, the connec-
tivity benefits of HUC clustering are quantified in terms of the
average data rate attained over all TSs, whilst the hybrid HO
overhead is characterized by the number of HOs over all TSs.
Ideally, we should only allow the number of HOs to increase,
if the connectivity probability sufficiently increased. Hence
we have to strike a trade-off. Let us continue by defining a
normalized utility function for VUE i at TS t for striking a
trade-off, which is formulated as

Ei,t(XXXi,t,XXXi,t−1)=κ
Ri,t(XXXi,t)

R̄i
−(1− κ)

ei,t(XXXi,t,XXXi,t−1)

S̄max
, (12)

where κ ∈ [0, 1] quantifies the weighting factor of the
connectivity benefits, while (1 − κ) is the weighting factor
of the HO overhead. Explicitly, the first term represents the
relative data rate contribution of VUE i during TS t, while
the second term is the normalized HO-rate, i.e. the ratio of
the actual number of connections changing their A/P status to
the maximum one, when VUE i moves at TS t. It should be
noted that Ei,t is a function of both the current HUC clustering

policy XXXi,t at TS t and the previous HUC clustering policy
XXXi,t−1 at TS t−1, because the HUC cluster Ci,t is a function
of XXXi,t according to (4).

Given the above constraints and the normalized objective
function (OF) of (12), our optimization problem can be cast
as

(P) : max
∑
t∈T

∑
i∈U

Ei,t(XXXi,t,XXXi,t−1) (13a)

s.t. C1-C7. (13b)

It can be observed that (P) is an NP-hard binary integer pro-
gramming problem, which has no exact solution in polynomial
time. More explicitly, the exhaustive search has an excessive
computational complexity, which is related to the densities of
RSUs, VAPs and VUEs as well as the finite number of TSs.
Furthermore, the unknown stochastic vehicular mobility makes
it infeasible to derive the optimal solution without an explicit
model of the environmental dynamics.

Again, the trade-off utility function of (12) depends only
upon the present policy as well as upon the previous policy,
but it is independent of any earlier policy. Inspired by this, we
can decouple the problem (P) into a series of sequential sub-
problems to be solved for single TS, or exploit its Markovian
nature for constructing a Markov Decision Process (MDP).
In what follows, we will first propose a low-complexity
sequential HUC cluster migration solution in the face of
unknown vehicular mobility, by decoupling our problem (P)
into sequential decision-making subproblems with the aid of
a bipartite matching framework. Next, in order to adapt to
unknown dynamic environments, we attempt to adopt a model-
free DRL algorithm for designing a holistic HUC cluster
migration solution after designing a MDP problem.

V. MAX-BIPARTITE MATCHING-AIDED SEQUENTIAL HUC
CLUSTER MIGRATION SOLUTION

Due to the mobility of vehicles, the HUC cluster migration
problem consists of sequential decision-making subproblems
at each TS. For reducing the computational complexity im-
posed, we find the optimal solution for each sequential sub-
problem without knowing the vehicles’ mobility model as a
low-complexity alternative solution for solving problem (P).
Motivated by this, in this section we propose a low-complexity
sequential HUC cluster migration solution by comparing the
solution of exhaustive search on all possible VUE-RSU com-
binations to that of all possible VUE-VAP association combi-
nations using a max-bipartite matching framework. Following
the algorithm’s description, we analyze the complexity and the
optimality of the proposed solution.

A. Solving Sequential Subproblem

In order to decouple problem (P) into sequential decision-
making subproblems, our optimization problem becomes that
of the optimal solution at each TS based upon the results at
the previous TS. Bearing in mind that the minimum data rate
constraint C7 is in a non-closed form function of XXXi,t due
to (4), we relax it by ensuring that each VUE can be served
by at least one transmitter at each TS, namely by substituting
it with

∑
j∈R∪A xi,j,t ≥ 1 for ∀i ∈ U and ∀t ∈ T . Then,
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given {XXXi,t−1}i∈U , the optimization subproblem (Pt) at TS
t is given by

(Pt) : max
∑
i∈U

Ei,t(XXXi,t) (14a)

s.t. xi,j,t = {0, 1}, ∀i ∈ U , ∀j ∈ R ∪A, (14b)∑
j∈R

xi,j,t ≤ S̄max, ∀i ∈ U , (14c)∑
j∈A

xi,j,t ≤ 1, ∀i ∈ U , (14d)∑
i∈U

xi,j,t ≤ 1, ∀j ∈ A, (14e)∑
j∈A

xi,j,t = 0, if
∑
j∈R

xi,j,t ≥ 1, ∀i ∈ U ,

(14f)∑
j∈R

xi,j,t = 0, if
∑
j∈A

xi,j,t = 1, ∀i ∈ U ,

(14g)∑
j∈R∪A

xi,j,t ≥ 1, ∀i ∈ U . (14h)

As such, this problem corresponds to a many-to-many
bipartite matching problem of classic bipartite graph theory,
where some nodes are allowed to connect with multiple
counterparts. But this kind of many-to-many max-bipartite
matching problem formulated under specific constraints cannot
be solved directly by the existing max-bipartite matching
techniques. More explicitly, classic max-bipartite matching
methods, such as the Kuhn-Munkres algorithm, are used
for solving the personnel-assignment problem (page 32 in
[46]) that “chooses a set of n independent1 elements of the
matrix so that the sum of these elements is maximum”. This
means that the Kuhn-Munkres algorithm can only allow each
node to connect with at most one counterpart without any
additional constraint. However, inspired by constraints (14f)
and (14g), the optimal solution can be obtained by comparing
the independently found solutions based upon the set of R
and that of A, respectively. Accordingly, we first conceive the
subproblem of finding an optimal RSU set as follows:

(P1
t ) : max

∑
i∈U

Ei,t(XXXi,t) (15a)

s.t. xi,j,t = {0, 1},∀i ∈ U ,∀j ∈ R ∪A, (15b)∑
j∈R

xi,j,t ≤ S̄max, ∀i ∈ U , (15c)∑
j∈R

xi,j,t ≥ 1, ∀i ∈ U , (15d)∑
j∈A

xi,j,t = 0, ∀i ∈ U . (15e)

Let XXXR
i,t denote the optimal solution of problem (P1

t ) and
R∗i,t represent the corresponding optimal RSU set for VUE i
at TS t. Having acquired the results of {R∗i,t}∀i∈U , we then

1In [46], a set of elements of a matrix are defined as “independent”
provided that no two of them lie in the same row or column of the matrix
simultaneously.

add it as an alternative HUC cluster for each VUE at TS t
and compare it to other VUE-VAP associations. Consequently,
problem (Pt) becomes a classic bipartite matching problem
of finding the optimal solution for all VUEs based upon all
available VUE-VAP associations and the optimal VUE-RSU
associations solved by (P1

t ).
To be more specific, we first define a set A′ = {1, .., A,A+

1, ..., A+U} denoting all the associations for all VUEs based
upon {R∗i,t}∀i∈U . Then, we introduce an auxiliary vector
XXX ′i,t = {x′i,ι,t}ι∈A′ for VUE i at TS t, whose elements
indicate its association either to a VAP or to the optimal
RSU set. More explicitly, let ι∗ denote the index satisfying
x′i,ι,t = 1. Then we have

Ci,t =


{ι∗}, if ι∗ ∈ A,
R∗i,t, if ι∗ = [A′ \ A]i,

∅, otherwise,
(16)

where [A′ \A]i denotes the i-th selection in the set A′, except
for A, which exactly corresponds to the optimal RSU set
for VUE i. Herein, the first case represents that VUE i is
associated with the ι∗-th VAP at TS t, whilst the second case
indicates that VUE i selects its optimal RSU set as its HUC
cluster at TS t. Let us consider Fig. 2 as an example, where
U = 3 and A = 2. At a TS, three VUEs share two VAPs, while
having their optimal RSU set. Each VUE can select VAP 1,
VAP 2 or its optimal RSU set as its HUC cluster.

As a consequence, on the basis of the solution of (P1
t ),

problem (Pt) can be reformulated as problem (P2
t ), given by

(P2
t ) : max

∑
i∈U

Ei,t(XXX
′
i,t) (17a)

s.t. x′i,j,t = {0, 1},∀i ∈ U ,∀j ∈ A′, (17b)∑
j∈A′

x′i,j,t = 1,∀i ∈ U , (17c)∑
i∈U

x′i,j,t ≤ 1, ∀j ∈ A′. (17d)

More explicitly, the following Theorem formalizes the re-
lationship between problem (P1

t ), problem (P2
t ) and problem

(Pt).
Theorem 1: The optimal solution of (P2

t ) is the optimal
solution of problem (Pt) on the basis of the solution of (P1

t ).
Proof The proof is given in Appendix A. �

In what follows, we will elaborate on the solutions of (P1
t )

and (P2
t ).

1) Stage I - Solving (P1
t ): Since (P1

t ) represents the binary
integer programming problem of finding an optimal RSU set,
its optimal solution can be obtained by exhaustive search,
which has a computational complexity related to the number
of available RSUs and of VUEs. Moreover, (P1

t ) can also
be further decoupled into the A independent subproblems of
each VUE. Thus, we may opt for searching no more than
S̄max available RSUs, which maximizes each OF Ei,t for VUE
∀i ∈ U independently.
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2) Stage II - Solving (P2
t ): In essence, problem (P2

t )
corresponds to finding a permutation for one-to-one associ-
ations. However, according to the constraint (17d), the VUEs
may compete for becoming associated with the same VAP.
Hence, the solutions of all VUEs are coupled to avoid such
an association conflict. Given that each VUE can only be
associated with at most one VAP, because it has to satisfy
both constraints (17b) and (17c), this problem is constituted
by a max-bipartite matching problem. In order to solve it, we
adopt the Kuhn-Munkres algorithm [46] [47] for finding the
optimal VUE-VAP association.

B. Algorithm Description

Before describing our proposed algorithm, we introduce
the following definitions of max-bipartite matching [48] [49].
First, let a graph be denoted by G = (K, E), where K is the
vertex set and E is the edge set. Then, formally, a bipartite
matching is stated as follows:

Definition 1: A graph G = (K, E) is bipartite if there exist
partitions Y and Z that satisfy K = Y ∪ Z with Y ∩ Z = ∅
and E ⊆ Y × Z .

Definition 2: A bipartite matching is a subset M ⊆ K for
the bipartite graph G = (K, E), so that at most one edge in
M is incident upon ∀k ∈ K. The weight of M is defined as
the sum of the weights of all edges in M.

Based upon the above fundamental definitions, a max-
bipartite matching is stated as follows:

Definition 3: A max-bipartite matching is a matching M
from Y to Z having a maximum weight.

To solve this max-bipartite matching problem of (P2
t ) by

finding the matching having the maximum sum of weights
of all edges in G, first the graph G and its partitions have
to be defined. Let graph G = (U ∪ A′, E), where the VUE
set U and the union set A′ are its partitions. Herein, E is the
corresponding edge set that represents the association between
VUEs and VAPs or RSUs. Then, let the weight w(i, k) of the
edge (i, k) ∈ E denote the trade-off utility function when VUE
i ∈ U connects node k ∈ A′, formulated as

w(i, k) =


Ei,t(XXX

A
i,t), if k ∈ A,

Ei,t(XXX
R
i,t), if k = [A′ \ A]i,

0, otherwise,

(18)

whereXXXA
i,t = XXXi,t|(xi,k,t=1,xi,j,t=0,∀j 6=k) is the utility function

when VUE i connects to VAP k at TS t, andXXXR
i,t is the optimal

solution of problem (P1
t ). For those invalid connections, we

add virtual vertices and edges with zero weight to construct
a complete weighted graph. Mathematically, finding a max-
bipartite matching can be formulated as the problem of

max
M:U→A′

∑
i∈U

∑
k∈A′

w(i, k). (19)

In the example of Fig. 2, the weights between VUEs
and VAPs [w(1, 1), w(1, 2), w(2, 1), w(2, 2), w(3, 1) and
w(3, 2)] are obtained by assuming that their connections exist,
respectively. By contrast, the weights w(1, 3), w(2, 4) and
w(3, 5) represent the maximum trade-off utility function (12)
for each VUE, when it connects to its optimal RSU set.

VUE 1

VUE 2

VUE 3

VAP 1

VAP 2

RSU set 1

RSU set 2

RSU set 3

VAP 1 VAP 2 RSU set 1 RSU set 2 RSU set 3

VUE 1 0 0

VUE 2 0 0

VUE 3 0 0

Fig. 2: An illustration of the Proposed Max-Bipartite
Matching Model Construction.

Based upon the weight of edges, a function termed as
feasible vertex labeling is introduced as follows:

Definition 4: A feasible vertex labeling in G is a real-valued
function l on U ∪ A′, so that for all i ∈ U and k ∈ A′,

l(i) + l(k) ≥ w(i, k). (20)

In this paper, we adopt a simple feasible vertex labeling
which relies on simply labelling a vertex with the largest
weight associated with all edges leading to the vertex, namely
l(i) = maxk∈A′ w(i, k) for i ∈ U and l(k) = 0 for k ∈ A′. In
this case, a graph Gl = (U ∪ A′, El) is termed as the equality
subgraph for a given l, where we have

El = {(i, k)|l(i) + l(k) = w(i, k)}. (21)

Based on the above construction, the detailed Kuhn-
Munkres algorithm starts with an initial feasible vertex label-
ing l on one side of the graph having the maximum weights.
Then, an initial maximum matching M is formed by finding
the matching having the maximum sum of weights of all
edges in Gl. If the matching is complete, the algorithm will
be terminated, giving the maximum weights. Otherwise, it
begins iterating by attempting to find a larger matching by
using the augmenting alternating paths technique and updating
its labeling to find the corresponding maximum assignment.
Through increasing the size ofM in each iteration, the above
procedure will eventually terminate due to the limited number
of vertices in G, and a maximum-weighted bipartite matching
will be found.

In a nutshell, the proposed max-bipartite matching-based
sequential HUC cluster migration solution is presented in
Algorithm 1 (ALG1), where the stages I and II are repeatedly
and sequentially performed at each TS.
C. Algorithm Analysis

In the following, we analyze the optimality and the com-
putational complexity of the proposed sequential HUC cluster
migration solution.
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Algorithm 1 Proposed Max-Bipartite Matching-Based Se-
quential HUC Cluster Migration Solution

1: Initialize: XXXR
i,0 = 000(R+A)×1, XXXA

i,0 = 000(R+A)×1 (∀i ∈ U);
2: for all t=1,..,T do
3: Stage I – Solving (P1

t ):
4: for all i=1,...,U do
5: Find the optimal VUE-RSU association solution

XXXR
i,t = arg max||XXXi,t||1≤S̄max

Ei,t(XXXi,t) by ex-
haustive search and calculating Ei,t(XXXi,t) =

κ
Ri,t(XXXi,t)

R̄i
−(1− κ)

ei,t(XXXi,t,XXXi,t−1)

S̄max
;

6: end for
7: Calculate all the associations A′ based upon XXXR

i,t;
8: Stage II – Solving (P2

t ):
9: Construct graph G = (U ∪ A′, E) and calculate weight

w(i, k) for i ∈ U and k ∈ A′:

w(i, k) =


Ei,t(XXX

A
i,t), if k ∈ A,

Ei,t(XXX
R
i,t), if k = [A′ \ A]i,

0, otherwise.

10: Initialize: l(i) = maxk∈A′ w(i, k) for i ∈ U and l(k) =
0 for k ∈ A′;

11: Determine equality subgraph Gl = (U ∪ A′, El) such
that

El = {(i, k)|l(i) + l(k) = w(i, k)},

and choose an initial maximum matching M in Gl;
12: while matching M is NOT complete for G do
13: Find an unmatched VUE i ∈ U ; set S = {i} and

P = ∅;
14: Set Jl(S) = {k|∀i ∈ S : (i, k) ∈ El}.
15: if Jl(S) = P then
16: Find αl = mini∈S,k∈A′\P{l(i) + l(k) − w(i, k)}

and construct

l′(κ) =


l(κ)− αl,∀κ ∈ S,
l(κ) + αl,∀κ ∈ P,
l(κ), otherwise.

17: Replace l by l′ and Gl by Gl′ .
18: else
19: Select k from Jl(S) \ P;
20: if k is unmatched then
21: Augmenting M with path (i, k); Go to step 12;
22: else
23: Find the matched VUE i′ ∈ U with node k and

extend the alternating path by updating S = S∪
{i′} and P = P ∪ {k}. Go to step 14.

24: end if
25: end if
26: end while
27: Calculate XXXi,t according to M.
28: end for
29: Output: {XXXi,t}∀i,∀t

1) Optimality: In max-bipartite matching theory, the Kuhn-
Munkres algorithm is the optimal solution that achieves the
maximum weight, as long as its adopted labeling function l is
feasible and its output M is a complete matching [47]. Based
upon this property, the optimality of our solution is presented
in the following proposition:

Proposition 1: The complete matching of problem (P2
t ) is

the optimal solution of problem (Pt).
Remark 1: Proposition 1 manifests the optimality of ALG1

for solving problem (Pt) when the solution of (Pt−1) is given,
but ALG1 may not be the optimal solution of problem (P).

2) Computational Complexity: Let us now discuss the
computational complexity of ALG1. As far as Stage I is
concerned, there are

∑S̄i
τ=1

(
Li
τ

)
possible VUE-VAP associ-

ation combinations for VUE i, where Li is the number of
candidate RSUs within the coverage distance threshold d̄R

t and
the actual number of RSUs associated with VUE i is at most
S̄i = min{S̄max, Li}. Next, in terms of Stage II, the computa-
tional complexity of the Kuhn-Munkres algorithm is related to
the number of vertices in the constructed graph, which is given
by O

(
(2U +A)

3
)

. To sum up, the overall sequential HUC
cluster migration solution has a computational complexity of

O
(
T ·
[∑U

i=1

∑S̄i
τ=1

(
Li
τ

)
+ (2U +A)

3
])

, which increases

polynomially.

VI. DRL-AIDED HOLISTIC HUC CLUSTER MIGRATION
SOLUTION

Although the sequential HUC cluster migration process does
indeed generate a potential solution at a moderate complexity
in the face of unknown vehicular mobility, the overall op-
timality of such a dynamic decision-making solution cannot
be guaranteed. As an emerging innovative method of finding
a good policy for model-free MDP problems, DRL relies
on deep neural networks (DNNs) invoked for sophisticated
mappings between the input and the desired output based upon
a large amount of training data, which eventually yields a
beneficial mapping from the state space to the action space.
The advantage of DRL is that the agent can learn from
experience via interaction with the environment, even in the
absence of knowing the environmental dynamics in advance.
Once the policy becomes sufficiently well trained, it can be
employed by the agent in the same environment during the
test stage, or even be generalized for the agent in different
environments. In this section, we resort to an alternative
policy optimization based model-free DRL method – namely
to the DDPG algorithm of [50] for solving our problem,
which benefits from the advantages of being an actor-critic
deterministic policy gradient algorithm, as well as Deep Q
Network (DQN) [31]. Compared to the most representative
DQN method, which can only handle the problems having
a low-dimensional discrete action space, the DDPG method
converges much faster than DQN and also supports high-
dimensional state-action spaces. The underlying reason is that
DQN requires exhaustive evaluation of the Q-function of all
possible actions at each step, whilst DDPG is capable of
generating a deterministic action from the policy network.
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To better understand the theoretical basis of DDPG, in the
following, we will first introduce the relevant fundamentals
and then present our MDP design for the proposed DRL-aided
holistic HUC cluster migration solution.

A. Fundamentals of DDPG

1) MDP: A MDP is formalized by a 5-tuple (S,A, p, r, γ),
where S is the state space, A is the action space, p : S ×A×
S → R is the transition probability, r : S × A × S → R is
the reward function and γ ∈ (0, 1) is the discount factor. In
general, the return of agent from a state at TS t is a discounted
future cumulative reward from TS t, formulated as

Gt =

∞∑
l=0

γlrt+l+1, (22)

Herein, rt+l+1 denotes the reward at TS t+ l+1. The essence
of DRL is that of finding a policy capable of maximizing the
expectation of this discounted future cumulative reward [51].

2) Value function: Let π : S × A → [0, 1] be a stochastic
policy. The value function of the policy π at state s is defined
as the expected discounted future cumulative reward from state
s:

vπ(s) = E[Gt|st = s]. (23)

Similarly, the action-value function Qπ(s, a) is defined as the
expected discounted future cumulative reward from state s
when the agent takes action a:

Qπ(s, a) = E[Gt|st = s, at = a]. (24)

3) Policy Gradient: In practice, when seeking the optimal
policy becomes infeasible for large state spaces, the policy
gradient is used for evaluating the performance of the policy
by parameterizations. More explicitly, let πθ(a|s) denote the
policy at state s, when taking action a using the parameter
vector θ. Accordingly, the probability of taking action at based
on θ is

πθ(a|s) = P{at = a|st = s, θt = θ}. (25)

Let J(θ) be the OF of policy optimization-based algorithms,
and the policy gradient be given by

∇θJ(θ) = Eπθ [∇θ log πθ(a|s)Qπθ (s, a)]. (26)

4) DDPG: Essentially, DDPG consists of an actor network
and a critic network, which learns the policy and estimates
the Q-function, respectively. Thus, a Q network and a policy
network in DDPG are defined as follows:
• Q network: Having said that, the Q-function describes the

expected reward after taking an action in the current state,
when following a policy π. As the policy is deterministic,
the Bellman equation reflecting the recursive nature of the
Q-function can be described by

Q(st, at) = Est+1 [rt + γQ(st+1, at+1)]. (27)

In the case of a high-dimensional action or state space, the
Q-function of (27) can be approximated by a DNN having
the weights of {θQ} as a Q-network Q(s, a|θQ). Once
{θQ} is determined, Q(s, a) will represent the outputs of

the DNN. Then, the Q-network plays a role of a critic
function by appraising the benefits of the action, and
the function approximators {θQ} are optimized based on
minimizing the loss function, represented as

L(θQ) = Est,at,rt [(ζt −Q(st, at|θQ))2], (28)

where

ζt = rt + γQ(st+1, π(st+1)|θQ). (29)

• Policy network: As an actor network, a policy network in
DDPG outputs the deterministic action, given the current
state. Similarly, the policy network π(s|θπ) can also be
approximated by a DNN in conjunction with the weights
{θπ}. According to Theorem 1 in [52], the policy is
optimized by following the policy gradient, given by

∇θπJ ≈ Est [∇θπQ(s, a|θQ)|s=st,a=π(st|θπ)]

= Est [∇aQ(s, a|θQ)|s=st,a=π(st)∇θππ(s|θπ)|s=st ].(30)

In order to improve the stability of learning, a pair of
separate target networks has to be established as a copy
of the actor and critic networks, namely Q′(s, a|θQ′) and
π′(s|θπ′), respectively. For the sake of distinction, the original
networks are termed as online Q-networks and online policy
networks, respectively, since both target networks are updated
by arranging for them to slowly track the networks learned,
which is formulated as:

θQ
′
← τθQ + (1− τ)θQ

′
, (31)

θπ
′
← τθπ + (1− τ)θπ

′
, (32)

where τ ∈ [0, 1] is the tracking parameter.
Furthermore, the replay buffer strategy of [50] is employed

in our DDPG to avoid having correlated samples. At each
step, the actor and the critic are updated by uniformly sam-
pling a minibatch {(st, at, rt, st+1)}Nt=1 of N transitions from
this buffer. As a result, the sampled policy gradient can be
represented by

∇sampled
θπ J ≈ 1

N

N∑
t=1

∇aQ(s, a|θQ)|s=st,a=π(st)∇θππ(s|θπ)|st. (33)

Additionally, an exploration policy π′ is constructed by adding
noise sampled from a Ornstein-Uhlenbeck (OU) process of
UOU to our actor policy as follows

π′(st) = π(st|θπ) + UOU. (34)

In a nutshell, the DDPG method exploits both the off-policy
data and the Bellman equation to learn the DQN, and then
uses the DQN to learn the policy via another DNN, which
eventually concurrently learns a Q-function and a policy. The
framework of our DDPG is depicted in Fig. 3 at a glance.
It has been shown in [50] that the DDPG method is capable
of learning beneficial policies using its straightforward actor-
critic architecture.
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Fig. 3: The framework of the DDPG algorithm.

B. MDP design

Clearly, our problem is actually a dynamic decision-making
problem. As a result of its unknown state transition probability,
the problem constitutes a model-free MDP defined as follows:
• Agent: All VUEs are jointly considered as the agent.
• Action Space A: At TS t, the action of VUE i is defined

by ai,t = {xi,j,t}. Hence, the system’s action at TS t
can be represented as at = {ai,t}. Given the constraint
of having a limited maximum number of the associated
RSUs, the dimension of the action space at each TS is
given by 2U(S̄max+A).

• State Space S: At each TS, the state of the environment
for the agent includes the locations of all VUEs, that
of each of their observable RSUs, the locations of all
VAPs, and their corresponding HUC clustering status (the
locations of the associated transmitters) in the previous
TS. The state exhibits the Markovian property due to the
assumption of having a Gauss-Markov vehicular mobility
model. To satisfy constraint C2, we assume that each
VUE only observes at most S̄max closest RSUs within
d̄R
t at each TS. Additionally, for satisfying constraint C3

and C4, we define a variable ξt to represent the collision
status of all VAPs at TS t. Explicitly, since there are more
than one connections to any VAP at each TS, a collision
takes place and we have ξt = 1. Let LVUE

i,t , LRSU
i,t , LHUC

i,t

and LVAP
t denote the location set of VUE i, that of its

observable RSUs, that of its previous HUC clustering (the
associated RSUs or VAP at the previous TS), and of all
VAPs at TS t, respectively. Thus, the system state at TS
t becomes

st =
[
{LVUE

i,t }i, {LRSU
i,t }i, {LHUC

i,t−1}i,LVAP
t , ξt

]
. (35)

• Immediate Reward: In our scenario, the immediate reward
rt is determined by the trade-off utility function of (12).
To facilitate the learning process, we add a penalty term
ρt when C5-C7 are not satisfied and consider the per-user
average trade-off performance , represented as

rt =
1

U

∑
i∈U

Ei,t + ρt. (36)

In what follows, we will elaborate on the training and testing
stages of our DDPG-based holistic HUC cluster migration
solution.

C. Training and Testing

Algorithm 2 Training Stage for the DDPG-based Holistic
HUC Cluster Migration Solution

1: Randomly initialize online networks Q(s, a|θQ) and
π(s|θπ);

2: Initialize target networks Q′(s, a|θQ′) and π′(s|θπ′) with
θQ
′ ← θQ and θπ

′ ← θπ;
3: Initialize replay buffer B;
4: for all episode=1,..,M do
5: Reset simulation parameters for HUC cluster migration

vehicular networks environment;
6: Initialize UOU;
7: Generate s1 based on the generated initial velocity of

all vehicles;
8: for all t=1,...,T do
9: Select action at according to π′(st) = π(st|θπ) +

UOU and ‘binarize’ at by comparing to 0.5;
10: Execute at and observe rt, st+1;
11: Store the tuple (st, at, rt, st+1) in B;
12: Sample a random minibatch of N tuples

{(st, at, rt, st+1)}Nt=1 from B;
13: Set ζt = rt + γQ(st+1, π(st+1)|θQ);
14: Update the critic network by minimizing L(θQ) =

Est,at,rt [(ζt −Q(st, at|θQ))2];
15: Update the actor network by using ∇sampled

θπ J ≈
1
N

∑N
t=1∇aQ(s, a|θQ)|s=st,a=π(st)∇θππ(s|θπ)|st;

16: Update the target network:

θQ
′
← τθQ + (1− τ)θQ

′

θπ
′
← τθπ + (1− τ)θπ

′

17: end for
18: end for

There are two stages including training and testing for the
DDPG based HUC cluster migration solution. The training
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stage is used for generating training data by the simulated
environment, which mimics the interaction of the VUEs with
the vehicular networks. In the testing stage, the agent will first
load its network parameters (θQ, θQ

′
, θπ , θπ

′
) and then reset

its replay buffer by interacting with a randomly initialized
environment. The action will be selected according to the
output of the actor network with loading parameters, while
the state will be yielded relying on its local observation.

The detailed training stage is illustrated in Algorithm 2
(ALG2). The initial state s1 is based upon the observation
according to the initial policy, where the VUEs associate
with the nearest S̄max observable RSUs. Then, the policy is
gradually improved by invoking the updated actor and critic
networks. It is worthy noting that since the action of the DDPG
outputs a continuous value, we can ‘binarize’ the action by
comparing the continuous output to an appropriately selected
threshold (we set it as 0.5 in this paper). In this way, once the
policy becomes sufficiently well trained, it can be employed
for VUEs in the same environment during the test stage
for dynamically selecting its HUC cluster, which eventually
completes the HUC cluster migration in the face of unknown
vehicular mobility by judiciously balancing the HO overhead
against the connectivity benefits of HUC clustering in terms
of the average data rate.
D. Computational Complexity

The computational complexity of the DDPG approach im-
posed during both the training and testing stages mainly
depends on the actor and the critic networks, where the number
of floating point operations (FLOPs) is widely adopted as
the complexity metric. Let us assume that a three-layer fully
connected DNN is adopted for both the actor and the critic
network, where D1, D2, D3 are the number of neurons in
the three hidden layers. When a state is the input of the actor
network during each TS, its computational complexity can be
shown to be on the order of O(D1 + D1D2 + D2D3 + D3)
in terms of the number of FLOPs due to the fact that the
output is a deterministic action. Subsequently, the number of
FLOPs required for the critic network during each TS can be
represented as O(D1+D1D2+D2D3+D3), when the current
state and the executed action are the inputs. By contrast,
the computational complexity of the DQN during each TS
requires O(D1 + D1D2 + D2D3 + D32U(S̄max+A)) FLOPs,
when a three-layer fully connected DNN is adopted as well.
Therefore, the DDPG method adopted significantly reduces
the computational complexity in our problem.

To reflect on the applicability of our solution in realistic
networks, we also compare the overall computation time of
the DDPG method and of the DQN method in the context
of our HUC clustering design. We tested it on our computer
using an Intel Core i9-9920X processor and 32 GB RAM
for 1000 training episodes and 2 VUEs. The computation
time is 410.351482 seconds for DDPG and 1372.472 seconds
for DQN, respectively. Hence, the DDPG method is more
attractive for realistic networks.

VII. NUMERICAL EVALUATION

In this section, we characterize the performance of two
proposed HUC cluster migration solutions by our numerical

simulations. We focus our attention on a V2X network wherein
the RSUs are located uniformly along both sides of the road at
the same interval. The default system parameters are listed in
TABLE III. Both the VUEs and VAPs are travelling along the
different lanes of the road with a random mean velocity from
the interval of [6m/s, 12m/s] by default. Their initial velocity
is set to be the same as the mean velocity. Moreover, the
VUEs are located in the center of a lane in sequence, such
as their x-coordinates are [0, 1, 2, 3, 4] in meters for 5 VUEs.
By contrast, the VAPs are randomly located in the center of
another lane along the road. Additionally, the numerical results
are averaged over 100 episodes.

As far as ALG2 is concerned, the DNNs invoked for the
actor and for the critic rely on a three-layer fully connected
neural network, where both the number of the neurons in the
hidden layers is 30. The activation function ’Relu’ and ’Tanh’
[53] are used in the hidden layer and the output layer of the
actor DNN, respectively, whilst the activation function ’Relu’
and ’Linear’ are used in the hidden layer and the output layer
of the critic DNN, respectively. We adopt the adaptive moment
estimation method (Adam) optimizer [54] for training. The
other default training parameters are also listed in TABLE III.

TABLE III: SIMULATION PARAMETERS

System Parameters

Length of road L 1 km

Width of road W 3.75× 2 = 7.5 m

Number of RSUs R 20

Number of VAPs A 5

Number of VUEs U 5

Coverage distance threshold d̄R
t 200 m

Coverage distance threshold d̄A
t 50 m

Maximum number of associated
RSUs S̄max

4

Minimum data rate constraint 15 b/s/Hz

Transmit power of RSUs p0 30 dBm

Transmit power of VAPs p1 30 dBm

Noise power density (5 dB figure) −174 dBm/Hz

Subcarrier bandwidth 180 kHz

Vehicle mobility model

αi = 0.1, σ̄i = 0.1,
v̄i = [6 m/s, 12 m/s],
vi,0 = [6 m/s, 12 m/s],
σ2
n = 1

Fast fading Rayleigh fading CN (0, 1)

Path loss model [11]

Weighting factor w 0.5

Training Parameters

Learning rate of actor network 0.001

Learning rate of critic network 0.002

Noise standard deviation of UOU 2 in a decay rate of .9995

Buffer capacity B 10 000

Discount factor γ 0.9

Size of minibatch N 32

Tracking parameter τ 0.01

Penalty term ρt −1

For comparison, we consider the following two benchmark-
ers:
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Fig. 4: Convergence of the proposed ALG2 based on
simulations and the parameters of Table III.

1) The received signal strength benchmarker (legend as
‘RSS’): The VUE will hand over to an alternative
RSU/VAP with the highest RSS among all the alterna-
tives, when it detects that the RSS of the alternative
RSU/VAP is also higher than that of the current con-
nection at the beginning of each TS. This benchmarker
has been widely used for comparison in terms of HO
problems [55] [56].

2) The dual connection benchmarker (legend as ‘Dual’) [38]:
The VUE can be served by its closest and second closest
RSUs simultaneously. At the beginning of each TS, the
VUE will connect to the common RSU between the
current serving RSU set and the alternative RSU set,
provided that it exists, and it will disconnect from the
other RSU. Otherwise, the VUE will associate with the
two closest RSUs.

A. Convergence of the proposed ALG2

Let us now first show the convergence of our proposed
holistic solution during the training stage in Fig. 4. Firstly, it
can be seen that the average cumulative reward of our proposed
ALG2 converges at about 400 episodes, which demonstrates
the efficiency of our proposed solution. Secondly, we observe
that the convergence of the average cumulative reward follows
a similar trend to that of the corresponding per-user average
data rate (PAR). This is due to the fact that the specific selec-
tion of HUC clustering substantially affects the fluctuations of
the PAR, which implicitly reflects the significance of the data
rate versus HO-rate trade-off. Moreover, it is worth mentioning
that the the proposed ALG2 requires non-negligible training
overhead, relying on substantial computational capability and
storage capacity for keeping track of both vehicles and RSUs,
as well as imposing a high information signalling overhead.

B. Impact of the number of RSUs and VAPs

Fig. 5 illustrates the per-user average performance for
different number of RSUs. First of all, we can clearly see from
the left subfigure of Fig. 5, that the per-user average trade-off
utility function (PAT) can be increased by adding more RSUs
for all solutions. However, when the number of RSUs becomes

Fig. 5: Per-user average performance versus the number of
RSUs R.

Fig. 6: Per-user average performance versus the number of
VAPs A.

sufficiently high, the PAT saturates. This phenomenon is due to
the fact that the PAR of all solutions increases with the number
of RSUs at different rates as a result of having an increased
number of nearby RSUs, which can be observed from the right
subfigure of Fig. 5. Meanwhile, VUEs may encounter more
frequent HOs in an effort to increase their PAR performance,
as seen from the lower subfigure of Fig. 5.

The proposed ALG2 outperforms the benchmarkers, espe-
cially at a lower number of RSUs (R = [10, 40] at the left of
the upper subfigure). Moreover, the proposed ALG1 is capable
of approaching the best performance of the proposed ALG2 for
R ≥ 60. This phenomenon indicates that ALG2 has explicit
benefits in our HUC clustering design at a lower number
of RSUs, whilst ALG1 attains an improved performance by
increasing the RSU density. Additionally, by comparing the
per-user average number of HOs in the lower subfigure of
Fig. 5, the proposed ALG2 reduces the frequency of HOs
at least by 50% compared to all the other solutions, when
R ≥ 14. This verifies its superiority in terms of striking a
compelling connectivity versus HO-rate trade-off.

Fig. 6 shows the per-user average performance with regard
to various number of VAPs. Firstly, observe at the left of the
upper subfigure, that the PAT can be increased by adding
more VAPs for all solutions, except for the VAP-agnostic
‘Dual’ solution. The underlying reason is that their PAR (at
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Fig. 7: PAT and PAR versus the transmit power of RSUs p0.

the right of the upper subfigure) increases with the number
of VAPs, whilst there is a modest fluctuation in terms of
the per-user average number of HOs (the lower subfigure).
After accumulating the PAR over all TSs, the PAT is also
increased, obeying a similar trend. This trend exhibits explicit
benefits for increasing the number of VAPs in our HUC
clustering design. Additionally, it is worth noting that the well-
trained ALG2 proposed exhibits superior performance over the
other solutions in terms of all the above average performance
metrics. This phenomenon reflects that as a benefit of HUC
clustering, the DRL-aided solution is capable of striking a
compelling connectivity versus HO-rate trade-off, provided
that a certain training overhead is allowed. Furthermore, by
comparing the PAT and PAR performance, we can conclude
that our HUC clustering design achieves at least 30% higher
PAT and 25% higher PAR than the benchmarkers.

In terms of the per-user average number of HOs seen in the
lower subfigure of Fig. 6, we further observe that the proposed
ALG2 achieves the best performance, while the proposed
ALG1 only achieves a modest performance, as A ≥ 1. In this
case, the VAPs are allowed for data transmission and may
maintain longer association durations than VUE-RSU, thus
providing more opportunities for reducing the frequency of
HOs. When comparing the results of A = 0 and of A ≥ 1, it
can be also seen that the proposed ALG2 is capable of making
better use of VAPs for reducing the HO-rate, which verifies
again the superiority of the DRL approach.

C. Impact of the transmit power of RSUs and VAPs

The performance is further investigated in Fig. 7 for dif-
ferent transmit powers of the RSUs. First of all, we observe
from the figure that all the solutions exhibit an increasing trend
upon increasing the transmit power of RSUs p0 in terms of
PAT, since the increased p0 contributes to the PAR. Next, it
can be seen that the proposed ALG1 and ALG2 solutions
achieve higher PAT than the benchmarkers as a benefit of
our HUC clustering design. Furthermore, observe that as p0

grows, the PAT gap between ALG1 and ALG2 is gradually
reduced, whilst the PAT gap between the ‘Dual’ solution
and the ‘RSS’ solution widens. This behavior is deemed to
be due to the benefits of multiple RSU associations, which
is explicitly affected by their transmitted power. Hence, the
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Fig. 8: PAT and PAR versus the transmit power of VAPs p1.

sequential HUC clustering solution constitutes an attractive
design alternative to strike a compelling trade-off without an
excessive training overhead at high p0.

Next, the performance versus the transmit power of the
VAPs is investigated in Fig. 8. We first observe from the
figure that as the power p1 of VAPs increases, the superiority
of ALG2 in terms of both its PAT and PAR becomes more
prominent. The underlying reason for this is that the increased
power of VAPs enhances the connectivity benefits brought
about by VAPs. For the same reason, the PAT of ALG1 and
the ‘RSS’ solution is also gradually increased when p1 is
increased, which can be clearly seen from Fig. 8. Moreover, it
is worth mentioning that the PAT of the ‘Dual’ solution does
not affect the transmit power of VAPs, since it only supports
the RSU-association.

D. Impact of the data rate and load constraints

The PAT performance is further investigated in Fig. 9 versus
the minimum required data rate constraint for different S̄max.
The first point to observe is that the PAT is reduced as the
data rate constraint increases. This is because the data rate
constraint substantially reduces the data rate contribution in
the normalized trade-off utility function. Secondly, it is clearly
observed that ALG2 outperforms other solutions, regardless of
the data rate constraint, which reflects the superiority of the
DRL approach.

Moreover, we observe that all the solutions using S̄max = 4
outperform their counterpart associated with S̄max = 2 apart
from the ‘Dual’ solution, when the minimum data rate con-
straint is 15 − 30 b/s/Hz. This is because it is possible to
increase the PAT by relying on RSU cooperation using the in-
creased number of associated RSUs, subject to an appropriate
minimum data rate constraint. However, as the minimum data
rate constraint is 10 b/s/Hz, the PAT of ALG2 associated with
S̄max = 2 is higher than that with S̄max = 4. This phenomenon
indicates that at a low minimum data rate, the DRL approach
may learn a policy with high HO overhead as S̄max increases,
since the contribution of the increased HO overhead to the
normalized reward exceeds that of the increased data rate. By
contrast, for different S̄max, we observe that only the ‘Dual’
solution using S̄max = 2 achieves better average cumulative
reward than that with S̄max = 4, regardless of the minimum
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Fig. 9: PAT versus the minimum data rate constraint for
S̄max1 = 4 and S̄max2 = 2.
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Fig. 10: PAT and PAR versus the weighting factor w for
v̄max1 = 12 m/s and v̄max2 = 8 m/s.

data rate constraint. The reason behind this trend is that the
‘Dual’ solution allows VUEs to select a common RSU as the
alternative rather than to select a closest RSU. Hence, as S̄max
decreases, there are more opportunities to select a closer RSU
for VUE by observing at most S̄max closest RSUs.

E. Impact of the weighting factor

In this subsection, the performance versus the weighting
factor is investigated. First of all, it can be seen from the left
of Fig. 10 that increasing the weighting factor has a beneficial
effect on the PAT. This implies that the contribution of the
PAR in the normalized utility function is higher than that
of the HO overheads. When aiming for maximizing the PAT,
the PAR of the proposed ALG1 and ALG2 solutions is also
increased when w increases, as shown in the right of Fig. 10,
which is in line with our expectation. In the second place,
the proposed ALG2 outperforms all other solutions in terms
of both PAT and PAR, regardless of the weighting factor. By
contrast, the proposed ALG1 exhibits superior performance to
both benchmarkers, when a high weighting factor is applied to
the connectivity benefits. Furthermore, it is worth noting that
reducing the maximum velocity of VUEs and VAPs results in
increasing the number of TSs required for travelling a certain
distance along the road. Hence the PAT performance of v̄max2

is higher than that of v̄max1.

Fig. 11: Per-user average number of HOs versus the
weighting factor w for v̄max1 = 12 m/s and v̄max2 = 8 m/s.

As a further step, the per-user average number of HOs
versus the weighting factor is studied. Observe from Fig. 11
that as w increases, the number of HOs of the proposed ALG1
solution is gradually increased for both v̄max1 and v̄max2, due
to using an increased number of RSUs for cooperation. By
contrast, the number of HOs of the proposed ALG2 exhibits
slight fluctuations upon increasing w relying on DRL. Since
the association process in two benchmarkers is independent of
the weighting factor, their number of HOs remains constant.
Therefore, the results of Fig. 10 and Fig. 11 can offer us some
insights into how we should select the weighting factor.

VIII. CONCLUSIONS

Incorporating UC clustering into vehicular networks is a
promising technique of enhancing connectivity versus the
HO-rate trade-off. A novel HUC clustering framework was
conceived relying on both RSU cooperation and V2V com-
munication, which is capable of supporting hybrid HOs. In
the face of unknown vehicular mobility, we proposed a pair
of efficient solutions for solving our HUC cluster migration
problem, with the aid of max-bipartite matching and the pow-
erful DRL approach, respectively. Our numerical results have
shown that the two proposed HUC cluster migration designs
achieve a more beneficial trade-off than the benchmarkers
considered, and demonstrated the superiority of the DRL-aided
solution, albeit at the cost of a certain training overhead. The
results contribute to a better understanding of the benefits
of UC clustering in mobile scenarios, which will improve
the connectivity-HO tradeoff by at least 30%. Our future
research will include 1) the consideration of real-world traffic
demands and dynamics; 2) the deployment of a multi-agent
DRL framework; 3) the dual function of communicating and
computing for both RSUs and APs; 4) the most ambitious, but
promising Pareto-Optimization of multi-component OFs.

APPENDIX

A. Proof of Theorem 1

Let ΞΞΞ = [ξξξT1 , ..., ξξξ
T
U ]T ∈ CU×(A+U) and ΞΞΞ∗ ∈ CU×(A+U)

be an arbitrarily feasible solution and the optimal solution of
problem (P2

t ), respectively, wherein the i-the column vector
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ξξξTi ∈ C(A+U)×1 is the corresponding association variable for
VUE i. For the sake of simplicity, we define Fi as the trade-
off utility function for VUE i and F (ΞΞΞ) =

∑
i Fi(ξξξi). Thus,

we firstly have

F (ΞΞΞ∗) = max
ΞΞΞ

F (ΞΞΞ) ≥
∑
i∈U

Fi(ξξξi). (37)

Considering the independence of the VUE-VAP association
and VUE-RSU association, we classify VUEs into a pair of
categories, namely VUEs connecting to VAP (UA) and VUEs
connecting to RSU (UR). Then, we arrive at∑

i∈U
Fi(ξξξi) =

∑
i∈UA

Fi(ξξξi) +
∑
i∈UR

Fi(ξξξi). (38)

Assuming that ηηη = [ηηηT1 , ..., ηηη
T
U ]T is an arbitrarily feasible

solution we have for a RSU set, namely solving problem
(P1

t ), and ηηηTi denotes the corresponding association variable
for VUE i, thus

Fi(ξξξi) = max
{ηηηi}

Fi(ηηηi),∀i ∈ UR. (39)

Hence, upon substituting (39) into (38), we have∑
i∈U

Fi(ξξξi) ≥
∑
i∈UA

Fi(ξξξi) +
∑
i∈UR

Fi(ηηηi). (40)

According to the formulation of (P1
t ), (P2

t ) and (Pt), it is
clearly found that both the solution of (P1

t ) and (P2
t ) is one of

the feasible solutions of (Pt). In other words, ΞΞΞ and ηηη are also
the solutions of problem (Pt). Additionally, UA and UR can be
any kind of classification. Again, owing to the independence
of the VUE-VAP association and VUE-RSU association, we
have ∑

i∈UA
Fi(ξξξi) +

∑
i∈UR

Fi(ηηηi) = F (ΞΞΞ′), (41)

where ΞΞΞ′ denotes an arbitrarily feasible solution of problem
(Pt).

Finally, by combining (37), (40) and (41), we conclude that
ΞΞΞ∗ is also the optimal solution of problem (Pt).
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