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Abstract—This paper presents a linear complexity iterative
rake detector for the recently proposed orthogonal time fre-
quency space (OTFS) modulation scheme. The basic idea is to
extract and coherently combine the received multipath com-
ponents of the transmitted symbols in the delay-Doppler grid
using maximal ratio combining (MRC) to improve the SNR of
the combined signal. We reformulate the OTFS input-output
relation in simple vector form by placing guard null symbols
or zero padding (ZP) in the delay-Doppler grid and exploiting
the resulting circulant property of the blocks of the channel
matrix. Using this vector input-output relation we propose a low
complexity iterative decision feedback equalizer (DFE) based on
MRC. The performance and complexity of the proposed detector
favorably compares with the state of the art message passing
detector. An alternative time domain MRC based detector is also
proposed for even faster detection. We further propose a Gauss-
Seidel based over-relaxation parameter in the rake detector to
improve the performance and the convergence speed of the
iterative detection. We also show how the MRC detector can
be combined with outer error-correcting codes to operate as a
turbo DFE scheme to further improve the error performance.
All results are compared with a baseline orthogonal frequency
division multiplexing (OFDM) scheme employing a single tap
minimum mean square error (MMSE) equalizer.

Index Terms—OTFS, Detector, Decoder, Rake, Maximal Ratio
Combining, Delay–Doppler Channel, Turbo, DFE, Gauss Seidel,
Successive Over-Relaxation.

I. INTRODUCTION

Orthogonal time frequency and space (OTFS) is a new

two dimensional (2D) modulation technique that transforms

information symbols in the delay-Doppler domain to the

familiar time-frequency domain by spreading all the informa-

tion symbols (e.g., QAM) over both time and frequency to

achieve maximum effective1 diversity [1], [2]. As a result, a

time-frequency selective channel due to multipath fading and

mobility, is converted into a separable and quasi-orthogonal

interaction, where all received information symbols experience

roughly the same localized impairment [1]. Hence, for each

A preliminary version of this work will be presented in part at the
IEEE Wireless Communications and Networking Conference (WCNC), May
2020, [3]. The authors are with Department of Electrical and Computer
Systems Engineering, Monash University, Clayton, VIC 3800, Australia. E-
mail: tharaj.thaj@monash.edu, emanuele.viterbo@monash.edu. This work was
supported by the Australian Research Council through the Discovery Project
under Grant DP200100096. Simulations were undertaken with the assistance
of resources and services from the National Computational Infrastructure
(NCI), which is supported by the Australian Government.

1Effective diversity introduced for OTFS in [2] is a more meaningful
measure of the actual diversity at practical SNR values, when the number
of transmitted symbols is large.

information symbol, the received components in all the delay-

Doppler diversity branches can be separated and coherently

combined.

OTFS can also be interpreted as a two-dimensional code

division multiple access (CDMA) scheme, where information

symbols are spread in both time and frequency, differently

from conventional CDMA systems [1]. In direct sequence

CDMA operating in a multipath fading channel, a rake receiver

works by combining the delayed components (or echoes) of

the transmitted symbols extracted by using matched filters

tuned to the respective delay shifts. Similarly, in the case of

OTFS, the received delay shifted and Doppler shifted compo-

nents of the transmitted information symbols can be extracted

and coherently combined using linear diversity combining

techniques to improve the SNR of the accumulated signal.

Diversity combining techniques are well studied in the

literature starting from Brennan’s paper on linear diversity

combining [4]. Rake receivers for time domain combining

using a variety of linear combining schemes like maximal

ratio combining (MRC), equal gain combining (EGC) and

selection combining (SC) are discussed in [5], [6]. MRC is

shown to be optimal in the case of correlated and uncorrelated

branches, even for unequal noise and interference power in

the branches [7]. Moreover, iterative rake combining schemes

and its variants are shown to combat inter-symbol interference

better and are well investigated in the literature for CDMA

systems [8].

In this paper, we propose an iterative rake receiver for the

OTFS system using the maximal ratio combining scheme.

Following [3], we group the delay-Doppler grid symbols into

vectors according to their delay index and reformulate the

input-output relation between the transmitted and received

frames in terms of these transmitted and received vectors. By

placing some null symbols (zero-padding (ZP)) in the delay-

Doppler domain we arrive at a reduced input-output relation,

which allows the use of the maximal ratio combining to design

a low complexity detector for OTFS. The overhead of the null

guard symbols, needed for the proposed detection scheme, also

allows to insert pilot symbols at no additional cost [10]. These

null symbols in the delay-Doppler domain act as interleaved

ZP guard bands in the time-domain. Taking advantage of this

interleaved time-domain ZP, we further present an alternate

low complexity time-domain MRC based detection for OTFS.

OTFS with the ZP guard band as mentioned above is

similar to the Doppler-resilient orthogonal signal division

multiplexing (D-OSDM) scheme recently proposed in [11]

http://arxiv.org/abs/2005.02192v2


2

for under water acoustic channels [12] which is modelled

as relatively faster time-varying as compared to the vehicular

channel model assumption [13]. Even though the information

symbols in both schemes are transmitted in the delay-Doppler

domain, the main advantage of the general OTFS transceiver

structure is the provision to insert arbitrary frequency domain

windowing, which is not a part of the D-OSDM scheme.

Windowing allows OTFS to select a subset of sub-carriers

for transmission and reception, which is particularly useful

in multi-user communication schemes.

The rest of the paper is organized as follows. In Section

II, we discuss the system model and derive the input-output

relation in the vector form. To understand the operation of

the proposed detector, we look at the input-output relation

in delay-time and time domains in Section III. In Section

IV, the proposed MRC based iterative rake detector, its low

complexity implementation and the conditions for convergence

are described. In Section V, we propose further improvements

to the rake detector providing faster convergence and better

error performance. The simulation results are given in Section

VI followed by a discussion on the complexity of the proposed

algorithm in Section VII. Section VIII contains our concluding

remarks and future research directions.

II. OTFS SYSTEM MODEL

A. Notations

The following notations will be followed in this paper: 0,

a, A represent a scalar, vector, and matrix, respectively; a(=)
and A(<, =) represent the =-th and (<, =)-th element of a

and A, respectively; A†, A∗ and A= represent the Hermitian

transpose, complex conjugate and =-th power of A. The set

of " × # dimensional matrices with complex entries are

denoted by C#×" . Let ⊛ represent circular convolution, ⊗, the

Kronecker product, ◦, the Hadamard product (i.e., the element

wise multiplication) and, ⊘, the Hadamard division (i.e., the

element wise division). Let |S| denote the cardinality of the

set S, tr(�), the trace of the square matrix A, vec(A), the

column-wise vectorization of the matrix A and vec−1
# ,"
(a)

is the matrix formed by folding a vector a into a # × "
matrix by filling it column wise. Let F# be the normalized #

point discrete Fourier transform (DFT) matrix with elements

F# (8, :) = #−1/2e− 92c8:/# and F
†
#

the inverse discrete

Fourier transform (IDFT) matrix, I" , the " × " identity

matrix. The vectors 0# and 1# denote a # length column

vector of zeros and ones, respectively. The scalar I = e
92c
"# .

B. Transmitter and Receiver Operation

The transmitter and receiver operations for the general

OTFS system are described in [9], [15]. We will be using the

following matrix/vector representation throughout the paper.

Let X, Y ∈ C"×# be the transmitted and received two-

dimensional delay-Doppler grid, forming a frame of "×# Q-

QAM symbols, with unit average energy. Let x<, y< ∈ C#×1

be column vectors containing the symbols in the <-th row of

X and Y, respectively: x< = [X(<, 0),X(<, 1), · · · ,X(<, #−
1)]T and y< = [Y(<, 0),Y(<, 1), · · · ,Y(<, # − 1)]T, where

< and = denote the delay (row) and Doppler (column) indices,

respectively, in the two-dimensional grid. The total frame

duration and bandwidth of the transmitted OTFS signal frame

are ) 5 = #) and � = "Δ 5 , respectively. We consider the case

where )Δ 5 = 1, i.e., the OTFS signal is critically sampled for

any pulse shaping waveform.

1) Basic OTFS Transmitter and Receiver: The delay-

Doppler domain symbols in X is converted to the time-

frequency domain (Xtf) using the inverse symplectic fast

Fourier transform (ISFFT) operation.

Xtf = F" · X · F†# (1)

The “Heisenberg transform modulator” generates the time

domain signal from the time-frequency samples using an M-

point IFFT along with the pulse-shaping waveform 6tx (C). The

transmitted signal can be written as

S = Gtx · (F†" · Xtf) = Gtx · (X · F†# ) (2)

where the diagonal matrix Gtx has the samples of 6tx(C) as its

entries: Gtx = diag[6tx (0), 6tx()/"), . . . , 6tx(("−1))/")] ∈
C"×" . Let X̃ be the matrix containing the delay-time samples

before applying pulse shaping waveform and is related to the

delay-Doppler domain symbols as

X̃
T
= [x̃0, . . . , x̃"−1] = F

†
#
[x0, . . . , x"−1] = F

†
#
· XT. (3)

The time domain vector s ∈ C#"×1, to be transmitted into

the physical channel can be written as

s = vec(Gtx · X̃). (4)

These samples are pulse shaped and transmitted as a contin-

uous time signal B(C). At the receiver, the delay-time samples

are obtained from the sampled received time domain waveform

r ∈ C#"×1 as

Ỹ = vec−1
# ," ((I" ⊗ Grx) · r) , (5)

where the diagonal matrix Grx has the samples of 6rx(C)
as its entries: Grx = diag[6rx(0), 6rx ()/"), . . . , 6rx((" −
1))/")] ∈ C"×" is the pulse shaping filter at the receiver.

The received delay-Doppler and delay-time domain symbols

are related as

YT
= [y0, . . . , y"−1] = F# [ỹ0, . . . , ỹ"−1] = F# · ỸT

. (6)

2) Rectangular pulse shaping waveforms: In this paper,

we consider rectangular transmit and received pulse shaping

waveforms which is equivalent to time-domain windowing,

i.e., Gtx = Grx = I" .2 The transmitted and received time

domain discrete samples s, r can then be written in terms of

the delay-time samples x̃< and ỹ< as

s(< + =") = x̃<(=),
r(< + =") = ỹ<(=). (7)

In this case, the transmitted and received discrete time domain

signal samples can be related to the delay-Doppler domain

information symbols as

s = vec(X · F†
#
) and r = vec(Y · F†

#
). (8)

2In general, the pulse shaping waveforms (Gtx) could be circulant matrices
(equivalent to time-domain filtering).
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Fig. 1. Discrete baseband model of the ZP-OTFS system for # = 6, " = 8 for (a) transmitter (b) receiver and (c) the discrete delay-Doppler channel at the
set of discrete delay tap indices L = {0, 1, 2}. The samples shown using the same colour in (c) represent the Doppler response in the same delay tap. In
(b), two versions of the proposed Rake receiver are presented (see Section IV). The receiver chain on the top part of (b) operates directly in the information
symbol domain, i.e., the delay-Doppler domain (see Algorithm 1 in Section IV.A) and the bottom part of (b) is the faster version (see Algorithm 2 in Section
IV.B) which operates in the delay-time domain.
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The operation in (8) in the literature is known as the inverse

discrete Zak transform [16].

The simplified transmitter and receiver baseband equivalent

model for rectangular pulse shaping waveforms and two MRC

based detection methods (to be discussed in Section IV) are

shown in Fig. 1 (a) and (b). The last ;max symbol vectors

(rows) of the transmitted delay-Doppler grid, where ;max is

the maximum channel delay spread index, are made zero to

avoid inter-block interference in the time-domain. These zero

vectors aid in reducing the complexity of detection for OTFS

(explained in Section III-B) by allowing parallel processing of

the # independent time domain blocks of duration ) .

For the rest of the paper, to differentiate with the basic

OTFS scheme, as discussed in [1], [9], we refer to the above

scheme including zero padding as the ZP-OTFS. Our main

motivation behind adding the delay-Doppler domain ZP is the

design of a low complexity detector for OTFS, [3]. Adding

a ZP along the delay dimension in the OTFS delay-Doppler

grid can be seen as analogous to the time-domain CP or ZP

added in orthogonal frequency division multiplexing (OFDM),

which allows the design of a single tap equalizer in the

time-frequency domain, and hence contribute to reduction in

detector complexity. Moreover, in OTFS, the ZP can be used

as guard band for the pilot in the delay-Doppler domain [10],

and hence reduction in detector complexity can be achieved

at little cost, which is convenient for the ZP-OTFS system.

C. Continuous Time Baseband Channel Model

Consider a baseband equivalent channel model3 with %

propagation paths, where ℎ8 is the complex path gain, ℓ8 and

^8 are the normalized delay shift and normalized Doppler shift,

respectively, associated with the 8-th path, where ℓ8 , ^8 ∈ R are

not necessarily integers. The actual delay and Doppler shift

for the 8-th path is given by g8 =
ℓ8

"Δ 5
< gmax =

ℓmax

"Δ 5
,

a8 =
^8
#)

with |a8 | < amax. We assume that the channel is

under-spread, i.e., gmaxamax ≪ 1. Under the under-spread

assumption, ℓmax < " and the normalized Doppler shifts

−#/2 < ^8 < #/2. Since the number of channel coefficients %

in the delay-Doppler domain is typically limited, the channel

response has a sparse representation [1], [9]:

ℎ(g, a) =
%∑
8=1

ℎ8X(g − g8)X(a − a8). (9)

Alternatively, we can write,

ℎ(g, a) =
∑
ℓ∈L′

∑
^∈Kℓ

aℓ (^)X(g − ℓ)/")X(a − ^Δ 5 /#) (10)

where L ′ = {ℓ8} is the set of !′ = |L ′| distinct normalized

delay shifts among the % paths in the delay-Doppler domain,

Kℓ = {^8 | ℓ = ℓ8} is the set of normalized Doppler shifts for

each path with normalized delay shift ℓ8, and

aℓ (^) =
{
ℎ8 , if ℓ = ℓ8 and ^ = ^8
0, otherwise.

(11)

3We do not consider the effects of carrier frequency and antenna gains in
this paper.

is the ℓ-th delay tap Doppler response. The magnitude of a

Doppler response function aℓ (^) evaluated at integer delay

and Doppler shifts is shown in Fig. 1.

The corresponding continuous time-varying channel im-

pulse response function can be written, for all ℓ ∈ L ′, as

6(g, C) =
∫
a

ℎ(g, a)e 92ca (C−g) 3a. (12)

Substituting (11) into (12) and evaluating (12) at g = ℓ)/" ,

we get,

6(ℓ)/", C) =
∑
^∈Kℓ

aℓ (^)e 92c^
Δ 5
#
(C−ℓ) /" ) (13)

which represents the delay-time channel response, for all ℓ ∈
L ′.

D. Discrete Time Baseband Channel Model

At the transmitter, the OTFS frame of bandwidth � = "Δ 5

is up-converted to a carrier frequency 52 to occupy a pass

band channel, assuming 52 ≫ �. At the receiver, the channel

impaired signal is down-converted to baseband and sampled

at "Δ 5 Hz, thereby limiting the received waveform to #"

complex samples. Therefore, from a communication system

design point of view, it is convenient to have a discrete

baseband equivalent representation of the system, [14].

In the previous section, we looked at the continuous time

model of the channel. The discrete time model is obtained

by sampling the received waveform A (C) at sampling intervals

C = @)/" , where 0 ≤ @ ≤ #" − 1, which discretizes the

delay-time channel. The set of normalized delay shifts, L ′
is therefore replaced as L with the set of ! = |L| discrete

delay taps representing delay shifts at integer multiples of the

sampling period )/" . Recall that
Δ 5

#
and )

"
are the Doppler

and delay resolution, respectively, of the delay-Doppler grid,

given )Δ 5 = 1. Following from the sampling theorem [14], the

discrete baseband delay-time channel model of (13) is given

as,

6s(;, @) =
∑
ℓ∈L′

( ∑
^∈Kℓ

aℓ (^)I^ (@−;)
)

sinc(; − ℓ) (14)

where sinc(G) = sin(cG)/(cG) and I = e
92c

#" .

Note that, due to fractional delays, the sampling at the

receiver introduces interference between Doppler responses

at different delay shifts. This is due to sinc reconstruction

of the delay-time response at fractional delay points (ℓ),

[14]. However, under the assumption that the channel delay

shifts can be modelled as integer delay shifts without loss of

accuracy, i.e., when L ′ = L and hence ℓ = ; ′ ∈ Z, the sinc

function in (14) reduces to

sinc(; − ; ′) =
{

1, if ; ′ = ;
0, otherwise.

(15)

Consequently, the relation between the actual Doppler re-

sponse and the sampled time-domain channel at each integer

delay tap ; ∈ L in (14) reduces to

6s(;, @) =
∑
^∈K;

a; (^)I^ (@−;) . (16)
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Here we want to remind the readers that the effective channel

as seen by the receiver depends on the actual channel response

as well as the operation parameters (delay and Doppler reso-

lution) of the receiver.

For the rest of the paper, to clearly differentiate between the

real continuous channel and the effective discrete channel as

seen by the receiver, we use ℓ and ^ to denote the normalized

delay and Doppler shifts (not necessarily integers) associated

with the channel whereas ; and : is used only to denote integer

delay and Doppler shift indices, respectively, associated with

the channel sampled on the OTFS delay-Doppler grid.

E. Input-Output Relations in Delay-Doppler Domain

In this section, we reformulate the input-output relation with

rectangular pulse shaping waveforms, for the ZP-OTFS system

shown in Fig. 1.

Starting from the received time-domain signal A (C), the

continuous time domain input-output relation can be written

as

A (C) =
∫ gmax

0

6(g, C)B(C − g) 3 g. (17)

From (14), the corresponding discrete time-domain input-

output relation when the transmitted and received time-domain

signals are sampled at C = @)/" can be written as

r(@) =
∑
;∈L

6s(;, @)s(@ − ;) (18)

where r(@) = A (@ )
"
), s(@) = B(@ )

"
). Using the relations in

(7), we split the time index @ = 0, . . . , "# −1 in terms of the

delay and Doppler frame indices as @ = (< + ="), where the

< = 0, 1, . . . , " − 1 and = = 0, 1, . . . , # − 1. Then replacing

ãaa<,; (=) = 6s(;, < + ="), we can rewrite (18) in terms of the

delay-time symbol vectors as

ỹ<(=) =
∑
;∈L

ãaa<,; (=)x̃<−; (=) (19)

where ãaa<,; ∈ C#×1 is given as

ãaa<,; (=) =
∑
ℓ∈L′

©­
«
∑
^∈K;

aℓ (^)I^ (<−;)e
92c^=
#

ª®¬
sinc(; − ℓ). (20)

For integer delay tap channel assumption, i.e., ; = ℓ ∈ Z, (20)

becomes,

ãaa<,; (=) =
∑
^∈K;

a; (^)I^ (<−;)e
92c^=
# . (21)

We can note from (21) that the discrete delay-time response

ãaa<,; (=) for each delay tap ; at time instants C =
<
"
) + =)

is related to the inverse Fourier transform of the Doppler

response a
;
(^) of the ;-th delay tap sampled at time C = <

"
) .

We may ignore the case in (19) when < − ; < 0 i.e., when

there is inter-block interference due to channel delay spread,

by making x̃<(=) = 0 for all = when < − ; < 0 such that,

ãaa<,; (=)x̃<−; ( [= − :]# ) = 0, if < < ; (22)

This is equivalent to placing null symbol vectors 0# in the

last ;max rows of X (zero padding along the delay dimension

of the OTFS grid). Hence, we can set, for = = 0, . . . , # − 1,

x<(=) = x̃<(=) = 0, if < ≥ " − ;max (23)

The delay-Doppler domain received symbols can be ob-

tained by taking an #-point FFT of the delay-time received

symbol vectors (6)

y< = F# · ỹ< =

∑
;∈L

F# · (ãaa<,; ◦ x̃<−;)

=

∑
;∈L
(F# · ãaa<,;) ⊛ (F# · x̃<−;)

=

∑
;∈L

aaa<,; ⊛ x<−; (24)

where,

aaa<,; (:) =
1√
#

#−1∑
==0

ãaa<,; (=)e
− 92c:=

# (25)

for 0 ≤ : ≤ # −1, 0 ≤ < < " − ;<0G , is the discrete Doppler

spread vector in the ;-th channel delay tap, experienced by all

the symbols in the (< − ;)-th row of the " × # OTFS delay-

Doppler grid. Fig. 1 (c) shows the discrete Doppler spread

vectors aaa;,; for x0. Substituting (14), (21) and (20) in (25), we

can write the discrete Doppler spread vector aaa<,; ∈ C#×1 in

terms of the channel Doppler response aℓ (^), for a channel

model assuming:

1) Fractional delay and fractional Doppler shifts:

aaa<,; (:) =
1√
#

∑
ℓ∈L′

( ∑
^∈Kℓ

aℓ (^)I^ (<−;) Z# (^ − :)
)

sinc(; − ℓ)

(26)

where ℓ, ^ ∈ R and the periodic sinc function Z (·) includes the

extra phase and magnitude variations in the Doppler spread

vectors due to fractional Doppler shifts, given as

Z# (G) =
1√
#

#−1∑
==0

e
92cG=
# =

1√
#

sin (cG)
sin(cG/#) e

9 cG (#−1)
# (27)

2) Integer delay and fractional Doppler shifts: For integer

values of (; − ℓ), the function sinc(; − ℓ) evaluates to 1 when

; = ℓ and zero else where. Hence (26) reduces to

aaa<,; (:) =
1√
#

∑
^∈K;

aℓ (^)I^ (<−;) Z# (^ − :) (28)

for ; = ℓ ∈ Z and ^ ∈ R
3) Integer delay and integer Doppler shifts : For integer

values of G, the function Z# (G) evaluates to
√
# when G = 0

and zero else where. Hence (28) reduces to the simple form

aaa<,; (:) =
{
aℓ (^)I^ (<−;) , if ; = ℓ and : = [^]#
0, otherwise.

(29)

for ℓ, ^ ∈ Z.

Remark – The above three cases result in phase changes

I^ (<−;) due to the rectangular pulse shaping waveforms. For

the ideal pulse shaping waveform assumption, it was shown in

[3], [9] that the Doppler spread vectors aaa<,; are invariant on
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Fig. 2. The delay-Doppler domain input-output relation y = H ·x after adding
null symbols only contains the shaded blocks for # = " = 8 and ;<0G = 3.

the 2-D delay-Doppler grid and hence not dependent on the

row index <. The phase variations I^ (<−;) can be ignored in

(26), (28) and (29). As a result (24) is a simple time-invariant

2-D circular convolution as shown in [3], [9]. It is important

to note that ignoring such phase variations in the detection

process results in significant performance degradation. �

For the rest of the paper and simulations, we assume integer

delays and fractional Doppler shifts for rectangular pulse

shaping waveforms, i.e., we consider the discrete input-output

relation of the form given in (24) and (28) where L ′ = L ∈ Z.

The OTFS delay-Doppler domain discrete system for the

ZP OTFS system can be expressed in the matrix form as

y = H · x + w; (30)

where x, y,w ∈ C#"×1 and H ∈ C#"×#" is the

OTFS channel matrix when transmitted and received symbol-

vectors, x<, y< ∈ C#×1 are grouped and stacked as y =

[yT
0
, yT

1
, · · · , yT

"−1
]T, x = [xT

0
, xT

1
, · · · , xT

"−1
]T and w =

[wT
0
,wT

1
, · · · ,wT

"−1
]T is independent and identically dis-

tributed (iid) additive white guassian noise (AWGN) with

variance f2
F . Referring to the vectorized form shown in Fig. 2,

we convert the circular convolution between two vectors into

the product of a matrix and a vector by defining K<,; ∈ C#×#

to be a banded matrix for ; ∈ L and an all zero matrix

otherwise

K<,; = circ[aaa<,; (0), · · · , aaa<,; (# − 1)]

=



aaa<,; (0) aaa<,; (# − 1) · · · aaa<,; (1)
aaa<,; (1) aaa<,; (0) · · · aaa<,; (2)

...
. . .

. . .
...

aaa<,; (# − 1) aaa<,; (# − 2) · · · aaa<,; (0)


.

We note that the band width of each submatrix K<,; of H is

equal to the maximum Doppler spread :max ≤ #/2 and the

full channel matrix H has a band width equal to # (;max + 1).
We can then write (24) as

y< =

∑
;∈L

K<,; · x<−; . (31)

Note that K<,; (or aaa<,;) can be considered as the linear time-

variant channel between the receiver grid delay index < and

transmitter grid delay index < − ; in the OTFS delay-Doppler

grid. Now (24) and (31) gives us a very simple equation

relating the transmitted and received symbol-vectors that we

defined at the start of this section.

III. INPUT-OUTPUT RELATION IN OTHER DOMAINS

In this section, we discuss the ZP-OTFS input-output rela-

tion between the transmitted and received delay-time symbol

vectors and discuss the advantages of carrying out significant

part of the OTFS receiver processing in the delay-time domain.

We also highlight some properties of the delay-time and time-

domain channel matrices to later analyze the convergence of

the proposed detector.

When # and " are sufficiently large, considering the

channel normalized delay and Doppler shifts (^8 and ℓ8) as

integers has negligible effect on the accuracy of the channel

representation. However, the effect of fractional Doppler is

more pronounced for short OTFS frames, [22]. When # is

small, a single path with fractional Doppler shift is seen as

a cluster of paths with integer Doppler shifts at the receiver.

Depending on the resolution, more channel coefficients along

the Doppler dimension are required to fully represent the

channel state information needed for accurate detection at the

receiver, [9]. This increases the total number of paths % for

the discrete channel. To mitigate such problem, the value of

# may be increased, which, in turn, will increase the frame

duration #) . However, the frame duration is limited by the

delay-Doppler coherence time,4 i.e, the time over which the

delay-Doppler channel coefficients remain constant.

Another way of solving the fractional Doppler issue is by

dealing with the delay-Doppler channel coefficients in the

delay-time domain. As Doppler shifts cannot be resolved in

this domain, the number of delay-time channel coefficients

is neither affected by the fractional Doppler shifts nor by

the Doppler spread of that delay tap. Therefore, to fully take

advantage of the OTFS performance in a rich Doppler spread

regime (i.e., large |K; |’s), it is convenient to design a receiver

with low complexity that is independent of the Doppler spread.

A. Delay-Time Domain

For the purpose of delay-time detection analysis in Section

IV, we look at the matrix representation of the delay-time

input-output relation. The matrices K<,; in the delay-Doppler

domain can be diagonalized to K̃<,; in the corresponding

Fourier domain (delay-time domain) as

K<,; = F# · K̃<,; · F†# ,
=⇒ K̃<,; = diag[ãaa<,; (0), · · · , ãaa<,; (# − 1)]

where ãaa<,; = F
†
#
aaa<,;

thereby transforming the delay-Doppler domain channel

matrix H into the delay-time domain channel matrix H̃ by

replacing the sub-matrices K<,; in H with K̃<,; . Given the

input-output relation in (30) was simplified in (31) by placing

4This coherence time should not be confused with the traditional notion
related to the inverse of the Doppler spread, [3].
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Fig. 3. The delay-time domain input-output relation (ỹ = H̃ · x̃) after adding
null symbols for # = " = 8 and ;max = 3.

null symbols in the delay-Doppler grid as given in (23), the

strictly upper triangular blocks of H̃ can also be set to zero.

The input-output relation in the delay-time domain, illustrated

in Fig. 3, can then be written in the matrix form as

ỹ = H̃ · x̃ + w̃; (32)

where

ỹ = (I" ⊗ F
†
#
) · y, x̃ = (I" ⊗ F

†
#
) · x,

H̃ = (I" ⊗ F
†
#
) ·H · (I" ⊗ F# ), (33)

and w̃ is the time domain AWGN vector. In this domain, the

complexity of matrix multiplication is significantly reduced as

the sparsity !/# of H̃ is less than or equal to the sparsity %/#
of H, where ! is the number of unique delay taps and % is

the total number of propagation paths. The delay-time domain

channel matrix H̃ is a banded block matrix (with a bandwidth

of #;max + 1), where K̃<,; ∈ C#×# are non-zero diagonal

matrices for < ≥ ; and ; ∈ L and zero matrices otherwise.

Consequently, the delay-Doppler domain input-output relation

in (24) becomes

ỹ< =

∑
;∈L

ãaa<,; ◦ x̃<−;, x̃< = 0# for < ≥ " − ;max . (34)

in the delay-time domain, where x̃ = [x̃T
0 , · · · , x̃T

"−1]T and

ỹ = [ỹT
0 , · · · , ỹT

"−1]T.

B. Time Domain

Here, we show how the time domain input-output relation

is connected to the delay-Doppler and the delay-time domain

input-output relations.

From (7), it can be seen that the delay-time vectors x̃ and

ỹ in (32) are simply shuffled versions of the time domain

transmitted and received vectors s and r, respectively. Let

s and r be split into # blocks each of size " , such that

s = [sT
0
, · · · , sT

#−1
]T and r = [rT

0
, · · · , rT

#−1
]T. Then x̃< =

[s0 (<), · · · , s#−1 (<)]T and ỹ< = [r0 (<), · · · , r#−1 (<)]T.

Fig. 4. The time-domain input-output relation r = G · s after shuffling the
matrix H̃ as G = P · H̃ · PT for # = " = 8 and ;max = 3.

Let

P =



E1,1 E2,1 · · · E",1

E1,2 E2,2 · · · E",2

...
. . .

. . .
...

E1,# E2,# · · · E",#


∈ C#"×#" (35)

be the row-column interleaver permutation matrix such that

s = P · x̃ and r = P · ỹ where E8, 9 ∈ C"×# is defined as

E8, 9 (8′, 9 ′) =
{

1, if 8′ = 8 and 9 ′ = 9

0, otherwise.
(36)

Such permutation is known in the literature as a perfect shuffle,

and has the following property [17]: given square matrices A

and B

A ⊗ B = P · (B ⊗ A) · PT. (37)

The input-output relation in (32) can now be written as

(PT · r) = H̃ · (PT · s) + w̃. (38)

Multiplying both sides of (38) on the left by P, the input-

output relation can be expressed in terms of the time-domain

channel matrix G = P · H̃ · PT as

r = G · s + w̄. (39)

We note that G and H̃ are similar matrices and hence share

the same eigenvalues [18]. From (33) using the perfect shuffle

property in (37), the time domain channel matrix G can be

related to the delay-Doppler domain channel matrix H as

G = (F†
#
⊗ I" ) · (P ·H · PT) · (F# ⊗ I" ). (40)

As shown in Fig. 4 the null symbols added in the delay-

Doppler domain act as interleaved guard bands of length

;max in the time-domain vector s and thus help in avoiding

interference between the time domain blocks r= for = =

0, · · · , # − 1. This forces G to be a block-diagonal matrix.

As a result, the large matrix equation in (39) can be split

into # parallel smaller linear matrix equations with the blocks

G0, · · · ,G#−1 ∈ C"×" as the corresponding channel matri-

ces. G= are the diagonal blocks of G each with a bandwidth of



8

Fig. 5. MRC delay-Doppler domain operation for " = 7 and the set of discrete delay indices L = 0, 1, 2.

;max + 1. The system equation in (39) can be split and written

as

r= = G= · s= + w̄= where = = 0, · · · , # − 1. (41)

Since G = P · H̃ · PT, the non-zero entries of the " × " time

domain channel sub-matrices G= are related to the entries of

the #×# delay-time channel sub-matrices K̃<,; and the time-

varying complex channel gain for each delay tap 6s(;, @) as

6s(;, @) = G= (<, < − ;) = K̃<,; (=, =) = ãaa<,; (=) (42)

where @ = < + =" , < ∈ {; ≤ 8 < " |; ∈ L} and 0 ≤ = < # .

IV. LOW COMPLEXITY ITERATIVE RAKE DETECTOR

We can think of the proposed MRC detector as the maximal

ratio combining of the channel impaired signal components

received at ! = |L| ≤ % different delay branches in the

delay-Doppler grid analogous to a CDMA rake receiver as

shown in Fig. 5. The noise plus interference (NPI) power in

each of these branches is different and depends on the channel

response. In each detector iteration, we cancel the estimated

inter symbol-vector interference in the branches selected for

combining, thereby iteratively improving the post MRC signal

to interference plus noise ratio (SINR).

The input output relation between the transmitted and

received symbol-vectors x< and y< in (24) is given by

y<+; =
∑
;∈L

K<+;,; · x< + w<+; (43)

where w< is iid AWGN noise with variance f2
= . From (43),

due to the inter-symbol interference caused by delay spread

(;max)/"), all symbol-vectors x< have a signal component in

! received symbol-vectors y<+;, for ; ∈ L. Let b;
< ∈ C#×1

be the channel impaired signal component of x< in the

received y<+; vector at delay index < + ; after removing the

interference of the other transmitted symbol-vectors x: for

: ≠ <. Assuming we have the estimates of symbol-vectors

x< from previous iterations, we can then write b;
< for ; ∈ L

as

b;
< = y<+; −

∑
;′∈L,;′≠;

K<+;,;′ · x̂<+;−;′. (44)

Then from (43) and (44) for ; ∈ L, we have ! equations for

the symbol-vector estimates x̂< given as

b;
< = K<+;,; · x̂< + w<+; + interference (45)

in the delay branch with index ; due to error in the current

estimates of the interfering symbol-vectors x<+;−? for ; ≠ ?.

In the proposed scheme, instead of estimating the transmitted

symbol-vector x̂< separately from each of the ! equations

in (45), we perform maximal ratio combining (46) of the

estimates b;
< followed by symbol-by-symbol QAM demapping

using (49). The vector output of the maximal ratio combiner,

c< ∈ C#×1, is given by

c< = D−1
< · g< (46)

where

D< =

∑
;∈L

K
†
<+;,; ·K<+;,; (47)

g< =

∑
;∈L

K
†
<+;,; · b

;
< (48)

and the hard estimates are given by

x̂<(=) = arg min
0 9 ∈Q

��0 9 − c<(=)
�� . (49)

where 0 9 is signal from the QAM alphabet Q, with 9 =

1, . . . , |Q| and = = 0, . . . , # − 1. Let D(.) denote the decision

on the estimate c< in every iteration such that x̂
(8)
< = D(c(8)< ).

Hard-decision function D(2) is given by the maximum like-

lihood (ML) criterion in (49). Once we update the estimate

x̂<, we increment < and repeat the same to estimate all

" ′ = " − ;<0G information symbol-vectors x̂< using the

updated estimates5 of the previously decoded symbol-vectors

5Alternatively, a soft estimate can also be used in conjunction with an outer
coding scheme as described in Section V-B.
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Algorithm 1: MRC in delay-Doppler domain.

1 Input: H, D<, y<, x< = 0# ∀ < = 0, . . . , " − 1

2 for i=1:max iterations do

3 for < = 0 : " ′ − 1 do

4 for ; ∈ L do

5 b;
< = y<+; −

∑
?≠; K<+;, ? · x̂<+;−?

6 end

7 g< =
∑

;∈L K
†
<+;,; · b;

<

8 c< = D−1
< · g<

9 x̂< = D(c<) (or x̂< = c<)5

10 end

11 end

12 Output: x̂<

in the form of a decision feedback equalizer (DFE) as shown

in Fig. 5. Note that the DFE action leads to sequential

updates whereas alternatively, using only the previous iteration

estimates leads to parallel updates. We verified experimentally

that parallel updates result in slower convergence. Algorithm

1 shows the delay-Doppler domain MRC operation (also see

Fig. 5).

A. Reduced complexity delay-time domain implementation

In (44), for each symbol-vector x<, we need to compute

! vectors b;
<. This operation requires !(! − 1) products

between matrices K<,; and estimated symbol-vectors x̂<−;. We

can take advantage of the redundant operations to reduce the

complexity. Let us define the residual noise plus interference

(RNPI) term in the 8-th iteration

Δy
(8)
< = y< −

∑
;∈L

K<,; · x̂(8)<−; (50)

which can be considered as the residual error in the re-

constructed received delay-Doppler domain symbols due to

error in estimation of the transmitted symbols. Note that

symbol-vectors x̂< are estimated in increasing order for < =

0, . . . , " ′ − 1. Therefore, for estimating the symbol-vector

x<, only the symbol-vectors x̂<+? , for ? < 0, have updated

estimates available in the current iteration. For ? ≥ 0, the

previous iteration estimates are used. From (44) and (50), b;
<

computation for estimating the symbol-vector x< in the 8-th

iteration can be written as

b;
< = Δy

(8)
<+; +K<+;,; · x̂(8−1)

< . (51)

Substituting (51) for b;
< in (48), the direct computation of b;

<

can be avoided by writing g
(8)
< for the 8-th iteration as

g
(8)
< =

∑
;∈L

K
†
<+;,; · Δy

(8)
<+; +

(∑
;∈L

K
†
<+;,; ·K<+;,;

)
· x̂(8−1)

<

=

∑
;∈L

K<+;,; · Δy
(8)
<+; + D< · x̂(8−1)

< . (52)

Then from (46) and (52), the MRC output at the 8-th iteration

can be written as

c
(8)
< = x̂

(8−1)
< + D−1

< · Δg
(8)
< (53)

where

Δg
(8)
< =

∑
;∈L

K
†
<+;,; · Δy

(8)
<+; (54)

The vector Δg
(8)
< in (54) is the maximal ratio combining of

the RNPI’s in all the delay branches (y<+; for ; ∈ L) having

a component of x< in them.

In the 8-th iteration, for every estimated symbol-vector x<,

! RNPI vectors Δy
(8)
<+; need to be updated. which costs !2

matrix-vector products. However, the complexity of (50) can

be reduced by storing and updating the initial RNPI vectors

Δy
(0)
< . The ! RNPI vectors which have a component of the

most recently estimated symbol-vector are updated as follows,

Δy
(8)
<+; ← Δy

(8)
<+; −K<+;,; · (x(8)< − x

(8−1)
< ). (55)

The number of matrix-vector products required to compute

Δy
(8)
< has now been reduced from !2 in (50) to ! in (55).

Moreover, as described in Section II-E, the matrix-vector prod-

ucts in (54) and (55) are products between circulant matrices

K<,; ∈ C#×# and column vectors x< or Δy< ∈ C#×1

which can be converted to element-wise product of vectors

ãaa<,; ◦ x̃< or ãaa<,; ◦ Δ̃y<, respectively, in the delay-time domain

with a complexity of # complex multiplications. Let the

superscript ∼ denotes the #-IFFT of a vector (i.e., ã = FH
#
·a).

The equations (53), (54) and (55) can now be written in

corresponding delay-time domain as

c̃
(8)
< = x̃

(8−1)
< + Δg̃

(8)
< ⊘ d̃< (56)

Δg̃
(8)
< =

∑
;∈L

ãaa∗<+;,; ◦ Δỹ
(8)
<+; (57)

Δỹ
(8)
<+; ← Δỹ

(8)
<+; − ãaa<+;,; ◦ (x̃

(8)
< − x̃

(8−1)
< ) (58)

where

d̃< =

∑
;∈L

ãaa
†
<+;,; ◦ ãaa<+;,; (59)

which can be computed in only #! complex multiplications.

1) Computational complexity per iteration: Overall com-

plexity per iteration for calculating Δg̃
(8)
< , c̃

(8)
< and Δỹ

(8)
< for

all symbol-vectors is " ′(2! + 1)# complex multiplications.

The redundant FFT computations can be avoided by storing

the Fourier transform of the " ′! Doppler spread vectors aaa<,; ,

the " ′ initial symbol-vector estimates x
(0)
< and the RNPI

vectors Δỹ
(0)
< in (55). The hard decision estimates require the

delay-time vectors to be transformed into the delay-Doppler

domain and back using two #-IFFT operations (which requires

2# log2(#) complex multiplications) per symbol-vector. Al-

gorithm 2 shows the low complexity delay-time domain MRC

implementation. The detector iterations are stopped when the

overall RNPI error Δỹ = [ΔỹT
0 ,ΔỹT

1 , · · · ,ΔỹT
"−1]T due to the

estimation error in symbol-vectors stops reducing.

2) Initial computational complexity: In the proposed detec-

tor, the initial computations include generating all the entries

of the matrices H and H̃, which requires computing the vectors

aaa<,; and their Fourier transform ãaa<,; for all < = 0, . . . , " ′−1

and ; ∈ L. Assuming the integer delay-Doppler channel

parameters (ℎ8, :8 , ;8) are known for 8 = 1, 2, . . . , %, the

channel Doppler spread vectors aaa<,; can be easily computed

using the relations given in (11) and (29).



10

Algorithm 2: Reduced complexity MRC in delay-time

domain .

1 Input: H̃, d̃<, x̃
(0)
< , ỹ< ∀ < = 0, . . . , " − 1

2 for < = 0 : " ′ − 1 do

3 Δỹ
(0)
< = ỹ< −

∑
;∈L ãaa<,; ◦ x̃

(0)
<−;

4 end

5 for i=1:max iterations do

6 Δỹ(8) = Δỹ(8−1)

7 for < = 0 : " ′ − 1 do

8 Δg̃
(8)
< =

∑
;∈L ãaa

∗
<+;,; ◦ Δỹ

(8)
<+;

9 c̃
(8)
< = x̃

(8−1)
< + Δg̃

(8)
< ⊘ d̃<

10 x̃
(8)
< = F

†
#
· D(F# · c̃(8)< ) (or x̃

(8)
< = c̃

(8)
< )

11 for ; ∈ L do

12 Δỹ
(8)
<+; ← Δỹ

(8)
<+; − ãaa<+;,; ◦ (x̃

(8)
< − x̃

(8−1)
< )

13 end

14 end

15 if (| |Δỹ(8) | | ≥ | |Δỹ (8−1) | |) then EXIT

16 end

17 Output: x̂< = D(F# · x̃<)

Let  ; be the number of non-zero channel coefficients

in each vector aaa<,; (or paths with different Doppler shift

in the same delay bin ; ∈ L) such that total number of

channel coefficients or propagation paths as seen by the

OTFS receiver is % =
∑

;∈L  ; . The number of complex

multiplications required to compute the " ′! vectors aaa<,;

using (29) is " ′
∑

;∈L  ; = " ′%. The OTFS channel matrix

H (or equivalently the vectors aaa<,;) can then be generated in

" ′% complex multiplications.

For the delay-time domain MRC operation in Algo-

rithm 2, ãaa<,; (#-IFFT of aaa<,;) can be computed in

min{#:; , # log2(#)} complex multiplications, since there are

only  ; non-zero channel coefficients in each delay tap ;.

Then, the number of complex multiplications required to

compute H̃ (or equivalently all the ãaa<,;) is upper bounded

by " ′#
∑

;  ; = "
′#%.

Alternatively, for the fractional Doppler case, the com-

plexity of initial computations remains unaffected for the

delay-time domain detector as ãaa<,; can be generated directly

from the channel gains, delays, and Doppler shifts (ℎ8, ^8 , ℓ8)
of the % paths, using (11) and (21) with " ′#% complex

multiplications.

B. Low complexity initial estimate

In Algorithm 1 and 2, we initially assume that all the Q-

QAM signals 0 9 are equally likely and the mean of 0 9 ’s is

zero and so we initialize x̂
(0)
< = 0# , for all <. The MRC

detector complexity per iteration is of the order $ (#"!)
and the overall complexity scales linearly with the number

of iterations.

However, a better initial estimate of the OTFS symbols

instead of x̂< = 0# may reduce the required number of

MRC iterations and to reach convergence. Assuming ideal

pulse shaping waveform, a single tap equalizer in the time-

frequency domain can provide an improved low complexity

initial estimate.

Following the remark in Section II-E and [3], we define

Hdd ∈ C"×# , the delay-Doppler domain channel impulse

response matrix for the ideal pulse shaping waveform case,

Hdd(<, =) =
{
a; (^), if < = ;, = = [^]#
0, otherwise.

(60)

For the fractional Doppler case (when ^ is a real number).

the ideal channel response can be written in terms of the

Doppler spread vectors as Hdd = [aaa0,0, aaa1,1, · · · , aaa"−1,"−1]T.

The corresponding time-frequency channel response for the

ideal pulse shaping waveform is obtained by an inverse

symplectic finite fourier transform (ISFFT) operation on the

delay-Doppler channel as

Htf = F" ·Hdd · FH
# (61)

= F" · [aaa0,0, aaa1,1, · · · , aaa"−1,"−1]T · FH
#

= F" · [ãaa0,0, ãaa1,1, · · · , ãaa"−1,"−1]T. (62)

Similarly, the received time-frequency samples can be obtained

by the ISFFT operation on the received delay-Doppler domain

samples as

Ytf = F" · Y · FH
# = F" · [ỹ0, ỹ1, · · · ỹ"−1]T. (63)

Since in the ideal pulse shaping waveform case, circular con-

volution of the channel and transmitted symbols in the delay-

Doppler domain transforms to element-wise product in the

time-frequency domain, we estimate the transmitted samples

in the time-frequency domain by a single tap minimum mean

square error (MMSE) equalizer

X̂tf (<, =) =
H∗

tf
(<, =) · Ytf(<, =)
|Htf(<, =) |2 + f2

F

(64)

for < = 0, . . . , " − 1 and = = 0, . . . , # − 1.

The time-delay domain initial estimates of the OTFS

symbol-vectors can then be obtained by the Heisenberg trans-

form operation on the time-frequency domain estimates as

[x̃(0)
0
, x̃
(0)
1
, · · · x̃(0)

"−1
]T = F

†
"
· X̂tf. (65)

Note that āaa<,; = 0# for ; ∉ L and hence the operation in

(62) can be computed in min{#"!, #" log2 (")} complex

multiplications. Since we have already computed ãaa<,; , and ỹ

is just a shuffled version of the received time-domain samples,

the overall number of computations (for the steps in (62),

(63), (64) and (65)) required for the initial estimate is upper

bounded by #" (! + 2 log2 (") + 3), which is comparable to

the complexity of one detector iteration #" ′(2! + 1).

C. Condition for Detector Convergence

In this section, we cast the delay-time algorithm (Algorithm

2) in the time-domain with the purpose of analysing the

detector convergence using the properties of Jacobi and Gauss

Seidel iterative methods for solving linear equations [19], [20].

The basic principle of iterative MRC operation in the delay-

time domain with sequential updates given in (56)-(58) can be

compactly expressed as

x̃(8) = x̃(8−1) + D̃
−1

H̃
†(ỹ − H̃x̃(8−1) ) (66)
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when using parallel updates (i.e. without DFE), where D̃ is

the matrix containing diagonal elements of H̃
†
H̃. The rows

and columns of the delay-time channel matrix H̃ are perfectly

shuffled using the permutation matrix P to obtain a similar,

block diagonal time-domain channel matrix G as explained in

Section II-F. This allows the equivalent operation in (66) to

be split and executed in parallel for each independent time

domain block G= as

s
(8)
= = s

(8−1)
= + D−1

= G†= (r= −G=s
(8−1)
= ) (67)

where D= is the matrix containing the diagonal elements of

G
†
=G=. Equation (67) can be written in the form

s
(8)
= = −TJ

= · s
(8−1)
= +QJ

= · z=
TJ
= = D−1

= · (L= + L†=), QJ
= = D−1

= , z= = G†=r= (68)

where L= and L
†
= are the matrices containing the strictly

lower and upper triangular parts of the Hermitian matrix

R= = G
†
=G=. Finally, we observe that the parallel update

formulation in (68) matches the classic Jacobi iterative method

(hence the superscript ’J’ in TJ
=) for solving linear equations,

[19].

We now focus on the sequential update method given in

Algorithm 1 and 2 based on the DFE operation. Note that,

in Algorithm 2, the linear matrix equation in (66) is solved

block-wise with low complexity, where the latest estimates of

the symbol-vectors calculated in the current iteration are used

in estimating the next symbol-vector as in a DFE

s
(8)
= = s

(8−1)
= + D−1

= (z= − L=s
(8)
=︸︷︷︸

(0)

−L†=s
(8−1)
=︸   ︷︷   ︸
(1)

) (69)

where (0) and (1) denote the contribution of the current and

previous-iteration estimates, respectively. We can modify (68)

for the DFE iterative method in (69) as

s
(8)
= = −TGS

= · s(8−1)
= +QGS

= · z=
TGS
= = (D= + L=)−1 · L†=, QGS

= = (D= + L=)−1 (70)

and observe that Algorithm 2 coincides with the well studied

Gauss Seidel (GS) method available in the literature [19], [20].

Algorithm 3 shows the equivalent time domain GS method

implementing Algorithm 2.

Both Jacobi and GS methods are used to iteratively find the

least squares solution

ŝ= = min
ŝ=
| |z= − R= ŝ= | |2 (71)

of the "-dimensional linear system of equations

z= = R= · s= + w̄= (72)

where R= ∈ C"×" and ŝ=, z= ∈ C"×1. We further assume

that the time-domain correlation matrix R= = G
†
=G= is non-

singular and hence positive definite Hermitian.

In [19], [20], it is shown that the iteration method (68)

for the linear system in (72) is convergent, if d(TGS
= ) < 1,

where d(TGS
= ) is the spectral radius6 of the square matrix

TGS
= [19], [20]. For the Jacobi method, d(TJ

=) < 1 if R=

6Spectral radius of a matrix is the largest absolute value of its eigenvalues.

Algorithm 3: MRC delay-time domain operation prin-

ciple in the form of time domain Gauss-Seidel method

.

1 Input: r, G

2 for = = 0 : # − 1 do

3 R= = G
†
= ·G=

4 z= = G
†
= · r=

5 L= = strictly lower triangular part{R=}

6 TGS
= = (D= + L=)−1 · L†=

7 QGS
= = (D= + L=)−1

8 end

9 ŝ(0) = P · (I" ⊗ F
†
#
) · x̂(0)

10 for 8 = 1:max iterations do

11 for = = 0 : # − 1 do

12 ŝ
(8)
= = −TGS

= · ŝ(8−1)
= +QGS

= · z=
13 end

14 if (| |r −G · ŝ(8) | | ≥ | |r −G · ŝ(8−1) | |) then EXIT

15 end

16 Output: x̂ = (I" ⊗ F# ) · (P · ŝ(8) )

is diagonally dominant, which depends on the channel and

cannot be guaranteed. However, the GS method is known to

converge faster and convergence is guaranteed under more

general conditions than the Jacobi method [19], [20]. In

Appendix we prove the following lemma

Lemma 1. The GS iterative method for the solution of (72)

is converging (i.e., d(TGS
= ) < 1) if R= is a positive definite

Hermitian matrix. Furthermore, d(TGS
= ) = 1 if R= is a positive

semi-definite Hermitian matrix.

We note that the algorithm may still converge even for

some channels that result in a positive semi-definite Hermitian

matrix R= (i.e., d(TGS
= ) = 1), but this is not guaranteed.

Even though the implementation of the iterative MRC detec-

tor in Algorithm 3 looks simpler than the one in Algorithm 2,

the complexity of initial computations for directly calculating

R=, TGS
= and QGS

= is $ (#"!2) complex multiplications since

G= is a banded matrix with ! non-zero elements in each row.

However, in Algorithm 2, the circulant property of the blocks

of the channel matrix H (due to the placement of null symbols

in the OTFS grid as shown in Fig. 2) is utilized to reduce the

overall complexity of the initial computations to $ (#"!)
complex multiplications as explained in Section III-A.

V. FURTHER IMPROVEMENTS

A. Successive Over Relaxed (SOR) Iterative Rake Detector

In time domain, the proposed iterative Rake detector is

similar to doing # parallel GS iterations on the matched

filtered received waveform, as shown in Section III-C. GS and

its variants such as successive over-relaxation (SOR) method

are well presented in [19]–[21]. The SOR method is obtained

by introducing a relaxation parameter l in the GS method

(69) as,

s
(8)
= = s

(8−1)
= + lD−1

= (z= − L=s
(8)
= − L†=s

(8−1)
= ). (73)
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Fig. 6. 64-QAM BER performance for different relaxation parameters l.

The corresponding GS iteration matrix TGS
= and QGS

= in

Algorithm 3 can be modified as

Tl
= = (D= + lL=)−1 · ((l − 1)D= + lL†=) (74)

Ql
= = (D= + lL=)−1. (75)

In Appendix we prove the following lemma.

Lemma 2. The SOR GS iterative method for the solution of

(72) is converging (i.e., d(Tl
= ) < 1) if R= is a positive definite

Hermitian matrix and 0 < l < 2.

We can then simply modify the proposed delay-time detec-

tor Algorithm 2 by rewriting (56) as

c̃
(8)
< = c̃

(8−1)
< + l(Δq̃

(8−1)
< ⊘ d̃<). (76)

Note that when l = 1, (76) coincides with (56). The relaxation

parameter when l > 1 is called the over-relaxation parameter

and when l < 1 is called the under relaxation parameter. The

computation of the optimal SOR parameter l = lopt which

minimizes the spectral radius d(Tl
= ) requires computing the

eigenvalues of the iteration matrix Tl
= , [19], [20].

The aim is to find the range of values of l for which

the SOR method converges (see Lemma 2), the set of which

denotes the region of convergence, and, if possible, the best

value lopt. The optimum SOR parameter can be analytically

calculated given the spectral radius of the Jacobi matrix

d(TJ
=) < 1 [21]. However, it is known that d(TJ

=) < 1 only

if R= is diagonally dominant, but this is not guaranteed for

all channels. In such cases, the numerical calculation of l>?C

is not practical for large system matrices, rather a region of

good performance, within the region of convergence, is easier

to find, as suggested by [21]. Further, when the power delay

profile statistical model of the channel is given, the good

region for the SOR parameter can be optimized offline by

simulation.

In this paper, we try to analyse the effect of l and the

range of values of good performance by simulation. Fig. 6

show the BER plot for 64-QAM for different values of l. In

Fig. 7, we plot the required (abbreviated as reqd. in the plot

legend) SNR (labelled as ’Q-QAM reqd. SNR’) on the left

y-axis alongside the required number of iterations (labelled as

’Q-QAM reqd. iters’) on the right y-axis, to achieve a BER of
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Fig. 7. Error performance and convergence speed of different relaxation
parameters l for different modulation sizes |Q | at BER 10−3.

10−3 for different modulation sizes, respectively, for different

values of l ∈ [1, 1.5]. The y-axis of the plot represents the

SNR (dB) or the iterations depending on the corresponding

curve. The maximum number of iterations is set to 50. It can

be seen that the optimum l for the standard extended vehicular

A (EVA) 7 channel model [13] consistently lies in the interval

[1.2, 1.3]. We can observe that there is a 2.5 dB and 17dB

gain at a BER of 10−3 for 16-QAM and 64-QAM, respectively,

due to just the over-relaxation parameter with almost no extra

computational complexity. The effect of the SOR parameter

on the convergence speed of the MRC detector can be seen in

Fig. 7 (right y-axis). It shows the number of iterations required

to achieve a BER of 10−3 for different modulation sizes at the

corresponding SNR values as given in the plot legend. It can

be seen that the biggest reduction in complexity comes at 64-

QAM where, the number of iterations required is significantly

reduced (by almost 3 times) as compared to the case when

SOR parameter l = 1. For 4-QAM and 16-QAM, the optimum

SOR parameter approximately halves the number of required

iterations.

Finally, if no prior knowledge of the channel statistical

model is available, we observed by simulation that some

performance improvement can still be achieved by setting the

value of l to slightly above 1. The optimization of l with low

complexity, for different SNR, channel profiles and number of

multipaths will be investigated in future work.

B. Iterative Rake Turbo Decoder

In order to improve FER performance, the turbo decoder

principle shown in Fig. 8 is proposed. The encoded bits are

random interleaved in the frame so as to enhance the delay-

Doppler diversity.

The detector output bit log likelihood ratios (LLR) after

random de-interleaving is fed to the low-density parity check

(LDPC) decoder. The hard decision coded bits from the LDPC

decoder after interleaving and QAM modulation is then fed

7The EVA channel power-delay profile (with a maximum speed = 120
km/hr) is given by [0, -1.5, -1.4, -3.6, -0.6, -9.1, -7.0, -12.0, -16.9] dB with
excess delay taps L′ = L = {0, 1, 2, 3, 4, 5, 8, 13, 19} normalized to the
delay resolution 1/("Δ 5 ) of an OTFS grid with bandwidth "Δ 5 , where
" = 512 and Δ 5 = 15 kHz.
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Fig. 8. OTFS iterative rake turbo decoder operation.

back to the MRC detector as the input symbol-vector estimates

and the process repeats. Overall, one turbo iteration involves

one iteration of MRC detector, de-interleaver, LDPC decoder,

interleaver, and the QAM modulator. As shown in Fig. 8, for

the first iteration, the initial estimate of the QAM symbols is

provided by the low complexity MMSE equalizer as explained

in Section III-B, after which the initial estimate comes form

the LDPC decoder.

From (53), the soft estimate of the delay-Doppler domain

symbol-vector c< after MRC combining can be written as

c< = x< + e< < = 0, . . . " ′ − 1 (77)

where x< is the transmitted symbol-vector at delay index <

and e< denotes the normalized post MRC NPI vector. We

assume that e< follows a zero mean Gaussian distribution

with variance f2
<. This assumption becomes more accurate

as the number of interfering terms increases. Then, the LLR

!
(8)
<,=,1

of bit 1 of the =-th transmitted symbol in the estimated

symbol-vector c
(8)
< in the 8-th iteration can be obtained by

!
(8)
<,=,1

= log

(
%A (1 = 0|c(8)< (=))
%A (1 = 1|c(8)< (=))

)

= log

( ∑
@∈&0

exp(−|c(8)< (=) − @ |2/f2
<)∑

@′∈&1
exp(−|c(8)< (=) − @′|2/f2

<)

)
(78)

where Q0 and Q1 are the subsets of QAM symbols, where

the 1-th bit of the symbol is 0 and 1, respectively. The

complexity of LLR calculation can be reduced by the max-

log approximated LLR obtained as

!̃
(8)
<,=,1 =

1

f2
<

(
min
@∈Q0

���c(8)< (=) − @���2− min
@′∈Q1

���c(8)< (=) − @′���2
)
.

(79)

In order to compute the bit LLRs, an estimate of the

post MRC NPI variance f2
< is required. Accurate estimation

of f2
< is not straightforward and requires knowledge of

the correlation between all the estimated symbol-vectors and

RNPI vectors which changes every iteration as well. Since

the entries of channel Doppler spread vectors aaa<,; can be

assumed to be zero mean, i.i.d. and normal distributed [13],

the channel Doppler spread for different delay taps can be
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Fig. 9. Uncoded 4-QAM BER Plot : MRC vs MPA vs MMSE-OFDM.
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Fig. 10. Uncoded 16-QAM BER Plot : MRC vs MPA vs MMSE-OFDM.

assumed to be uncorrelated. i.e., � [aaa†
<,;
·aaa<′, ?] = 0 for ; ≠ ?.

Furthermore, for the purpose of a simple estimate of the post

MRC NPI variance, we assume that RNPI Δy
(8)
< in the different

delay branches are uncorrelated (i.e., � [Δy
†
< · Δy?] = 0 for

< ≠ ? in all iterations) and follows Gaussian distribution.

The covariance matrix of the delay-time RNPI vector Δỹ< in

the 8-th iteration

���
(8)
< ( 9 , :) =(Δỹ

(8)
< ( 9) − �{Δỹ

(8)
< })(Δỹ

(8)
< (:) − �{Δỹ

(8)
< })∗

(80)

for 9 , : = 0, . . . , # − 1 and �{Δỹ
(8)
< } =

1
#

∑#
==1 Δỹ

(8)
< (=).

Since Fourier transformation is a unitary transformation, the

NPI variance remains the same in both domains, and we

approximate the post MRC NPI variance for the symbol-vector

soft estimate c
(8)
< in the 8-th iteration as

f
2(8)
< = Var(ẽ(8)< ) ≈

1

#

∑
;∈!

[<,;tr(��� (8)<+;) (81)

where [<,; = | |ãaa<+;,; ⊘ d̃< | |2 is the normalized post MRC

channel power in the different delay branches selected for

combining. The bit LLR calculation in (79) and NPI variance

calculation in (81) has a complexity of 2#" log2 (|Q|) and

#"!, respectively. The LDPC decoder complexity is of the

order �LDPC = $
(
log2(|Q|)#"

)
. The overall complexity of

detection increases by �LDPC+#" (2 log2 (|Q|)+!)+ for every

turbo iteration.
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VI. SIMULATION RESULTS AND DISCUSSION

For simulations we generate OTFS frames for # = 128

and " = 512. The sub-carrier spacing Δ 5 is taken as 15

kHz. The maximum delay spread (in terms of integer taps) is

taken to be 32 (;max = 31) which is approximately 4 `B. The

channel delay model is generated according to the standard

EVA model (with a speed of 120 km/h) with the Doppler

shift for the 8-th path generated from a uniform distribution

* (0, a<0G), where a<0G is the maximum Doppler shift [13].

We consider one Doppler shifted path per delay tap with ! =

9 and :<0G = 16. For our simulations, we assume perfect

knowledge of the channel state information at the receiver

(see [10] for practical channel estimation in OTFS). For BER

plots, 105 frames are send for every point in the BER curve

and for FER plots, all simulations run for a minimum of 105

frames or until 100 OTFS frame errors are encountered. BER

is plotted to show uncoded performance, while FER is used

when an outer coding scheme is applied.

Fig. 9 shows the BER plot for the MRC detector, with

and without the initial estimate in Section III-B, for 4-QAM

modulated OTFS waveform with a maximum of 10 iterations8.

Performance is compared with the state of the art message

passing algorithm (MPA) described in [22], [23] (labeled

as OTFS-MPA in Fig. 9 and 10) with a maximum of 10

8Iterations are stopped according to the residual NPI convergence criteria
in Algorithm 2.
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Fig. 13. Turbo 64-QAM FER Plot: MRC vs BIC–MMSE-OFDM for
codeword lengths: 672, 3840.

iterations9 and the OFDM single tap MMSE equalizer. It can

be seen that with the initial estimate (labeled as OTFS-MRC

with Init. Est.10), there is a ≈1 dB gain over the MPA algorithm

at a BER of 10−3. This gain is contributed by the improved

SNR due to the MRC operation (or matched-filtering) at the

receiver and the initial time-frequency MMSE estimate, which

is more reliable for lower modulation sizes like BPSK and 4-

QAM, thereby increasing the convergence speed (due to the

initial estimates begin closer to the solution).

Note that the same initial estimates could also be used to

improve the performance of MPA. However, the estimates

need to be transformed into the delay-Doppler domain and

Q-QAM alphabet probabilities for all the information symbols

need to be calculated. This would incur a high complexity just

to get the improved initial estimate. Moreover, similar to MRC

detection, MPA can also be applied on the matched-filtered

system matrix H†H instead of H, but this approximately

doubles the MPA complexity, which scales linearly with the

number of non-zero elements in the matrix. [22], [23].

Fig. 10 shows the BER plot for the MRC detector for 16-

QAM modulation with maximum 15 iterations compared to

the MPA-based detector with maximum 30 iterations. It can

be seen that with the over-relaxed iterative detection (labeled

as OTFS-SOR-MRC with Init. Est. (l = 1.25)), the BER

performance is improved by around 2.5 dB at BER = 10−3.

Moreover, the SOR-iterative algorithm converges on average

in less than 8 iterations for SNR>15 dB. We can see from

Fig. 6 and 7 that the SOR parameter has more impact at higher

modulation schemes, where the initial low complexity estimate

is less accurate and the convergence is generally slow without

SOR. Fig. 11 and 12 shows the frame error performance of the

plain and SOR-turbo-Rake decoder with initial low complexity

estimate for 16 and 64 QAM modulation, respectively, com-

pared with bit interleaved coded OFDM with MMSE detection

scheme (labeled as OFDM BICM decoder). A half-rate LDPC

code of length #2 = 3840 bits from [25] is used and every

OTFS frame contains ⌊#" log2 (|Q|)/#2⌋ codewords.

9The MPA stopping criteria is based on the convergence of the estimated
symbol probabilities [22].

10Init. Est. refers to detection with the Initial Estimate in Section III-B.
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Turbo iterations are stopped when all the decoded code-

words within the frame satisfy the LDPC parity check. It can

be observed that just 1 iteration of turbo MRC detector (la-

beled as Turbo-Rake 1 iter) is required to achieve better error

performance than the bit interleaved coded MMSE OFDM.

Moreover, with the over-relaxation parameter l = 1.25 (la-

beled as SOR-Turbo-Rake), a gain of ≈ 0.2dB (for 16 QAM

with 3 turbo iterations) and ≈ 1dB (for 64 QAM with 3 turbo

iterations) is achieved in the FER performance. The overall

detector complexity in terms average number of iterations

to converge is significantly reduced by using turbo iterations

along with the initial estimates from the time-frequency single

tap equalizer.

Fig. 13 shows the FER performance of the proposed detector

vs BICM-OFDM for different codeword lengths: long (labeled

as SOR-Turbo-Rake-3840) and short (labeled as SOR-Turbo-

Rake-672). For a fair comparison with the OFDM scheme, the

FER plot for a single turbo iteration is also plotted alongside.

It can be observed that, the proposed detector with single

turbo iteration has a gain of ≈ 3dB and ≈ 4dB for codeword

length of 3840 and 672, respectively, as compared to the

OFDM scheme at a FER of 10−2. It can be noted that more

iterations are required for short codewords to achieve the same

performance as long codewords.

VII. DETECTOR COMPLEXITY

In the table below, we summarize and compare the overall

complexity of the iterative Rake receiver (in terms of complex

multiplications), including initial computations and Fourier

domain transformations as discussed in Section IV.

Computations per it-

eration
(I) #" ′(2! + 1+ 2 log2(#))

Initial computations
(II) #" ′(% + 2!)
(III) #" [! + 2 log2 (") + 3]

Term (I) accounts for the computations inside each detector

iteration, which includes calculating Δg̃
(8)
< , Δỹ

(8)
< , c̃

(8)
< , and the

symbol-vector hard decision estimates x̃
(8)
< in Algorithm 2.

Term (II) is for initial computations, which involves calculat-

ing " ′! delay-time Doppler spread vectors ãaa<,; , initial " ′

residual vectors Δỹ
(0)
< in (58), and " ′ vectors d̃< and term

(III) is to compute the low complexity initial time-frequency

estimate x̂
(0)
< in (64).

The detectors for OTFS with complexity linear in #"

and with non-ideal pulse shaping waveform (rectangular) are

discussed in [22], [24]. The complexity of the MPA detector

per iteration scales with the number of paths on the discrete

delay-Doppler grid and the alphabet size |Q|, and has a com-

plexity of the order $ (% |Q|#") [22]. The linear minimum

mean square error detector proposed in [24] even though is

a non-iterative detector has a computational complexity of

$
(
(;2max + :max%

2)#"
)

whereas the proposed detector has a

complexity of $ ((!#") where ! ≤ % and ( is the number

of MRC detector iterations as given in Fig. 7.

The complexity of the proposed detector is compared with

other linear complexity OTFS detectors, for different mod-

ulation sizes, number of multipaths in Fig. 14. The dashed

lines represents the case when there are 5 paths with distinct
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modulation sizes, for an OTFS frame of size # = 128, " = 512 for % = !,
i.e., for one Doppler path per delay tap (solid lines) and % = 5!, i.e., for five

Doppler paths per delay tap (dashed lines).

Doppler shifts in each delay tap i.e., % = 5!. It can be

concluded from Fig. 14 that the proposed detector complexity

is significantly lower than the one of other OTFS detectors

and closer to that of an OFDM single tap MMSE equalizer.

For the iterative operation, the storage requirement for the

MRC detector is (! + 2)#" complex numbers as only the

!#" delay-time channel coefficients, the " RNPI vectors,

and the " ′ symbol vector estimates need to be stored for each

iteration. For MPA, the storage requirement is much higher and

of the order $ (% |Q|#"), [22].

VIII. CONCLUSION

We reformulated the OTFS input-output relation and pro-

posed two versions of a linear complexity iterative rake detec-

tor algorithm for ZP-OTFS modulation based on the maximal

ratio combining principle. We show that the MRC detector

along with a low complexity initial estimate of symbol-vectors

can achieve similar or better BER performance than the MPA

detector with lower complexity and storage requirements.

Based on the well studied Gauss-Seidel method, we intro-

duced a successive over relaxation parameter to improve error

performance and faster convergence of the proposed detector.

The MRC detector performance was further improved with

the aid of an outer error control coding scheme using turbo

iterations. An additional advantage of the MRC detector is that

the complexity is linear in ! (number of delay taps) rather than

% (total number of paths), thanks to the vector decomposition

of the 2-D convolution with the channel.

APPENDIX

1) Proof of Lemma (1): Consider the " dimensional linear

system of equations z= = R= ·s= without the noise term in (72).

The positive definite Hermitian system matrix R= can be split

as D= +L= +L
†
=, where D= and L= ∈ C"×" are the matrices

containing the diagonal and strictly lower-triangular elements,

respectively. Pre and post-multiplying both sides of (72) by

D
−1/2
= and D

1/2
= , respectively, we get the re-scaled system of

equations

z′= = R′= · s′= (82)
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where

R′= = D
−1/2
= ·R= ·D−1/2

= , z′= = D
−1/2
= ·z=, s′= = D

1/2
= ·s= (83)

R′= is the re-scaled system matrix, which can be split as

R′= = I" + L′= + L′†= (84)

where L′= = D
−1/2
= · L= · D−1/2

= .

Since R′= is a positive definite Hermitian matrix, any non-

zero vector u such that u† · u = V > 0 satisfies,

u† · (I" + L′= + L′†= ) · u > 0

=⇒ V + 2ℜ[u† · L′= · u] > 0. (85)

The inequality in (85) can now be written as

0 = ℜ[u† · L′= · u] = ℜ[u† · L′†= · u] > −
V

2
(86)

where ℜ[·] denotes the real part. Also note that

1 = ℑ[u† · L′= · u] = −ℑ[u† · L′†= · u] (87)

where ℑ[·] denotes the imaginary part.

Solving (72) is equivalent to solving the linear system of

equations in (82) and re-scaling its solution vector as given in

(83). The equivalent GS iteration matrix TGS
= for (83) can be

written as

TGS
= = (I" + L′=)−1 · L′†= . (88)

Now, the GS method for the system equation given in (70) is

guaranteed to converge if |_(TGS
= ) | < 1, where _(TGS

= ) denotes

any eigenvalue of TGS
= , which satisfy TGS

= · v = _(TGS
= )v, for

the corresponding eigenvectors v, i.e.,

(I" + L′=)−1 · L′†= · v = _(TGS
= )v. (89)

After multiplying both sides of (89) by v� · (I" + L′=), we

can write _(TGS
= ) as

_(TGS
= ) =

v
†
= · L′†= · v=

V + v
†
= · L′= · v=

=
|0 − 91 |
|V + 0 + 91 | =

√
02 + 12√

(V + 0)2 + 12
.

(90)

From (86), (87) and (90), it can be seen that |_(TGS
= ) | < 1.

Similarly for the case when R= is positive semi-definite ,i.e.,

(86) becomes 0 ≥ −V/2, the eigenvalue inequality becomes

|_(TGS
= ) | ≤ 1. Since d(TGS

= ) is equal to the largest absolute

value of the eigenvalues of TGS
= , the positive definiteness of

R= ensures that d(TGS
= ) < 1.

2) Proof of Lemma (2): Following the steps above, (90)

can be modified for the eigenvalues of the SOR-GS iteration

matrix Tl
= defined in (74) as

_(Tl
= ) =

(l − 1) (v† · v) + l(v† · L′†= · v=)
v† · v + l(v† · L′= · v)

. (91)

The condition for eigenvalues _(TGS
= ) in (90) can then be

modified for the SOR case as

|_(Tl
= ) | =

√
((l − 1)V + l0)2 + (l1)2√
(V + l0)2 + (l1)2

. (92)

It can be seen from (92) that |_(Tl
= ) | < 1, if | (l−1)V+l0 | <

|V + l0 |, which is guaranteed if 0 < l < 2.
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