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Visible Light Communication based Vehicle
Localization for Collision Avoidance and Platooning
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Abstract—Collision avoidance and platooning applications re-
quire vehicle localization at cm-level accuracy and at least 50 Hz
rate for full autonomy. The RADAR/LIDAR and camera based
methods currently used for vehicle localization do not satisfy
these requirements, necessitating complementary technologies.
Visible light positioning (VLP) is a highly suitable complementary
technology due to its high accuracy and high rate, exploiting the
line-of-sight propagation feature of the visible light communica-
tion (VLC) signals from LED head/tail lights. However, existing
vehicular VLP algorithms impose restrictive requirements, e.g.,
use of high-bandwidth circuits, road-side lights and certain VLC
modulation strategies, and work for limited relative vehicle
orientations, thus, are not feasible for general use. This paper
proposes a VLC-based vehicle localization method that eliminates
these restrictive requirements by a novel VLC receiver design and
associated vehicular VLP algorithm. The VLC receiver, named
QRX, is low-cost/size, and enables high-rate VLC and high-
accuracy angle-of-arrival (AoA) measurement, simultaneously,
via the usage of a quadrant photodiode. The VLP algorithm
estimates the positions of two head/tail light VLC transmitters
(TX) on a neighbouring vehicle by using AoA measurements
from two QRXs for localization. The algorithm is theoretically
analyzed by deriving its Cramer-Rao lower bound on positioning
accuracy, and simulated localization performance is evaluated
under realistic platooning and collision avoidance scenarios.
Results demonstrate that the proposed method performs at cm-
level accuracy and up to 250 Hz rate within a 10 m range under
realistic harsh road and channel conditions, demonstrating its
eligibility for collision avoidance and safe platooning.

Index Terms—autonomous vehicles, platooning, collision avoid-
ance, vehicle localization, visible light communication.

I. INTRODUCTION

AUTOMOTIVE research is currently heavily oriented
towards vehicular automation and autonomy, and the

foremost objective is improving driving safety and efficiency
[1]. The annual traffic accident report published by the Federal
Statistical Office of Germany (DESTATIS) [2] shows that 63%
of traffic accidents are vehicle-to-vehicle collisions, demon-
strating the importance of collision avoidance systems and safe
platooning for future automated/autonomous vehicle safety
concepts [3]. Collision avoidance and platooning systems
require relative vehicle localization with at least 50 Hz rate
and cm-level accuracy with high reliability and availability
under harsh road conditions [4–6].
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Current sensor-based methods, which are readily being used
for less demanding conventional autonomous driving tasks,
fail to meet the rate and accuracy requirements of collision
avoidance and platooning systems [6]. Differential Global
Positioning System (DGPS), which is used for global self-
localization, allows vehicles to also cooperatively localize
each other. However, this sensor provides only meter-level
accuracy at less than 20 Hz rate [7], and cannot provide
accurate localization since it regards vehicles as point objects.
Alternatively, RADAR/LIDAR [8] and camera-based methods
[9], which are used for the localization of non-vehicle objects
on the road, can be used for vehicle localization at up to cm-
level accuracy. However, these methods are limited to less than
50 Hz rate since they require scanning, locating and labelling
millions of points/pixels for object localization [10, 11]. On the
other hand, communication-based positioning methods, which
promise estimation of antenna positions at cm-level accuracy
and greater than 50 Hz rate, can be extended for vehicle lo-
calization, enabling fully autonomous collision avoidance and
safe platooning, and complementing the existing autonomous
driving system for higher safety and driving efficiency.

Communication-based positioning methods in the vehicular
domain mainly employ radio frequency (RF) technologies such
as cellular and dedicated short range communications (DSRC)
[12], and VLC technologies [13–16]. Cellular-based posi-
tioning methods either utilize location-fingerprinted received
signal strength (RSS) measurements or apply triangulation
via physical system parameters such as time-of-arrival (ToA),
time-difference-of-arrival (TDoA) and angle-of-arrival (AoA)
[17]. However, these methods rely on tight synchronization
between base stations and the mobile terminal, with limited
accuracy due to excessive multi-path interference. Although
pilot-based synchronization methods [18] and estimators like
multiple signal classification (MUSIC) [19] somewhat mitigate
these problems, overall cellular-based positioning accuracy
is worse than 10 m in practical scenarios [20, 21]. DSRC
also suffers from similar issues; while roundtrip-time-of-flight
(RToF) methods successfully mitigate synchronization issues
[22, 23], the best reported accuracy is around 1-10 m [24],
still worse than the cm-level requirement. As an alternative,
vehicular VLP methods based on line-of-sight (LoS) VLC
signals from automotive LED head/tail lights fundamentally
promise cm-level accuracy at near-kHz rate [14, 25]. However,
this promise is not fulfilled in practice since existing methods
impose restrictive requirements such as the use of high-
bandwidth circuits or road-side lights, and constraints on the
VLC subsystem such as wasting communication sub-carriers
for positioning [26], and they only work for limited relative
vehicle orientations.
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Previous works in vehicular VLP use TDoA [27], phase-
difference-of-arrival (PDoA) [14, 28], RToF [29, 30] and AoA
[31–33] approaches. In [27], vehicles utilize TDoA of the VLC
signals from globally localized traffic lights to two on-board
photodiodes for estimating their own global positions. This
self-localization method can trivially be extended for relative
localization through vehicles exchanging their global posi-
tions, but accuracy is around 1 m for realistic conditions and
the method has low availability since it restrictively requires
the presence of localized traffic lights. In [14] and [28], the
PDoA of head/tail light VLC signals to two photodiodes on
a vehicle provides cm-level positioning. However, the method
restrictively assumes that the vehicles are oriented parallel to
each other and requires very high frequency constant tones
(10-50 MHz), which cannot practically be transmitted to useful
distances with automotive LEDs [34]. Recently, [29] and [30]
have achieved positioning with cm-level longitudinal accuracy
at kHz rate based on the RToF of a VLC message between
two vehicles. However, the method suffers from low lateral
accuracy due to the sensitivity of the underlying geometry and
restrictively requires special high-bandwidth circuits, hence,
cannot provide cm-level vehicle localization under feasible
operation conditions. A VLP method that is devoid of such
restrictive requirements is necessary for vehicle localization
in collision avoidance and platooning applications.

AoA-based VLP methods promise high accuracy without
imposing restrictive requirements such as limited vehicle
orientations, presence of road-side/traffic lights, and high-
bandwidth circuit and VLC modulation constraints [31]. How-
ever, their vehicular implementations have so far been limited
to camera-VLC based methods. Camera-VLC approaches are
not suitable since they either provide very low (<kbps [34])
communication rates [32] or require costly high-frame-rate
cameras [33], which beats the purpose of VLP complementing
sensor-based methods. Therefore, a low-cost and small-size
photodiode-based VLC receiver design that can provide high-
rate VLC and high-accuracy, high-resolution and high-rate
AoA measurement, is needed.

Existing photodiode-based VLC receiver designs that can be
used for AoA measurement fall into four main categories [35]:
aperture-based, lens-based, prism-based and tilted-photodiode-
based designs. Tilted-photodiode designs [36–39] and special
prism-based designs [40] are not suitable for vehicular use
since they are not low-cost/size and typically provide limited
AoA resolution (i.e., coarsely quantized AoA intervals as esti-
mates). Aperture-based designs using commercially available
low-cost/size quadrant-photodiodes (originally proposed for
angular diversity in multiple-input-multiple-output (MIMO)
indoor VLC [41–43]) can be used for accurate and resolute
AoA measurement but the aperture limits the field-of-view
(FoV). Using an imaging architecture, e.g., a hemispherical
lens rather than an aperture, provides larger FoV [44]. Such
quadrant-photodiode-based imaging designs, traditionally used
for laser target tracking [45] and transceiver pointing [46],
are also promising for AoA measurement. A low-cost/size
realization of this architecture with commercial-off-the-shelf
(COTS) components would enable the restriction-free AoA-
based high accuracy and rate vehicular VLP method.

In this paper, we propose a VLC/VLP-based vehicle local-
ization method that uses only two on-board AoA-sensing re-
ceivers for obtaining the relative 2D location of a transmitting
vehicle. First, we provide a novel low-cost/size VLC receiver
(RX) design which enables high-rate VLC and high-accuracy,
high-resolution and high-rate AoA measurement, simultane-
ously; we call this design “QRX”. This design enables the
first practical vehicular implementation of an AoA-based VLP
method for localization at cm-level accuracy and higher than
50 Hz rate. Two QRX units located at the head/tail lights
measure the AoA from two VLC head/tail light transmitters
(TX) on the target vehicle for estimating the positions of the
TXs separately via triangulation (i.e., dual AoA measurements
and the inter-QRX distance defines a triangle). The two TX
positions, which are known to be on the edges of the front/rear
faces of the target vehicle, sufficiently define the vehicle
location. This work extends our previous related work, where
a single QRX is considered for VLP but the QRX design
is not presented and the VLP method necessitates the target
vehicle to disseminate its heading and speed information via
VLC [47]. This paper provides design details for the QRX,
and the method proposed in this paper does not require any
such co-operation from the transmitting vehicle since it applies
triangulation directly with two on-board QRXs. The main
contributions of this paper are given as follows:

• We present a novel low-cost/size VLC receiver design
(QRX), which uses only COTS components and en-
ables high-rate VLC and high-accuracy, high-resolution
and high-rate AoA measurement, simultaneously, for the
first time in the literature. The design is a quadrant-
photodiode-based imaging receiver similar to [44] but
specifically designed for AoA-based vehicular VLP.

• We propose an AoA-based vehicular VLP algorithm that
uses two of the designed QRXs and promises localization
at cm-level accuracy and greater than 50 Hz rate without
imposing any restrictive requirements like the use of
road-side lights, high-bandwidth circuits and certain VLC
modulation strategies, for the first time in the literature.

• We derive the Cramer-Rao lower bound (CRLB) on
positioning accuracy for the dual-AoA vehicular VLP
geometry used by our algorithm, for the first time in the
literature. Since the bound is associated with the vehicular
VLP geometry used by the algorithm, it applies to all
vehicular localization methods that use the same dual-
AoA geometry but different AoA measurement proce-
dures (e.g., the procedure in [48] can be utilized).

• We evaluate the derived CRLB and run extensive sim-
ulations for the proposed method under realistic driving
scenarios that consider different weather (i.e., clear, rainy
and foggy) and ambient light conditions (i.e., night-
time and day-time). The results demonstrate cm-level
accuracy and greater than 50 Hz rate under majority of
these comprehensive scenarios, conclusively proving the
eligibility of VLC-based vehicle localization for use in
collision avoidance and safe platooning applications for
the first time in the literature.
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The rest of the paper is organized as follows. Section II
presents the mathematical model of the vehicular VLC/VLP
system and defines the problem of vehicle localization using
AoA measurements from received VLC signals. Section III
presents the first part of our proposed VLC-based vehicle
localization method, which is the novel low-cost/size QRX de-
sign and the associated AoA measurement procedure. Section
IV presents the second part, the AoA-based VLP algorithm
for vehicle localization, and derives the CRLB on positioning
accuracy for the underlying geometry. Section V demonstrates
the performance of the proposed method at the required
accuracy and rate for collision avoidance and platooning by
both evaluating the derived theoretical CRLB on positioning
accuracy and extensive simulations. A custom MATLAB©-
based simulator is used for evaluations under realistic road
and VLC channel conditions. Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM DEFINITION

This section first presents the mathematical model governing
the vehicular VLC/VLP system, and then defines the VLC-
based vehicle localization problem in collision avoidance and
platooning considering AoA-based VLP.

A. System Model

The model considers the following assumptions (A#):

• A1: Vehicles drive on piecewise-flat roads, i.e., neighbour-
ing vehicles share flat road sections and have no pitch
angle difference between them. This assumption, which
allows to define the vehicle localization problem in 2D,
is reasonably valid for collision avoidance and platooning
scenarios since these scenarios consider vehicles within
1 to 20 m distance of each other driving at speeds greater
than 30 km/h [3, 49, 50].

• A2: Vehicles contain two VLC units each on the edges
of both front and rear faces, i.e., on LED head/tail lights.
Each VLC unit utilizes its LEDs as the TX, contains one
AoA-sensing RX, and sustains reliable LoS VLC [51, 52]
with other units in its FoV.

• A3: VLC TX units are assumed to be point sources
from the RX perspective, i.e., received optical power
obeys the inverse square law with respect to distance.
This assumption is reasonably valid for the considered
scenarios since the 1 m minimum distance between the
vehicles (A1) is larger than the photometric distance for
vehicle LED lights, which is at most 50 cm [53–55].

• A4: Transmissions by the VLC units do not interfere. This
can be achieved through the design of a medium access
control mechanism for the network containing VLC units,
on both the same vehicle and neighbouring vehicles, such
that no two units transmit at the same time on the same
frequency band when their lines-of-sight are towards the
same RX [56, 57]. Note that such a mechanism does not
necessitate explicit identification of the units.

Based on these assumptions, the mathematical model of the
received VLC signals is as follows:

Fig. 1: System model. p1 =(x1, y1) and p2 =(x2, y2) are target (green) TX
2D positions relative to the ego vehicle (red) origin pO = (0, 0). Hij is the
channel gain and θij is the AoA from TX j to RX i, where i, j ∈ {1, 2, 3, 4},
and the case for i=1 and j=2 is shown as example. Sij is the solid angle
subtended by RX i with respect to TX j and L is the RX separation.

ri =
∑
j

rij + µi , rij = Hij sj , (1)

where i, j ∈ {1, 2, 3, 4} are indices for RXs and TXs on
vehicle lights respectively, ri is the total received photocurrent
signal, sj is the transmitted photocurrent signal, rij is the
contribution of sj to ri, µi is the photocurrent additive white
Gaussian noise (AWGN), and Hij is the geometric channel
gain from TX j to RX i. Since no two TX units can transmit
on the same frequency band at the same time as per assumption
(A4), signals rij can be extracted from ri by band-pass filtering
ri for the respective bands occupied by sj . Under the point-
source TX assumption (A3), Hij is expressed as:

Hij = λi(θij)

∫∫
Sij

γjρj(S) dS (2a)

Sij ∝
Ai cos(θij)√
xij2+yij2

, θij = arctan

(
xij
yij

)
, (2b)

where ρj(S) is the normalized positive-definite beam pattern
and γj is electrical-to-optical gain for TX j, Sij is the solid
angle subtended by the active area of RX i with respect to
TX j [58], Ai is the active area and λi is the AoA-dependent
sensitivity of the photodiode in RX i, and θij is the AoA
from TX j to RX i. (xij , yij) denotes the 2D location of
TX j relative to RX i for system description. However, since
(x2j , y2j) is equal to (x1j − L, y1j) by definition, where L
is the RX separation, the i subscript in (xij , yij) is dropped
in the rest of the paper, i.e., pj = (xj , yj) = (x1j , y1j)
for TX j, j ∈ {1, 2}, as shown in Fig. 1. Eqn. (2a) can
be converted to a closed-form expression when a Lambertian
model is assumed [59]. Nevertheless, the more general model
is provided here since regulation-compliant automotive LED
lights are not strictly Lambertian emitters. µi is composed of
shot noise on the RX photodetector (PD, the COTS p-i-n type
is assumed) and thermal noise on the FET-based front-end
transimpedance amplifier (TIA) that converts ri to a voltage
signal for processing [60]. Therefore, µi is zero-mean and has
variance σ2

µi
= σ2

shoti
+ σ2

thmi
, where

σ2
shoti = 2qγiPr,iBi + 2qIbg,iIB2Bi (3a)

σ2
thmi

= 4kTi

 1

RF,i
IB2Bi+

(
2πCT,i

)2
gm,i

ΓIB3B
3
i

 , (3b)
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and q is the Coulomb electron charge, k is the Boltzmann con-
stant, Pr,i is the received optical signal power, Ibg,i is the back-
ground illumination current, Bi is the front-end bandwidth,
Ti is the circuit temperature, RF,i is the front-end resistance
(i.e., TIA feedback gain term), CT,i is the input capacitance
due to the photodiode and the FET and gm,i is the FET
transconductance, on RX i, and Γ, IB2 and IB3 are unitless
factors for FET channel noise and noise bandwidth determined
by the signal shape [43]. For a bandwidth-optimal TIA (i.e.
proper loop compensation and impedance matching [60]), Eqn.
(3b) is typically reorganized by using RF,i = G/(2πBiCT,i),
where G is the commonly referred “open-loop voltage gain”,
and the front-end circuit gain is independent of transistor
parameters, i.e., RF,i determines the transimpedance gain that
converts photocurrent ri to a voltage signal. Popcorn noise
due to silicon defects are ignored since modern components
are used, and also flicker (i.e., 1/f noise) is ignored since
VLC operation is not near DC. Furthermore, the finite light
propagation time from TX j to RX i is ignored since AoA-
based VLP is considered and VLC units are assumed to be
synchronized as per assumption (A2), and random fluctuations
on Hij due atmospheric turbulence on the channel are ignored
since automotive LEDs are non-coherent.

The model is depicted in Fig. 1: The red vehicle, termed
the “ego” vehicle, finds the relative position of the TX units
on the green vehicle, termed the “target” vehicle, for relative
localization via AoA-based VLP using RX signals. In this
paper, TX units are in the target vehicle and RX units are
in the ego vehicle, but a vehicle can take on either role since
it contains both TX and RX units in both head and tail lights.

B. Problem Definition

The ego vehicle needs to find the relative position of two
TX units on the target vehicle for determining its relative
location as shown in Fig. 2b; although one TX position creates
a bounded solution set, it does not define an exact vehicle
location, as shown in Fig. 2a. Since the ego vehicle uses noisy
RX signals for finding TX positions, the location estimates
have finite accuracy and error e is given by the distance
between estimated and actual TX positions at a given time:

e =

[
e1
e2

]
=


√(

x1 − x̂1
)2

+ (y1 − ŷ1)
2√(

x2 − x̂2
)2

+ (y2 − ŷ2)
2

 , (4)

where (x̂1, ŷ1) and (x̂2, ŷ2) are estimations for TX 1 and
TX 2 positions, also called p̂1 and p̂2, respectively, and e1
and e2 are the associated errors. The “cm-level” accuracy
requirement therefore denotes that the norm of e should at
most be 10 cm at a given time. However, since the vehicles
are in continuous relative movement and localization occurs
at a finite rate, such a static accuracy definition is not suffi-
cient, and rate should also be considered in determining the
localization performance.

Let fu be the localization rate and Tu = 1/fu be
the localization update period, i.e., the time between the
kth and the (k + 1)th estimate, where k ∈ {0, 1, 2, ...}.

(a) 1 TX position → indefinite but bounded location set

(b) 2 TX positions → definitive vehicle localization

(c) Accuracy and rate jointly determine localization performance

Fig. 2: Problem definition. p1, p2 and p̂1, p̂2 are actual and estimated positions
for TX 1, TX2, respectively, relative to the ego vehicle origin, pO .

Localization accuracy continuously varies since the relative
target location does not stay constant between consecutive
estimates; this is illustrated with exaggeration in Fig. 2c.
Assuming that an estimate at time t = kTu has sufficient
accuracy for the location at t = kTu, fu needs to be higher
than νu/(10 cm) for ensuring cm-level accuracy until the
next estimate at t= (k+1)Tu, where νu is the relative target
speed. To satisfy this in most feasible collision avoidance and
platooning scenarios, fu should be at least 50 Hz, constituting
the associated requirement for estimation rate [5, 61].

While AoA-based VLP promises to satisfy these rate and
accuracy requirements without imposing the restrictive con-
straints described earlier [31, 62], its practical realization
for vehicle localization faces two main challenges, which
constitute the main problem considered in this paper:

1) The AoA-sensing VLC receiver design should be real-
izable with low-cost, COTS components and needs to
provide high-rate VLC and high-accuracy, high-resolution
and high-rate AoA measurement, simultaneously, despite
adverse road and channel conditions.

2) The VLP algorithm, which uses AoA measurements to
find relative TX positions, should be robust against erro-
neous AoA measurements due to the adverse conditions,
and needs to provide vehicle localization with cm-level
accuracy and at least 50 Hz rate.
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III. AOA-SENSING VEHICULAR VLC RECEIVER

This section first presents the novel AoA-sensing VLC RX
design, i.e., QRX, and then describes the AoA measurement
procedure. The design promises high-rate communication and
high-accuracy, high-resolution and high-rate AoA measure-
ment, simultaneously, and is also low-cost since it considers
COTS components only, enabling the practical realization of
the restriction-free VLC-based vehicle localization solution.

A. Receiver Design

A conceptual diagram of the QRX and its optical configu-
ration are shown in Fig. 3 and a prototype of the QRX built
by our group with low-cost COTS components is shown in
Fig. 4. The design of the QRX is inspired by the MIMO
VLC RX in [44] but the QRX is specifically designed for
high-resolution AoA measurement in VLP rather than simply
achieving angular diversity. The QRX contains a hemispherical
lens placed at a certain distance above a quadrant photodiode
(QPD), converging the rays from the TX LED into a defocused
spot. The spatial irradiance distribution on the QPD due to the
spot, which depends on AoA by the ray optics relations that
define λi(θij) in Eqn. (2a) for each quadrant, determines the
received signal power on each quadrant as depicted in Fig. 3.
Let fQRX be the function that relates the AoA from TX j to
QRX i, i.e., θij , to the signal power ratio for signal sj from
TX j between horizontally separated quadrants, Φij , by

Φij = fQRX(θ) =
(εij,B + εij,D)− (εij,A + εij,C)

εij,A + εij,B + εij,C + εij,D
, (5)

where εij,q represents the power of the received signal in
quadrant q, q ∈ {A,B,C,D} of QRX i, and Φij is bound to
the [-1, 1] interval by definition. Choosing an fQRX function is
the main task in QRX design since the inverse of fQRX , which
we call gQRX , is used for measuring θij ; gQRX is computed
to sufficient precision by ray optics simulations offline and is
stored in the form of a 1D look-up table on the ego vehicle.
fQRX is determined by the size of the spot and the range

of its displacements from the QPD center due to non-zero θij :
Both are determined by the optical configuration parameters,
i.e., lens diameter, lens refractive index, QPD size and lens-
QPD distance, denoted by dL, n, dH , dX , respectively, as also
shown in Fig. 3. dL, n and dX determine the size of the spot
denoted by dS , the full-width at half-maximum (FWHM) of
its intensity distribution, which is trivially computed by [63]:

dS =
(dL)(dL/n− dX)

dL/n
= dL − (n)(dX) (6)

since the distribution is approximately uniform. This approx-
imation holds because 1) the QRX subtends a very small
portion of the total non-uniform TX beam, thus, the beam
arriving at the lens is truncated to an approximately uniform
(i.e., “flat-top”) intensity distribution [64], and 2) the flat-top
distribution experiences negligible diffraction artifacts after
the lens since dX is significantly smaller than dL/n [65].
Moreover, dT , i.e., the displacement of the spot from the QPD
center for a given θij , is determined by dX alone as follows:

Fig. 3: Diagram of the AoA-sensing VLC RX, i.e., QRX. The red and yellow
colors represent conditions for zero and non-zero AoA, respectively.

Fig. 4: Picture of the QRX prototype.

dT = dX tan
(
θij
)
. (7)

The relative magnitudes of dS and dH , and the range of dT
values that allow θij measurement for a given configuration
determine the conformance of fQRX to its design goals, which
are: high FoV (ideally ±90°), high linearity, and bijection, i.e.,
being one-to-one and onto. The FoV, denoted by θFoV , is equal
to the maximum measurable θij value which is determined by
a spot displacement of dT = dS/2 as per Eqns. (6) and (7),
i.e., θFoV = ± arctan(dS/(2dX)), since all θij outside the
± θFoV interval result in |Φij | = 1 due to two of the four
quadrants receiving zero signal power, which renders θij mea-
surement impossible. Hence, larger dS or smaller dX provides
larger FoV, however, this degrades linearity [45]. Furthermore,
dS > dH

√
2 violates bijection since in such configurations,

all quadrants remain completely within the effective spot area
and receive equal signal power for |dT | ≈ 0 [66], i.e., θij
values around zero become undetectable since they all result in
Φij=0, as in the blue curve in Fig. 5. Therefore, recognizing
these trade-offs, 1) a lens-QPD pair, i.e., {dL, n, dH}, and
2) the lens-QPD distance, i.e., dX , should be chosen to obtain
the best compromise for the three design goals.

1) Choosing a lens-QPD pair: The primary objective while
choosing a lens-QPD pair is ensuring bijection. First, a low-
cost and high-bandwidth COTS QPD is chosen to set dH .
Then, a lens is chosen to set dL and n such that dS < dH

√
2

is ensured: Since {dL, dX , dS , n} > 0 in Eqn. (6), dL upper-
limits dS , thus, setting dL < dH

√
2 guarantees bijection alone

and makes n a free parameter. Hence, a large dL that satisfies
dL < dH

√
2 is chosen to also avoid constraining dS , thus, the

FoV, and n is chosen solely with regards to low cost.
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Fig. 5: fQRX for different example configurations. Yellow curve provides the
best compromise for the three design goals: bijection, high FoV and minimal
non-linearity.

2) Choosing the lens-QPD distance: After setting
{dL, n, dH}, dX is chosen to set dS as per Eqn. (6) for
the best compromise between FoV and linearity. dH < dS
provides the highest FoV but the mapping is highly non-linear
(red curve in Fig. 5). dS ≈ dH still results in high FoV
(≈±80°) and milder non-linearity (yellow curve in Fig. 5).
While dS < dH linearizes the full dynamic range (green curve
in Fig. 5), this radically decreases the FoV [45, 59], thus, is
not desirable. Therefore, dX ≈ (dL − dH)/n is chosen since
dS ≈ dH provides the best compromise, where dL < dH

√
2

to ensure bijection.

B. Angle-of-Arrival Measurement

For measuring AoA from TX j to QRX i, first, the quadrant
readings, i.e., the voltage signal produced by the TIA after
amplifying ri for each quadrant q, are sampled at the Nyquist
rate of the TX VLC waveform sj , i.e., 1/Ts, where Ts is
the sampling period. Then a number of hbuf samples are

buffered, which are used for both communication and AoA
measurement purposes as follows: The VLC subsystem first
demodulates the buffered noisy samples for obtaining the
communication symbols. Then, it re-modulates the symbols to
generate clean samples ŝj [w], which represent the contribution
of sj in each buffer sample; ŝj [w] are used for estimating the
signal power for sj on each quadrant of QRX i, i.e., εij,q ,
where q ∈ {A,B,C,D}, as ε̂ij,q by:

ε̂ij,q =
1

hbuf

w0+hbuf−1∑
w=w0

(
Qi,q[w]

) (
ŝj [w]

) , (8)

where w0 marks the sample time at the beginning of the
buffer, and Qi,q[w] is the reading sample in quadrant q at
time wTs. The estimations ε̂ij,q are used for obtaining the
AoA measurement, i.e., θ̂ij , as follows:

θ̂ij = gQRX

(
(ε̂ij,B + ε̂ij,D)− (ε̂ij,A + ε̂ij,C)

ε̂ij,A + ε̂ij,B + ε̂ij,C + ε̂ij,D

)
. (9)

Eqns. (8) and (9) provide successful AoA measurement based
on the following principle: Since Qi,q[w] are samples for
ri which consist of the signal component and zero-mean
AWGN as per Eqn. (1), the product (Qi,q[w])(ŝj [w]) results
in a factor of the actual signal power scaled by the channel
gain and contaminated by AWGN where the channel gain is
not known. However, since Eqn. (9) considers a ratio of the
estimated signal powers for each quadrant and the ratio values
are tabulated for different AoA values, AoA measurement
is possible even without knowing the exact channel gain as
long as the ratio values are unique (i.e., fQRX is bijective),
as described extensively in Section III-A. Furthermore, note
that this measurement procedure does not dictate shape or
bandwidth limitations for sj , thus, does not impose any
restrictive requirements. The only requirement, as also denoted
in assumption (A2), is that the VLC subsystem successfully
demodulates the received signal and generates samples ŝj [w].

Overall, this procedure, depicted in Fig. 6, produces
AoA measurements for the buffer mid-points, i.e., for time

Fig. 6: Measurement procedure for AoA of TX j to QRX i. Photocurrent received signals at each quadrant, ri,q , q ∈ {A,B,C,D}, are converted to voltage
signals via TIAs and sampled via ADCs to obtain the quadrant readings Qi,q [w], for sample time w. An hbuf number of buffered samples are used for
de/re-modulating the VLC TX signal to get ŝj [w], estimating εij,q , i.e., obtaining ε̂ij,q , and then for computing the AoA measurement, θ̂ij .
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t=Ts(w0+(hbuf )/2) due to the non-weighted averaging op-
eration in Eqn. (8), and the measurement rate is determined
by hbuf , i.e., fu = 1/(Ts · hbuf ), since w0 is incremented
by hbuf for consecutive measurement cycles. However, since
the time at which a measurement becomes available is
t=Ts(w0+hbuf )+tµP due to buffering and a finite pro-
cessing time of tµP , the measurement has a fixed delay of
(Ts · hbuf )/2+tµP . Despite this delay, the AoA measurement
can be done in real-time: The first term, (Ts · hbuf )/2, is
negligible when rate is higher than 50 Hz as discussed in
Section II-B. The second term, tµP , which relates to the
computational complexity of the procedure, is computed by:

tµP =

tV LC

TFP

(
kαhbuf

(
log2(hbuf )

)
+ kβ

)
+

tV LP

TFP
(
2hbuf + hLU

)
, (10)

where tV LC is VLC demodulation and re-modulation time,
(kα, kβ) are scalars to account for implementation-specific
variations of the FFT-based modulation complexity, tV LP is
the VLP processing time, hLU is the number of operations
required for the gQRX table look-up, and TFP is the processor
clock period. Considering modern processor speeds, known
FFT-based modulation techniques [67], and a Ts of 1 µs and
50 Hz rate in the worst case (i.e., hbuf = 1/(50 · 10−6) =
20.000) , tµP is only around a few µs, which is also negligible.

The accuracy of the AoA measurements is affected by two
main factors: AWGN on the quadrant reading samples Qi,q[w],
and the integrity of the samples ŝj [w] generated by the VLC
subsystem. Since ŝj [w] does not have exact information on
Hij , it cannot track the RX signal envelope within the buffer,
which means that considering Eqn. (8), ε̂ij,q estimation, thus,
AoA measurement, may not be exact for a non-constant signal
envelope throughout an estimation cycle; this is depicted with
exaggeration in Fig. 7. However, this effect, which is due to
target vehicle movement within the buffer time interval, never
becomes significant in practice since even the fastest vehicle
transients, which are around 50 ms because of high inertia
[61], do not fit within a single buffer time interval, which needs
to take less than 20 ms considering the greater than 50 Hz rate
requirement. Therefore, AoA measurements are contaminated
predominantly by the AWGN on the VLC channel.

Fig. 7: Exaggerated depiction of the “envelope effect” on ŝj [w] and Qi,q [w]
for a single buffer with binary frequency shift keying modulated samples as
an example; this effect, which causes inexact AoA measurement, is negligible
for the targeted rates higher than 50 Hz.

Fig. 8: The triangulation geometry used for dual-AoA-based VLP.

IV. VEHICLE LOCALIZATION WITH AOA-BASED VLP

This section first presents the AoA-based VLP algorithm
that is used for vehicle localization and then derives the
associated Cramer-Rao lower bound (CRLB) on positioning
accuracy which represents the sensitivity of the dual-AoA ge-
ometry used by the algorithm to errors in AoA measurements.

A. Algorithm Description

The algorithm computes the relative position of two target
TX units which define the vehicle location, via triangulation:
TXs are located at the apexes of the triangles defined by
two AoA measurements from two QRXs and the distance L
between them. Specifically, the position estimation for TX j,
p̂j , where j ∈ {1, 2}, is computed by using θ̂1j , θ̂2j and L,
and the law of sines, as follows:

p̂j =

[
x̂j
ŷj

]
=


L

(
1 +

sin(θ̂2j) × cos(θ̂1j)

sin(θ̂1j−θ̂2j)

)
L

(
cos(θ̂2j) × cos(θ̂1j)

sin(θ̂1j−θ̂2j)

)
 , (11)

and the localization rate is equal to the AoA measurement rate.
The geometry for Eqn. (11) is depicted in Fig. 8.

B. Cramer-Rao Lower Bound

The CRLB is a bound on the mean-squared-error (MSE) for
an unbiased estimate of a parameter given noisy observations
that relate to that parameter through a given deterministic
system model. Let P be a set of NM parameters in a system,
let M be NH observations relating to that parameter, let
W be the zero-mean AWGN terms with variance σ2

W that
contaminate those observations, and let G be the deterministic
system model equations that relate the parameters and the
observations. This observation model can be expressed as:

Mh = Gh(P) +Wh , h = 0, 1, ...NH , (12)

where h is the index for elements Mh, Gh and Wh of vectors
M, G and W, respectively. Since Wh are AWGN, Mh are
independent Gaussian random variables with mean Gh(P) and
variance σ2

Wh
. Considering Eqn. (12), let P̂ be the unbiased

estimation of the parameter vector P, and P̂m be the mth

element of that estimated parameter vector, m ∈ {1, 2, ...NM}.
The MSE in P̂m is lower bounded by
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var(P̂m) ≥
(
F−1

)
m,m

, (13)

where F is the Fisher information matrix (FIM) and(
F−1

)
m,m

denotes the m by m diagonal element of the
inverse of the FIM. An estimator that satisfies Eqn. (13) with
equality is said to be efficient, i.e., no unbiased estimator that
can provide smaller variance exists for the given problem.
The FIM is defined as

F = E[
(
∇P ln(p(M|P))

) (
∇P ln(p(M|P))

)T
] , (14)

where p is likelihood, ∇P denotes gradient with respect to P,
and E denotes expectation. Since Mh are independent Gaus-
sian random variables, the expression for elements (m,m′) of
the FIM simplifies to [68, Ch. 3.9]:

Fm,m′ = −
Nh∑
h=1

1

σ2
Wh

(
δGh(P)

δPm
· δGh(P)

δPm′

)
, (15)

where m,m′ ∈ {1, 2, ..., NM} and the FIM is NM ×NM .
Based on this definition, the CRLB on positioning ac-

curacy for the geometry used by the VLP algorithm can
be derived with respect to the noisy AoA measurements:
P = [x1, y1, x2, y2] (i.e., NM = 4), M =

[
θ̂11, θ̂12, θ̂21, θ̂22

]
(i.e., NH = 4), G is governed by Eqn. (2b), and W is
AWGN on θ̂ij due to noise on the received signals used
for the AoA measurements; the FIM is therefore 4x4. Note
that this CRLB derivation 1) only captures accuracy against
the AWGN on the VLC channel, thus, is only a measure
of the “static” accuracy defined in Section II-B, 2) explicitly
considers the sensitivity of the underlying geometric relations
of the proposed dual-AoA VLP algorithm, i.e., it is a special
case of the generic CRLB for multi-RX asynchronous VLP
derived in [69], and 3) assumes that the AWGN on the
received signal propagates through to the AoA measurement:
Since the AoA measurement expressions in Eqns. (8) and (9)
are smooth, thus, piece-wise linear functions for reasonably
small standard deviations of the AWGN-contaminated received
signal around its expected value, θ̂ij is also approximately a
Gaussian random variable with mean θij and variance σ2

Wh
.

This phenomenon is thoroughly described in [68, Ch. 3.6],
and it enables using Eqn. (15) for the CRLB derivation.
However, since the exact symbolic CRLB expression does not
provide any extra intuition, only the derivative terms in Eqn.
(15) are presented here. The derivative expressions used for
constructing the 4x4 FIM based on Eqns. (2b) and (15) are:

δθ1j
δx1j

=
y1j

x21j + y21j
,
δθ1j
δy1j

=
−x1j

x21j + y21j
(16a)

δθ2j
δx1j

=
y1j

(x1j − L)2 + y21j
,
δθ2j
δy1j

=
−(x1j − L)

(x1j − L)2 + y21j
, (16b)

where j ∈ {1, 2} and all other derivative terms are zero.
The FIM is evaluated by using these derivative expressions
during the simulations and the numerical value of the CRLB
for a given condition (i.e., given P and W), which represents
the sensitivity of the dual-AoA geometry to errors in AoA
measurement, is obtained as per Eqn. (13) for comparison
between theoretical and simulated performance.

V. SIMULATIONS

The simulations demonstrate the performance of the pro-
posed VLC-based vehicle localization method under realis-
tic road and VLC channel conditions in typical collision
avoidance and platooning scenarios as well as comparing its
simulated performance to the theoretical CRLB on localization
accuracy with dual-AoA-based VLP. A custom MATLAB©-
based vehicular VLC simulator was built for this purpose,
which is made available on GitHub [70]. The simulator utilizes
ego and target vehicle trajectories for different scenarios and
generates the signals that emanate from the two target TXs
and reach the two ego QRXs, for the whole trajectory, as per
the system model equations presented in Section II-A. The
proposed method first uses the simulated received signals to
measure the AoA from the TXs to the QRXs by using the
procedure proposed in Section III-B, and then provides relative
localization based on these AoA measurements by using the
algorithm described in Section IV-A.

Simulator setup parameters are given in Table I. The QRX
design corresponds to the “best compromise” configuration,
i.e., the yellow curve fQRX in Fig. 5, but the photodiode
dimensions in [29] are used for fair comparison with existing
results. In all simulations, the target vehicle leads the ego
vehicle, thus, the target vehicle transmits through its tail
light (similar to Fig. 1). While the opposite configuration is
equally valid, this configuration was chosen since it is the
worst case scenario; the tail light has the lowest TX power
among the vehicle lights. The simulated tail lights have 2 W
optical power each and beam patterns are approximated by
a Lambertian term of 20° half-power angle (order m=11) to
be comparable to the setup in [29], which utilizes a total of
two 2 W head lights and a 1 W tail light for VLP. The TX
modulation scheme (binary frequency shift keying, BFSK) and
bitrate complies with vehicle safety application requirements
[34, 71]. A wide range of channel conditions, i.e., night-time
versus day-time (indirect sunlight) light conditions, as well as
clear versus foggy or rainy weather, are considered. Sunlight
increases shot noise power as described in [72], and fog and
rain attenuates the signal power as described in [73]. We
present four simulated driving scenarios to demonstrate that
the proposed solution is eligible for collision avoidance and
platooning applications under all of these channel conditions:

• SM1 - dynamic, collision avoidance. A target vehicle
leading an ego vehicle on a highway brakes dangerously
during a lane change and risks collision. Results for dif-
ferent estimation rates are shown to demonstrate the effect
of rate on localization accuracy for a highly dynamic
target vehicle, as discussed in Section II-B.

• SM2 - dynamic, platooning. A target vehicle joins a
platoon by moving in front of the ego vehicle from the
left lane, drives on the same lane for a short while, and
then exits the platoon towards the right lane. Results
under all combinations of day-time and night-time light,
and clear, foggy and rainy weather are shown for 100
Hz localization rate to demonstrate the performance of
the method against adverse conditions for typical vehicle
trajectories that occur during platooning.
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TABLE I: Simulator Setup Parameters

TX

Signal BFSK, s1, s2: 5/6, 12/13 kHz

Power γj ·max(|sj |) = 2 W (tail light)

Pattern [30] Lambertian, m =
⌊

− ln 2
ln(cos(20°))

⌋
= 11

Attenuation

clear: -

heavy rain (≈10 mm/hr): 0.1 dB/m [73]

dense fog (≈200 m): 0.3 dB/m [73]

QRX TIA

γi, gm 0.5 A/W, 30 mS

Ai (active) a 50 mm2

B, CT , RF 10 MHz, 45 pF, 2.84 kΩ, i.e., G ≈ 10

Factors Γ=1.5 , IB2=0.562 , IB3=0.0868

Temperature T=298 K

Ibg [72]
night-time: 10 µA

day, indirect sun: 750 µA

QRX Optics

Lens PMMA (n=1.5), dL = 7.1 mm

QPD dH = 6.3 mm , dX = 0.55 mm

FoV ±50°linear, ±80°total (yellow, Fig. 5)

Vehicle
Dimensions Length = 5 m. L,D = 1.6 m

Steering Ackermann [74] (small sideslip angles)

a Detection area is 50 mm2 in [29] but converging/diverging optics usage is
not specified. For fair comparison, QRX lens area, which is the detection area,
is chosen as 50 mm2 here, thus, QPD area is 39.7 mm2 as per the design
guidelines provided in Section III-A, and CT is scaled accordingly.

• SM3 - static, comparison with state-of-the-art (SoA) VLP.
We simulate our method for the static vehicle locations
described in [29] under the same channel conditions.
Results show that our method provides higher TX posi-
tioning accuracy for the high signal-to-noise ratio (SNR)
regime under fair comparison, but [29] is more resilient
against low SNR. Additionally, the CRLB of the VLP
algorithm is also evaluated for these locations to compare
the theoretical and simulated performances.

• SM4 - static, characterizing the operational range. This
scenario considers the ego vehicle on the center of a 3-
lane road and exhaustively simulates all feasible relative
target locations under chosen favorable (i.e., night-time,
clear) and challenging (i.e., day-time light, rain) chan-
nel conditions, characterizing the static accuracy of the
method over its complete feasible operational range.

1) SM1 - Dynamic Scenario, Collision Avoidance: Fig. 9
demonstrates the performance of the proposed method in a
collision avoidance scenario under day-time, clear weather
conditions for different estimation rates. Results show that cm-
level accuracy is achieved for all rates greater than 100 Hz
for the middle part of the trajectory, which has the maximum
risk of collision. Furthermore, when the relative target vehicle
movement is slow, decreasing the estimation rate increases
accuracy in the case of low SNR; this can be seen in the results
for the beginning of the trajectory where the target tail lights
are facing away from the ego vehicle, decreasing received
SNR, and lower rates provide better accuracy. However, lower

rates decrease estimation accuracy when the target is highly
dynamic due to the phenomenon described in Section II-B;
this can be seen in the results for the middle of the trajectory.
These results demonstrate that the proposed method provides
cm-level accuracy for a typical collision avoidance scenario
under high noise channel conditions, and estimation rate can
be adjusted with respect to the SNR and the relative mobility
of the vehicles for improving performance.

2) SM2 - Dynamic Scenario, Platooning: Fig. 10 demon-
strates the performance of the proposed method for a pla-
tooning scenario (formation, straight road platooning, and
dispersion) under clear, rainy and foggy weather conditions,
and night and day ambient light for 100 Hz localization
rate. Results show that while accuracy degrades severely due
to sunlight and less severely due to fog and rain, cm-level
accuracy is attained under all conditions for straight road
platooning. Additionally, two practical irregularities of the
proposed method are explicitly shown: 1) In the middle part
of the trajectory, the SNR is very high and attenuation due
fog and rain actually improves performance with respect to the
clear weather case; this is because under night-time conditions,
the signal power component in Eqn. (3a) is the dominant
noise source, which decreases significantly with attenuation.
2) Towards the end of the scenario, the TX units start pointing
away from the QRX units and cause loss of estimation,
demonstrating a practical limit of the proposed method due
to the small angular coverage by tail lights. These results
collectively demonstrate that the proposed method is capable
of sustaining the accuracy and rate required for localization in
a comprehensive platooning scenario under adverse weather
and noise conditions, despite practical limitations.

3) SM3 - Static Scenario, Comparison with SoA VLP:
This scenario demonstrates the performance of the proposed
method for the static ego and target locations described in [29]
and depicted in Fig. 11a, under the same channel conditions.
The following are addressed to ensure fair comparison:

• In [29], vehicles are assumed to stay parallel throughout
this scenario, which involves the target vehicle slowly
moving from 0 to 3.5 m of lateral distance: This does
not define a realistic vehicle movement since a non-zero
heading difference is required unless the target vehicle
drifts sideways throughout the whole trajectory. Hence,
we assume that the vehicles are static at each location,
and separately simulate performance at each location.

• In [29], only results for a single TX on the target vehicle
is provided. Therefore, we only consider the estimation
of TX 1, i.e., p̂1, for comparison, thus, the error vector
in Eqn. (4) consists of e1 only.

• The method in [29] is evaluated for 2 kHz rate, and our
method is evaluated for 50 Hz. We do not evaluate our
method at 2 kHz (or equivalently, [29] at 50 Hz) since
lower rate improves the static accuracy of our method but
degrades that of [29] due to heterodyning as explained in
[30]. We therefore evaluate both methods with their best
reported configuration that is acceptable as per collision
avoidance and platooning requirements.
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Fig. 9: SM1 - A typical collision avoidance scenario, dynamic vehicles. (a) Relative target vehicle trajectory. (b) Localization error, i.e., ‖e‖ as per Eqn. (4),
over the trajectory that runs for a simulation time of 1 s, for different estimation rates under day-time (indirect sunlight) clear weather conditions.

Fig. 10: SM2 - A typical platooning scenario, dynamic vehicles. (a) Relative target vehicle trajectory: Platoon formation, straight road platooning, and platoon
dispersion over a simulation time of 1 s. (b) Localization error, i.e.,‖e‖ as per Eqn. (4), over the trajectory, for different weather and ambient light conditions.

Fig. 11b demonstrates the x and y estimation performances
of the proposed method, and Figs. 11c and 11d show the
histogram of associated errors over the trajectory, sampled over
1000 iterations for higher statistical significance. While [29]
provides higher accuracy in the y axis on average over the
whole trajectory, i.e., 6.2 cm error in [29] versus 12.4 cm error
in ours, our method provides superior accuracy in the x axis,
i.e., 11.3 cm error in [29] versus 3.2 cm error in ours. The
difference in x and y estimation performance for our method
is due to the difference in the sensitivities of the sin/cos non-
linearities in Eqn. (11). In terms of overall 2D accuracy, our
method provides better performance for the beginning of the

trajectory, where the SNR is higher as shown in Fig. 11e, i.e.,
approximately 12.9 cm error in [29] versus less than 10 cm
error in ours. However, [29] is more resilient against noise and
sustains this performance for also the lower SNR regime at the
end of the trajectory, contrary to our method. Additionally, the
CRLB of our method is evaluated since static locations are
considered. Simulated accuracy meets the CRLB as shown
in Fig. 11e, demonstrating that the proposed VLP algorithm
is an efficient estimator, i.e., the minimum variance unbiased
estimator for the dual-AoA vehicular VLP problem. These
results show that our proposed method advances the state-of-
the-art for vehicular VLP with cm-level localization accuracy
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Fig. 11: SM3 - Comparison with SoA VLP. (a) Locations in [29]: Vehicles are parallel and static at each simulation time step. (b) x and y estimation results
for only p̂1, under the same noise conditions in [29]. (c) Localization error and the associated theoretical CRLB. Histogram of errors in (d) x, and (e) y.

and 50 Hz rate under realistic road and channel conditions
except for very low SNR. Furthermore, our proposed method
does not impose any high-bandwidth circuit requirements like
[29] and is therefore feasible for general use.

4) SM4 - Characterizing the Operational Range: The pro-
cedure for this scenario is as follows: Estimation accuracy
for sampled relative target vehicle locations over three lanes
(±3 m horizontal distance from ego vehicle bumper center)
and 15 m longitudinal distance are evaluated to characterize
the feasible operational range of the proposed method for col-
lision avoidance and platooning scenarios, where the recorded
performance for each location is an average of the results for
all feasible target orientations at that location. The estimation
rate is 50 Hz. Figs. 12a and 12b demonstrate localization
accuracy under favorable and harsh conditions, i.e., night-
time clear weather, and day-time heavy rain (10 mm/hr),
respectively. The colorless zones in the graphs denote a loss
of estimation for those locations due to QRX units being out
of TX coverage, which occurs due to the target vehicle being
either too close to the ego front bumper (less than 1 m), or
at an angle too oblique to be considered as either a platoon
element [49] or a tangible collision threat [2]. Therefore, these
locations are not strictly relevant for collision avoidance and
platooning scenarios. Fig. 12a shows that for favorable channel
conditions the promised cm-level accuracy is attained within
approximately a 7 m radius. Outside the 7 m radius, up until
the 10 m mark, accuracy is still better than 1 m. On the other
hand, under harsh channel conditions, cm-level accuracy is
limited to a radius of approximately 5 m, as shown in Fig.
12b. The accuracy is still better than 1 m up to the 8 m mark.

Fig. 12: SM4 – Characterizing the operational range for a 3-lane road scenario
(static locations). Results for each location show average error over all feasible
target orientations for 50 Hz localization rate, under (a) night-time, clear
weather conditions, and (b) day-time, rainy weather conditions.

These results demonstrate that the proposed method provides
cm-level accuracy with at least 50 Hz rate even under harsh
channel conditions for configurations relevant for collision
avoidance and platooning within approximately 10 m range.
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TABLE II: Comparison of vehicle localization methods

Method # of ops / cycle Error Rate

This paper ≈ 105 ≤ 10 cm ≥ 50 Hz

RToF-VLP [29] ≈ 105 ≤ 10 cm ≥ 50 Hz

RADAR [75] ≈ 107 ≥ 10 cm ≈ 50 Hz

Camera [76] ≈ 109 ≈ 10 cm ≤ 50 Hz

Considering these results, a rough comparison of vehicle
localization methods that considers the same distance range
and FoV, in terms of computational complexity, accuracy and
rate, is provided in Table II. While RADAR-based methods
can provide up to 10 cm accuracy, they have significantly high
complexity, thus, typically low rate even with SoA compu-
tational optimizations, due to the large number of receiving
elements used (typically more than 1000 antennas in phased-
array form), as thoroughly described in [75]. Camera-based
methods provide cm-level accuracy but suffer even more from
the high number of receiving elements (i.e., typically more
than a million pixels), thus, are fundamentally limited to low
rates considering a feasible cost margin for automotive use
[76]. VLC-based methods are multiple orders of magnitude
less complex than sensor-based methods since very few re-
ceiving elements, situated at known locations on the vehicles,
are used, enabling real-time service; the complexity analysis
of our proposed method provided in Eqn. (10) showcases the
simplicity of VLC-based methods. Furthermore, our proposed
VLC-based method attains similar accuracy as its best alter-
native, the RToF-based VLP in [29], but without imposing
requirements that restrict practical use as in [29].

VI. CONCLUSION

This paper proposes a novel VLC-based vehicle localization
method based on the design of a novel low-cost/size VLC
receiver (“QRX”) that can simultaneously provide high-rate
communication, and high-accuracy, high-resolution and high-
rate AoA measurement. The QRX can be realized with COTS
components only, enabling the first practical realization of
an AoA-based vehicular VLP method with cm-level accuracy
at greater than 50 Hz rate without imposing any restrictive
requirements such as limited vehicle orientations and use
of high-bandwidth circuits, localized road-side lights, and
VLC waveform constraints. The VLP algorithm uses two
QRXs to locate two target vehicle VLC TX units relative
to the ego vehicle via VLP, which is sufficient for rela-
tive vehicle localization. The computational overhead of the
solution is very low compared to the conventional sensor
solutions. Performance of the proposed solution is evaluated
with theoretical CRLB analysis and exhaustive simulations on
a custom vehicular VLC simulator. Simulations demonstrate
that the proposed solution performs localization with cm-level
accuracy at greater than 50 Hz rate even under harsh road
and VLC channel conditions. The solution is expected to
complement the existing autonomous vehicle sensor system
for higher safety by providing vehicle localization for collision
avoidance and platooning applications.

As future work, we plan to derive the CRLB for existing
state-of-the-art VLP algorithms, implement the corresponding
VLC-based localization methods in simulation environment,
and provide fair comparisons of those methods and the method
proposed in this paper under the same realistic driving scenar-
ios and channel conditions. Furthermore, we plan to test the
proposed method with hardware built by our group under real
driving scenarios to experimentally verify the results reported
in this paper.
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