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Abstract—Non-orthogonal multiple access (NOMA) has

a great potential to offer a higher spectral efficiency of

multi-user wireless networks than orthogonal multiples

access (OMA). Previous work has established the condition,

referred to quasi-degradation (QD) probability, under

which NOMA has no performance loss compared to the

capacity-achieving dirty paper coding for the two-user

case. Existing results assume Rayleigh fading channels

without line-of-sight (LOS). In many practical scenarios,

the channel LOS component is critical to the link quality

where the channel gain follows a Rician distribution instead

of a Rayleigh distribution. In this work, we analyze the

QD probability over multi-input and single-output (MISO)

channels subject to Rician fading. The QD probability

heavily depends on the angle between two user channels,

which involves a matrix quadratic form in random vectors

and a stochastic matrix. With the deterministic LOS

component, the distribution of the matrix quadratic form

is non-central that dramatically complicates the derivation

of the QD probability. To remedy this difficulty, a series

of approximations is proposed that yields a closed-form

expression for the QD probability over MISO Rician

channels. Numerical results are presented to assess the

analysis accuracy and get insights into the optimality of

NOMA over Rician fading channels.

Keywords—Gamma distribution, multi-input single-output

(MISO), non-orthogonal multiple access (NOMA), quasi-

degradation, Rician fading.

I. INTRODUCTION

Due to the scarcity of wireless spectrum, high spectral

efficiency has been the primal design goal of con-

temporary wireless communication systems that impose

multiple users to share the same spectrum. Traditionally,

spectrum sharing is performed through orthogonal mul-

tiple access (OMA). Recently, non-orthogonal multiple

access (NOMA) has received tremendous attentions from

both academia and industry for its improved spectral

efficiency over OMA [1]. The great potential of NOMA
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also stimulates the interest of the standardization body

to include NOMA in the standard of the 5th generation

(5G) mobile network [2].

While NOMA has been extensively studied in the

literature, there remain numerous challenges to the suc-

cessful application of NOMA in practice. One major

concern is the implementation complexity. For power-

domain NOMA, the superimposed user signals need to

be decoded using successive interference cancellation

(SIC) that increases receiver complexity. Also, the power

allocated to different users is crucial to the achievable

rate of NOMA. To determine the optimal power alloca-

tion, channel state information (CSI) is required at the

transmitter side that is generally not accurate. Besides,

the power allocation for sum rate maximization is a

non-convex optimization problem that does not have

closed-form solutions even for the two-user case [3].

Furthermore, there is no guarantee that the sum rate

achieved by NOMA through optimal power allocation

can approach the capacity region of multi-input and

multi-output (MIMO) broadcast channels. For example,

when different users’ channels are nearly orthogonal or

have similar channel gains, NOMA may not be pre-

ferred [4].

Most existing work focuses on maximizing the sum

rate for NOMA users by optimizing the power allocation

and the decoding order for given user channel realiza-

tions. There is little discussion on whether the given

user channels are attainable to achieving the capacity

region. In [5], the authors characterize the relationships

among the capacity region of MIMO broadcast channels

and rate regions achieved by NOMA and time-division

multiple access (TDMA), which is a typical member

of OMA family. For a given single-antenna user pair

served by a single-antenna transmitter, the probability

that NOMA outperforms TDMA in terms of sum rate

and individual user rates is derived. In [6], the notion

of quasi-degraded channels is introduced to evaluate the

condition of users channels that achieve the capacity

region of broadcast channels using NOMA. Since the

exact capacity region of broadcast channels is not known,

the sum rate of capacity achievable dirty paper coding

(DPC) is considered as the benchmark [7]. For a pair

of users, their channels are quasi-degraded if applying

http://arxiv.org/abs/2007.12408v2
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NOMA incurs no performance loss compared to that of

using sophisticated DPC, which employs the encoding

order same as the decoding order in NOMA. The notion

of quasi-degradation (QD) is also exploited in [8] to

address the user pairing and optimal precoding design

for multi-user NOMA systems, where the precoders are

designed for two users that are paired if their channels

are quasi-degraded. Besides, the authors derive the QD

probability when a multi-antenna base station (BS) serves

two single-antenna users, i.e., a multi-input and single-

output (MISO) setup. Recently, a new precoder design

framework is propose in [9], where QD is imposed as a

constraint in the precoder design for intelligent reflecting

surface (IRS) assisted NOMA. Different from the con-

ventional multi-antenna systems that employ active an-

tenna arrays, IRS is implemented using passive antennas

that can smartly reflect the impinging electromagnetic

waves to change the channel directions. With IRS, the

user channels are tuned such that the QD can be satisfied.

Thus the proposed design framework ensures that the

obtained precoders achieve as good performance as DPC.

All the existing work [5], [6], [8], [9] assumes Rayleigh

fading with no line-of-sight (LOS) in the propagation

channel. For some scenarios suitable for NOMA, e.g.,

high-frequency millimeter wave (mmWave) communi-

cations [10] and high-altitude unmanned aerial vehicles

(UAVs) communications [11], the quality of a commu-

nication link is dominated by the LOS component in

which case the fading statistics follow Rician distribution

instead of Rayleigh distribution. The measurement results

have revealed that the 28 GHz millimeter wave outdoor

channels follow a Rician distribution with the Rician-

factor ranging from 5-8 dB [12].

In this paper, we extend the work [8] and intend

to characterize the optimality of NOMA over Rician

fading channels. Given two fixed users, we theoretically

analyze the probability that the two user channels are

quasi-degraded, namely, using NOMA to serve these two

users can achieve the identical performance as non-linear

DPC. In our work, a general model for the MISO Rician

fading channel is considered, including a deterministic

component that captures the azimuthal angle of the LOS

signal and a non-deterministic component due to the

randomness of NLOS. Unlike the Rayleigh fading case,

the presence of LOS component raises numerous chal-

lenges to the characterization of QD probability. Firstly,

the deterministic LOS component results in non-zero and

distinct means for each element in the channel vector, i.e,

the channel vectors are not isotropic. Consequently, the

channel power of the MISO Rician channel has a non-

central distribution whose statistical characteristics are

difficult to be obtained. Secondly, the QD probability

heavily depends on the squared cosine of the angle

between two user channels, which can be represented in

the matrix quadratic form [8] as given by XHAX where

X is a complex random vector and A is a symmetric

matrix. When X is a vector of an isotropic channel,

the distribution of the matrix quadratic form follows chi-

squared distribution [8], but this is not the case for the

non-isotropic channel. Moreover, the matrix A in our

work is stochastic but existing results on the distribution

of the quadratic form are limited to the constant matrix

A. It is worth highlighting that there have been fruitful

results on the distribution of the matrix quadratic form in

random vector X when X is real [13], [14]. For complex

random vectors, [15] considers the quadratic form in a

zero-mean complex random vector while the case of a

non-zero mean complex random vector is studied in [16],

[17]. However, the matrix A considered in [15]–[17] is

constant. To the best of our knowledge, the statistical

properties of the matrix quadratic form with a stochastic

matrix remain an open problem in the literature.

In view of the aforementioned difficulties, it is not

plausible to find the exact QD probability over Rician

fading channels. In this work, we propose an analytical

framework that derives the QD probability based on some

celebrated approximation techniques. Our contributions

are three-fold.

• We show that the distribution of the quadratic form

with random matrix A and complex vector X can

be approximated to the gamma distribution. This

is achieved with the aid of the second-order mo-

ment matching technique. To this end, we obtain

the mean and the variance of the quadratic form

with random matrix A and complex vector X by

extending the existing results for constant A and

real vector X.

• We show that the channel power of the MISO

Rician fading channel, which follows the non-

central chi-square distribution, can be also well

approximated to the gamma distribution. This ap-

proximation greatly facilitates the analysis of the

QD probability that involves the ratio between

the channel powers of two independent Rician

channels.

• Using the approximated distributions aforemen-

tioned, we obtain the QD probability over MISO

Rician fading channels. Numerical results are pre-

sented to validate the accuracy of the approximated

QD probability and provide insights to the opti-

mality of NOMA subject to Rician fading. It is

shown that the strength of the LOS component

relative to the NLOS component affects the QD

probability in a different way, depending on the an-
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gular difference between the user channels. When

the LOS paths have a larger angle difference, the

QD probability increases with the LOS dominance

but the trend reverses when the angle difference is

smaller. This implies if two users are not close

in the angular domain, NOMA over LOS fading

channels is more likely to be capacity achieving.

On the contrary, NOMA over NLOS fading chan-

nels is preferred if two users are close in the

angular domain.

The remainder of this paper is organized as follows.

Some useful distributions and important results on the

distributions of the matrix quadratic form are first es-

tablished in Sec. II. Sec. III presents the MISO Rician

fading channel model. Theoretical analysis for the QD

probability over Rician fading channels is conducted in

Sec. IV. Sec. V presents the gamma approximation for

the stochastic quadratic form, which is used in Sec. VI

to obtain the approximated QD probability. Numerical

results are presented and discussed in Sec. VII. Finally,

concluding remarks are drawn in Sec. VIII.

Notations: In our notations, italic letters are used for

scalars. Vectors and matrices are noted by bold-face

letters. For a square matrix A, A−1, tr(A), AT and AH

denote its inverse, trace, transpose and conjugate trans-

pose, respectively. I and 0 denote an identity matrix and

an all-zero matrix, respectively. For a complex-valued

vector x, ‖x‖ denotes its Euclidean norm. Γ(·) denoted

the gamma function. The distribution of a circularly

symmetric complex Gaussian random vector with mean

µ and covariance matrix Σ is denoted by CN (µ,Σ),
and ‘∼’ stands for ‘distributed as’. E[·] and V[·] denote

the statistical expectation and variance, respectively. R(·)
and I(·) denote the real and the imaginary part of a

complex number. Finally, Cm×n denotes the space of

m× n complex-valued matrices.

II. PRELIMINARIES

In this section, we establish the distribution of the

matrix quadratic form that serves as the core of the

analysis for the QD probability in Sec. IV. Besides, some

useful distributions and the second-order moment match-

ing technique relevant to our work will be reviewed.

Definition 1. Given a multivariate random vector X =
(x1, · · · , xN )T and a symmetric matrix A = (aij), the

quadratic form of X is defined as [13]

QA(X) = XTAX =

N
∑

i=1

N
∑

j=1

aijxixj. (1)

From (1), QA(X) is a scalar function of X. When X

is a real random vector and A is a constant matrix, the

mean and variance of QA(X) are well known as given

below.

Lemma 1. For a real random vector X with mean µ and

covariance matrix Σ, the mean and variance of QA(X)
is given by [13],

E[QA(X)] = tr(AΣ) +QA(µ) (2)

V[QA(X)] = 2tr((AΣ)2) + 4QAΣA(µT ). (3)

The quadratic form QA(X) is useful for defining sums

of squares.

Lemma 2. The quadratic form QA(X) reduces to the

squared norm of X when A = IN , i.e., XHX = x21 +
· · ·+x2N = ‖X‖2. If the entries of X are independent but

not necessarily identical (i.n.i.d.) Gaussian distributed

with non-zero means and unit variance, then ‖X‖2
follows the non-central chi-squared (χ2) distributed with

2N degrees of freedom.

Remark 1. The exact distribution of QA(X) is only

known when A is deterministic. For a stochastic, matrix

A, approximations are required to obtain the statistics

of QA(X)

Although the distribution of the non-central χ2 dis-

tribution is well known, the PDF involves the modified

Bessel function of the first kind that yields no closed-

form expressions for the QD probability. For analytical

tractability, we approximate the squared Gaussian ran-

dom variables to be gamma distributed, which is defined

as follows.

Lemma 3. If X is Gamma distributed with the shape

parameter k and the scale parameter θ, the PDF is given

by

fX(x) =
1

Γ(k)θk
xk−1e−

x

θ ,

where Γ(·) denotes the Gamma function. Moreover, X ∼
Γ(k, θ) has the mean and variance given as

E[X] = kθ,

V[X] = kθ2.

The approximation of the squared Gaussian random

variable to gamma distribution is established based on

the following lemma.

Lemma 4. If the random variable X ∼ N (µ, σ2), then

X2 has the same first and second order statistics as

Γ(k, θ) where

k =
(σ2 + µ2)2

2σ2(1 + 2µ2)
, and θ =

2σ2(1 + 2µ2)

σ2 + µ2
. (4)

Proof: See Appendix A.
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We will need to work on the sum of i.n.i.d. gamma

random variables. The exact distribution of the sum of

i.n.i.d. gamma random variables can be obtained using

numerical methods such as inverting the characteristic

function or the saddle-point approximation [18]. How-

ever, the distribution obtained from numerical compu-

tations does not permit a closed-form expression that

is necessary to the derivation of the QD probability of

interest. In this work, we resort to the second-moment

matching technique to obtain the approximated distribu-

tion for the sum of i.n.i.d. gamma random variables [19],

[20].

Lemma 5 (Second-order moment matching). Let

{Xn}Nn=1 be a set of N i.n.i.d. gamma random variables

where Xn ∼ Γ(kn, θn). Then the sum Z =
∑N

n=1Xn has

the same first and second order statistics as a gamma

random variable with the shape and scale parameters

given as

k =
(
∑

n knθn)
2

∑

n knθ
2
n

, and θ =

∑

n knθ
2
n

∑

n knθn
. (5)

Our analysis for the QD probability also relies on the

inverse gamma distribution [21] given as follows.

Lemma 6. If a random variable Z ∼ Γ(k, θ), then Z−1

follows the inverse gamma distribution with the PDF

given as

fZ−1(z) =
1

Γ(k)θk
z−k−1e−

1

kz . (6)

The mean and the variance of Z−1 are

E[Z−1] =
1

(k − 1)θ
, V[Z−1] =

1

(k − 1)2(k − 2)θ2
(7)

for k > 2.

Our analysis also involves the quotient of two inde-

pendent gamma random variables.

Lemma 7. Given V ∼ Γ(kv , θv) and W ∼ Γ(kw, θw),
V
W follows the Beta prime distribution or known as the

inverted beta distribution with the PDF given by [22]

fV/W (x) =
xαv−1(1/θv)

αv(1/θw)
αw

(x/θw + 1/θv)αv+αwB(αv, αw)
(8)

where B(x, y) =
∫ 1
0 tx−1(1 − t)y−1dt is the Beta func-

tion.

Finally, the random vector X in the quadratic form

encountered in our analysis is complex. The following

lemma adopted from [17] establishes the connection

between a complex-valued random vector and its real-

valued counterpart

θ1

θ2

BS

User 1

User 2

Fig. 1. Illustration of the two-user NOMA system.

Lemma 8. A complex random vector Z ∈ CN is

constructed from a pair X = (XT
1 ,X

T
2 )

T of real random

vectors as

Z = X1 + jX2 (9)

where Xi ∈ RN for i = 1, 2. Equivalently, Z can be

represented as a pair Z = (ZT ,ZH)T . The connection

between Z and X is

X = MZ, Z = M−1
X (10)

where M is a 2N × 2N matrix given by

M =
1

2

[

IN IN
−jIN jIN

]

. (11)

Since M−1 = 2M, we have Z = 2MH
X.

III. CHANNEL MODEL

Consider a downlink wireless network consisting of

one BS and two user terminal. The BS has N ≥ 2
antennas and each user has a single antenna. The channel

vector between a user and the BS follows the MISO

Rician fading channel model given by

g =
√

β

(

√

1

K + 1
h+

√

K

K + 1
a

)

(12)

where β accounts for the large-scale fading due to

pathloss, h ∈ CN ∼ CN (0, IN ) models the normalized

NLOS component and a ∈ CN is a deterministic vec-

tor that captures the LOS component. The power ratio

between the LOS component and NLOS component is

determined by the Rician factor K. Assuming the N
BS antennas form a uniform linear array (ULA) with

half-wavelength antenna spacing, the LOS component

is modeled as a = [1, e−iπ sin(θ), · · · , e−iπ(N−1) sin(θ)]T

where θ is the azimuth angle of the user. While the one-

dimensional ULA is considered for its popularity, our

work can be extended to other antenna array patterns

such as uniform rectangular arrays (URAs) and uniform

circular arrays (UCAs) with minor modifications. It is
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also worth stressing that our work generalizes the ex-

isting work [8] that considers Rayleigh fading channels

with the Rician factor K → 0.

In this work, we focus on two arbitrary users and

characterize the QD probability, namely, the users chan-

nels permit the same performance using NOMA as that

by DPC. We follow the definition of QD probability

given in [8] for two users. Fig. 1 illustrates the con-

sidered scenario. To perform NOMA, the BS transmits

the combined signals of the two users i and j using

superposition coding. Suppose a fixed decoding order

(i, j). User i decodes the received signal by treating user

j’s signal as noise. As to user j, it performs SIC by first

decoding user i’s signal. Then user j decodes its signal

by subtracting user i’s signal from the received one. For

detailed treatments on NOMA with SIC, we refer readers

to [1], [8] and references therein.

IV. ANALYSIS OF QUASI-DEGRADATION

PROBABILITY

An efficient transmission scheme is important to the

achievable capacity of the NOMA system. A common

formulation for the optimal transmission scheme is to

design the precoding vectors that minimize the trans-

mission power subject to some quality-of-service (QoS)

constraints [6], [8], [23]. Specifically, for the two-user

NOMA where the BS transmits the combined signals of

the two users i and j using superposition coding, the pre-

coding vectors are designed to minimize the transmission

power subject to the target rate constraints ri and rj . The

same objective can be achieved by using DPC at the BS,

where the encoding order (i, j) is assumed to be fixed

and identical to the decoding order of NOMA. For both

NOMA and DPC, the design of the precoding vectors

heavily depends on the users’ channels. If the two users’

channels denoted as gi and gj , respectively, permit the

same minimum transmission power of NOMA as that of

DPC, their channels are quasi-degraded with respect to

ri and rj [6]. It is shown in [8] that the condition of

quasi-degraded channel can be expressed as

Q(Θ) ≤ ‖gi‖2

‖gj‖2
, (13)

where

Q(Θ) =
1 + ri
Θ

− riΘ

(1 + rj(1−Θ))2
(14)

and

Θ =

∥

∥

∥
gH
j gi

∥

∥

∥

2

‖gi‖2 ‖gj‖2
. (15)

To illustrate the principle of quasi-degraded channel, a

toy example is provided below. Two channel realizations

gi and gj are generated according to the Rician channel

model (12) with the parameters following the simulation

setup in Sec. VII with K = 5 dB, θ∆ = 10◦ and β∆ =
100.

gi =









0.0483 + 0.0046i
0.0077 − 0.0377i
−0.0214 − 0.0217i
−0.0288 + 0.0161i









,gj =









0.1846 + 0.0268i
0.066 − 0.0399i

−0.0515 − 0.0787i
0.1508 − 0.0428i









The given channel realizations have the gain power equal

to ‖gi‖2 = 180.5 and ‖gj‖2 = 13.5, respectively.

Besides, Θ = 0.236 and Q(Θ) = 0.404, which is

less than
‖gi‖

2

‖gj‖
2 = 8.404. Thus gi and gj satisfies the

condition of quasi-degradation. It can be verified that

the minimum power consumption by using NOMA to

satisfy the rate constraints ri = rj = 1 is identical to that

using DPC as follows. According to [8], we can obtain

the precoders for minimizing the power consumption

of NOMA, namely wi and wj for user i and user j,

respectively. Then the power consumption of NOMA is

PDPC = ‖wi‖2 + ‖wj‖2 = 0.08. On the other hand, the

optimal power consumption using DPC is [8]

PDPC =
rj

‖gj‖2
+

ri

‖gi‖2
1 + rj

1 + rj sin(Θ)
= 0.08.

The above example demonstrates that the notion of quasi-

degradation is useful to evaluate the optimality of NOMA

in approaching the performance of non-linear DPC.

For convenience, denote the power ratio of the users’

channels as
‖gi‖2

‖gj‖2
, Ξ.

Then the broadcast channels gi and gj are quasi-

degraded with probability [8]

P
(i,j)
QD = P [Q(Θ) ≤ Ξ]

= EΘ[P [Ξ ≥ Q(Θ)|Θ]]

=

∫ 1

0

∫ ∞

Q(ϑ)
fΞ(ξ)dξfΘ(ϑ)dϑ. (16)

In the sequel, we derive the PDFs of Ξ and Θ that are

essential to the evaluation of P
(i,j)
QD . To begin with, we

first analyze the distribution of the channel power for

the considered Rician MISO channel (12). It is worth

mentioning that when the channel vector is subject to

different path-loss and LOS components as considered

in this work, the distribution of channel power is non-

isotropic.
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A. Gamma Approximation for Channel Power

We first establish the approximated distribution of the

channel power ‖g‖2 for the MISO Rician channel in (12),

which serves as the root of our work. Without loss of

generality, the user index is dropped from the channel

vector. Recall that each entry in g is a complex Gaussian

random variable and thus the nth entry can be expressed

as

gn = Xn + iYn, n = 0, 1, · · · , N − 1. (17)

Since e−ix = cos(x)− i sin(x), we have

Xn =

√

βK

K + 1
cos(ϕn) +

√

β

K + 1
an

Yn = −
√

βK

K + 1
sin(ϕn) +

√

β

K + 1
bn (18)

where ϕn = (n− 1)π sin(θ), an and bn are independent

and follow the zero mean Gaussian distribution with vari-

ance 1/2. Together with the fact that ϕn is deterministic,

both Xn and Yn are Gaussian distributed as given by

Xn ∼ N
(

√

βK

K + 1
cos(ϕn),

β

2(K + 1)

)

, (19)

Yn ∼ N
(

−
√

βK

K + 1
sin(ϕn),

β

2(K + 1)

)

(20)

With each entry in g characterized above, the channel

power ‖g‖2 is the sum of squared complex Gaussian

random variables with distinct means and the same

variance. When Xn and Yn have unit variances, ‖g‖2
follows the non-central χ2 distribution with 2N degrees

of freedom according to Lemma 2. Unfortunately, the

unit variance condition is valid only when the Rician

factor K = −1/2, which is not realistic. Motivated by

the gamma approximation for the non-isotropic fading

channels in [24], we propose to approximate ‖g‖2 as

follows. Firstly, X2
n and Y 2

n are approximated as two

independent gamma random variables that are fully char-

acterized by the first two moments with closed form

expressions using Lemma 4. Then the channel power is

approximately gamma distributed according to Lemma 5.

Remark 2 (Equivalence to the Rayleigh fading case).

When K = 0, i.e., the Rician channel (12) reduces to

the Rayleigh channel the gamma approximation leads to

the same result as [8], which derives the QD probability

for the Rayleigh channel by considering the fact that

‖gi‖2 is a chi-square random variable with 2N degrees

of freedom. For the Rayleigh channel, Xn and Yn are

both zero mean Gaussian random variables. According

to Lemma 4, X2
n and Y 2

n have the same first and second

order statistics, e.g., Γ(12 , 2) for β = 1. Using the second-

order moment matching in Lemma 5, ‖gi‖2 as the sum

of 2N gamma random variables can be approximated

as a gamma random variable with the shape parameter

k = N and scale parameter θ = 2. Since Γ(N, 2) is

also a chi-square random variable with 2N degrees of

freedom, our analysis is equivalent to that in [8] for

Rayleigh channels.

Remark 3 (Hassle of the exact distribution). The exact

distribution of ‖g‖2 can be obtained using the result

in [25], which represents ‖g‖2 in the Eular form and

gives the distribution of the amplitude and the phase

components. In their results, the Fourier series repre-

sentation is used to numerically evaluate an improper

integral appeared in the density function of ‖g‖2. Hence,

their results are not useful to our work.

B. Distribution of Ξ

Given that the user’s channel power is approximated

to the gamma distribution, Ξ as the ratio of ‖gi‖2 and

‖gj‖2 follows the Beta prime distribution according to

Lemma 7.

C. Distribution of Θ

First we examine the structure of Θ. From (15), the

numerator of Θ is the squared norm of the inner product

between user i’s and user j’s channel vectors. The

channel vector contains the complex entries with non-

central means, in which case the PDF of the numerator of

Θ involves complicated expressions. On the other hand,

the denominator is the product of the two users’ channel

power. As mentioned in Sec. IV-A, each channel power

is non-central χ2 distributed. The PDF of the product

of two independent non-central χ2 random variables is

given in [26], which involves the infinite sum of the

modified Bessel function of the second kind.

From the above discussion, the original form of Θ in

(16) is analytically non-tractable. Alternatively, we resort

to an equivalent form as given by

Θ =
gH
i gjg

H
j gi

‖gi‖2 ‖gj‖2
=

gH
i Πgj

gi

‖gi‖2
(21)

where Πgj
= gj(g

H
j gj)

−1gH
j . In (21), the denominator

contains the channel power of one user only and thus

is simpler than the original form. From Sec. IV-A,

‖gi‖2 can be approximated as a gamma random variable.

On the other hand, the numerator follows a matrix

quadratic form of the random vector gi. Notice that

Πgj
is a stochastic matrix whose exact distribution is

not tractable. Motivated by the gamma approximation

for ‖gi‖2, we also approximate the numerator of Θ
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by gamma distribution. The approximated distributions

greatly simplify the analysis yet allow for numerical eval-

uation of the QD probability with reasonable accuracy.

We note that when the user channel is subject to Rayleigh

fading without the LOS component, the numerator of Θ
is χ2 distributed with degree of freedom 2 [8].

V. GAMMA APPROXIMATION FOR THE STOCHASTIC

QUADRATIC FORM

The numerator of Θ can be expressed in the quadratic

form as QA(X) where A = Πgj
= gj(g

H
j gj)

−1gH
j and

X = gi. Since gi is a complex random vector and Πgj
is

stochastic, existing results shown in Lemma 1 for the real

vector X and constant matrix A can not be used directly.

In this section, we derive the mean and the variance of the

complex quadratic form QS(Z), where S is a stochastic

matrix and Z is a complex vector. Then the numerator of

Θ in (21) is approximated as a gamma random variable

with the shape and scale parameters determined by the

mean and variance obtained in the following.

A. Mean

We first establish the mean of the complex quadratic

form QA(Z) when A is deterministic and Z ∈ CN .

Lemma 9. Consider a complex random vector Z where

the real and the imaginary parts have the same distri-

bution. For a deterministic matrix A, the mean of the

complex quadratic form QA(Z) is given as

E[QA(Z)] = tr(AΣZ) +QA(µZ) (22)

where µZ = E[Z] and ΣZ = E[ZZH ]− E[Z]E[YH ]

Proof: The proof is deferred to Appendix B.

Now consider the complex quadratic form QS(Z) with

a stochastic matrix S and a complex random vector Z.

The following lemma gives the mean of QS(Z).

Lemma 10. For a stochastic and hermitian matrix S, the

mean of the quadratic form QS(Z) where Z is a complex

random vector with mean µZ and covariance matrix ΣZ

is given as

E[QS(Z)] = tr(E[S])ΣZ) +QE[S](µZ) (23)

Proof: For a given instant of the stochastic matrix

S, (22) provides the conditional mean of the quadratic

form QS(Z). By taking the expectation over S, we have

ES[QS(Z)] = ES[tr(SΣZ) +QS(µZ)]

= ES[tr(SΣZ)] + µ
H
ZE[S]µZ

= tr(E[S]ΣZ) + µ
H
ZES[S]µZ (24)

where the last line is obtained because the trace is a linear

operator.

In using Lemma 10, Πgj
needs to be a Hermitian

matrix. It is easy to verify that Πgj
= ΠH

gj
. Moreover,

the expectation of Πgj
is required. Denote the random

variable (gH
j gj)

−1 , Ψ where the user index j is

dropped for brevity. The mean of Πg can be derived

as

E[Πg] = E[gΨgH ]

= EΨ[Eg[gΨgH ]. (25)

Because Ψ is also a function of g, solving (25) requires

the joint PDF of Φ and g, which is difficult to obtain.

For analytical tractability, we resort to an upper bound

of E[Πg] by ignoring the correlation between Ψ and g

such that (25) is simplified as

E[Πg] = E[G] ·E[Ψ]. (26)

where G , ggH ∈ CN×N . The two expectations in (26)

are derived as follows. According to the structure of g,

the (m,n)th entry of G is given by

G(m,n) =
βK

K + 1
cos(ϕm − ϕn)

+
β
√
K

K + 1

(

cos(ϕm)R(hn) + cos(ϕn)R(hm)

− sin(ϕm)I(hn)− sin(ϕn)I(hm)
)

+
β

K + 1

(

R(hm)R(hn) + I(hm)I(hn)
)

+
[ βK

K + 1
sin(ϕn − ϕm)−

√
βK

K + 1

(

cos(ϕm)I(hn)

+ sin(ϕn)R(hm)
)

− β

K + 1

(

R(hm)I(hn)

− I(hm)R(hn)
)]

i (27)

where hn denotes the nth entry of h. Given that

R(hm), I(hm), R(hn), and I(hn) are independent

zero-mean Gaussian random variable with variance

1/2, E[R(hm)R(hn)] = 0 when m 6= n and

E[R(hm)R(hn)] = 1
2 when m = n. After some

arrangements, the expectation of G(m,n) is equal to

E[G(m,n)]

=















βK
K+1

(

cos(ϕm − ϕn)− i sin(ϕm − ϕn)
)

, if m 6= n

βK
K+1

(

cos(ϕm − ϕn)− i sin(ϕm − ϕn)
)

+ β
K+1 , if m = n.

(28)

Next, we derive the expectation of Ψ. As explained in

Sec. IV-A, gHg can be well approximated to a gamma
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PQD =

∫ 1

0

∫ ∞

Q(θ)
fΞ(ξ)dξfΘ(ϑ)dϑ

(i)
=

∫ 1

0

(1/θS)
αS (1/θW )αW

B(αW , αS)

∫ ∞

Q(ϑ)

ξαW−1

( 1
θS

+ ξ
θW

)αW+αS

dξfΘ(ϑ)dϑ

(ii)
=

∫ 1

0

(Q(ϑ))−αSθαS

W

αSθ
αS

S B(αW , αS)
2F1(αW + αS , αS ;αS + 1;− θW

θSQ(ϑ)
)fΘ(ϑ)dϑ

(iii)
=

(

θW
θS

)αS
(

θW
θV

)αV 1

αSB(αW , αS)B(αV , αW )

∫ 1

0

2F1(αW + αS , αS ;αS + 1;− θW
θSQ(ϑ))

(Q(ϑ))αS

(

1 + θW
θV

)αV +αW
dϑ

(31)

random variable. This suggests that Ψ follows the inverse

gamma distribution (c.f. Lemma 6). Finally, E[Πg] in

(26) is obtained by combining (7) and (28).

B. Variance

Similar to Sec. V-A, we first derive the variance of

the complex quadratic form QA(Z) for a deterministic

matrix A.

Lemma 11. Consider a complex random vector Z where

the real and the imaginary parts have the same distribu-

tion. For a deterministic matrix A, the variance of the

complex quadratic form QA(Z) is given as

V[QA(Z)] = tr((AΣZ)
2) + 2QAΣZA(µ

H
Z ) (29)

where µZ = E[Z] and ΣZ = E[ZZH ]− E[Z]E[YH ]

Proof: The proof is deferred to Appendix C.

The case when A is a stochastic matrix is addressed

below.

Lemma 12. For a stochastic and hermitian matrix S,

the variance of the quadratic form QS(Z) where Z is a

complex random vector with mean µZ and covariance

matrix ΣZ is given as

V[QS(Z)] = tr
(

Σ2
Z(E[S])

2
)

+ 2QΣZ(E[S])2(µZ). (30)

Proof: The proof is deferred to Appendix D.

VI. APPROXIMATED QUASI-DEGRADATION

PROBABILITY

With the PDFs for Ξ and Θ obtained through the

gamma approximation, the QD probability in (16) can

be derived as (31) on the top of this page, where (i)

is obtained by using (8); (ii) is reached with the help

of [27, (3.194-2)] where 2F1(a, b; c; z) denotes the Gauss

hypergeometric function. Finally, (iii) is obtained by

Algorithm 1 Approximated QD probability

Require:

User channels gi and gj ; number of antennas N .

2: for l ← i, j do

for n← 1 to N do

4: Approxiate R(gl[n]) as Γ(kreal,gl[n], θreal,gl[n]);
Approximate I(gl[n]) as Γ(kimag,gl[n], θimag,gl[n]);

6: end for

end for

8: Approximate ‖gi‖
2

as W ∼ Γ(αW , θW ) using (5);

Approximate ‖gj‖
2

as S ∼ Γ(αS , θS) using (5);

10: Approximate QΠgj
(gi) as V ∼ Γ(kV , θV ) according to Sec. V;

Compute PQD using (32);

approximating Θ as the ratio of two gamma random

variables with the PDF given in (8). The definite integral

in (31) can be simplified using the series representation

of 2F1(a, b; c; z) [27, 9.10], leading to

P
(i,j)
QD =

∞
∑

k=0

(αW + αS)k(αS)k
(αS + 1)kk!

(−θW
θS

)k

×
(

1 +
θW
θV

)−(αV +αW )

G(k, ri, rj , αS , ϑ)

(32)

where (a)k = a(a + 1) · · · (a +
k) and G(k, ri, rj , αS , ϑ) =
∫ 1
0

(

1+ri
ϑ − riϑ

(1+rj(1−ϑ))2

)−(k+αS)
dϑ. For readers’

convenience, the procedure for computing the QD

probability is summarized in Algorithm 1.

As to the case of more than two users, the exact

analysis for the QD probability is subject to future work.

A conservative lower-bound in the pairwise sense can be

found as

PQD ≥
K
∑

i=1

K−1
∑

j=1

P
(i,j)
QD (33)
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Fig. 2. QD probability vs. Rician factor K for varied path-loss ratio

β∆ and fixed angle difference θ∆ = 10.

where K is the number of users and P
(i,j)
QD denotes the

QD probability between the ith and the jth user.

VII. NUMERICAL RESULTS

Numerical results are presented in this section to

evaluate the QD probability subject to different system

parameters. The accuracy of the proposed analysis for

the QD probability is also validated. Without loss of

generality, consider two arbitrary users and they are

assigned with the index i = 1 and j = 2. Table I lists

the simulation parameters. To reflect the difference of

the channel strength, define the path-loss ratio of the

two user channels as β∆ = β1/β2. A larger value of

β∆ mimics the scenario that the two NOMA users have

very different channel gains. By choosing β∆ ≥ 1, we

can ensure that decoding user 1’s signal first satisfies the

necessary condition of QD.

Fig. 2 plots the QD probability versus Rician factor K
with β∆ = 5 and 25, respectively. One can see that when

the user channels are more LOS dominant (i.e. larger K),

the QD probability is higher and the increasing trend

is more remarkable if the two user channels are more

different in their strengths (i.e., larger β∆). For example,

the QD probability with β∆ = 5 is about half of that

with β∆ = 25. This agrees with the known results that

NOMA gain is more pronounced when the two NOMA

users have more different channel strengths. Notice that

the above discussions are obtained with a fixed angular

difference between two user channels. The increasing

trend shown in Fig. 2 does not always hold, which will

be illuminated later. In terms of the analysis accuracy,

the analytical results mostly match to the simulated

TABLE I. DEFAULT SIMULATION PARAMETERS.

Azimuth angle θ1 = 30◦, θ2 = θ1 + θ∆
Number of BS antennas N = 4

Pathloss ratio β∆ = β1/β2
Rician factor K = 0 ∼ 10 dB [12]

Target rate r1 = r2 = 1 [8]

0 1 2 3 4 5 6 7 8 9 10

Rician factor K (dB)

0.7

0.75

0.8

0.85

0.9

0.95

1

Theory
Simulation

Fig. 3. QD probability vs. Rician factor K for varied angle difference

θ∆ and fixed pathloss ratio β∆ = 100.

ones. The discrepancy revealed on the figure is the

consequence of the approximated distributions used in

the analysis. Since various approximations are employed,

their impacts to the analysis accuracy will be examined

in the subsequent discussions.

The impact of the uesr’s angular difference to the

QD probability is investigated in Fig. 3 where the QD

probability is plotted as a function of Rician factor K
for θ∆ = 5 and 10. Here, β∆ is fixed to 100. A small

angular difference implies that the two users are close in

the angular domain and thus they are likely to be served

by the same transmitting beam using the typical beam

selection algorithm. It is interesting to see that when

the angular difference is small, i.e., θ∆ = 5, the QD

probability decreases with K, which is opposed to the

case when θ∆ = 10. This suggests that when the two

users are close in their azimuth angles and their channels

are LOS-dominated (namely, K is large), the probability

for their channels to be quasi-degraded becomes small.

This is true even the two user channels are very different

in strength (e.g, β∆ = 100). Consequently, NOMA is

not preferable because the chance for NOMA to achieve

the same performance as DPC is diminished. On the

other hand, NOMA can be beneficial to serve the users

with close azimuth angles if the LOS strengths of their

channels are not significant (e.g., θ∆ = 5 and K is
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Fig. 4. Mean and variance of ‖g1‖
2

for K = 10 dB.

small), yet the QD probability remains lower than the

case with a larger angular difference (θ∆ = 10). Here,

we observe a reasonable match between the analytical

results and the simulated ones except when K and θ∆
are small. The cause will be discussed next.

Since the exact analysis for the QD probability is

not tractable, several approximations are employed in

this work. We first examine the gamma approximation

for the channel powers because this is the root that

leads us to a tractable analysis for the QD probability.

Fig. 4 plots the theoretical mean and variance obtained

by first computing the shape and scale parameters of

a gamma random variable used to approximate ‖g1‖2
according to Remark 5. Then Lemma 3 is used to

compute the required theoretical mean and variance. The

analytical results are compared with the simulated ones

for β∆ ∈ [1, 100] and K = 10 dB. As shown, the gamma

approximation for ‖g1‖2 is promising to capture the first

two moments. Both the mean and the variance of ‖g1‖2
increase with β∆. The increasing trend can be explained

by observing the mean and the covariance matrix of the

channel vector g given by

µg1
=

√

βK

K + 1
a (34)

Σg1
=

β

K + 1
IN . (35)

Since each entry in µg1
is proportional to

√
β, the mean

of ‖g1‖2 is an increasing function of β. Likewise, Σg1

increases with β and so does the variance of ‖g1‖2.

Next, we assess the approximation for the numerator

of Θ, which is the angle between two user channels. As

explained in the beginning of Sec. V, the numerator of Θ
appears in a matrix quadratic form QΠg2

(g1) and can be
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Fig. 5. Trace values of two square matrices: E[g2g
H
2 ] and E[Πg2

].

approximated as a gamma random variable with the mean

the variance given in (26) and (30), respectively. The

mean in (26) is is approximately equal to the product of

E[g2g
H
2 ] and E[Ψ] by ignoring the dependence between

Ψ and g2. For Ψ, it is the inverse of ‖g2‖2 whose

mean and variance closely follow those of the gamma

distribution as revealed in Fig. 4. To validate the accuracy

of (26), Fig. 5 plots the trace values for E[g2g
H
2 ] and

E[Πg2
], both being a square matrix, for K ∈ [0, 10]

dB. It can be seen that the theoretical trace values of

E[g2g
H
2 ] using (28) perfectly match with the simulated

ones while the theoretical trace values of E[Πg2
] using

(26) slightly deviate from the simulated ones when K is

small. With a smaller Rician factor K, the user channel is

more sensitive to the dynamics in the NLOS component

and thus ignoring the dependence between Ψ and g2
introduces errors in evaluating the mean of Πg2

.

Finally, we validate the accuracy of the approxi-

mated mean and variance of the complex quadratic form

QΠg2
(g1). In Fig. 6, the theoretical and simulated mean

values are plotted as a function of K for varied θ∆
and β∆. One can see that the analytical mean values

match to the simulated ones, except the case with a

smaller angle difference θ∆ and the Rician factor K.

Under both conditions, (26) is more loose in approxi-

mating the true expectation in (25 due to the ignored

dependence between Ψ and g as explained above. It is

also noticed that the curve of E[QΠg2
(g1)] in Fig. 6

follows the same trend as the QD probability in Fig. 3.

Meanwhile, QΠg2
(g1) is proportional to Θ, according to

(21). Consequently, the QD probability is proportional to

Θ, the angle between channel vectors.

The variance of QΠg2
(g1) is plotted in Fig. 7. Com-
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Fig. 6. Means of QΠg2
(g1). Left: θ∆ = 5; right: θ∆ = 10.
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Fig. 7. Variances of QΠg2
(g1). Left: θ∆ = 5; right: θ∆ = 10.

paring with the mean values shown in Fig. 6, a larger

difference between the theoretical variances and the

simulated ones is revealed. This is because the variance

computed from (30) involves the square of E[Πg2
] that

pronounces the approximation error. Regardless the angle

difference and the pathloss ratio, the variance decreases

with K. This is because the variance is mainly caused by

the NLOS component and thus it becomes smaller when

the channel is more LOS dominant (i.e., larger K).

VIII. CONCLUSION

For MISO Rician fading channels, an analytical frame-

work is proposed to derive the QD probability that

characterizes the optimality of NOMA in approaching the

capacity region of the two-user broadcast channel. The

QD probability of interest involves a matrix quadratic

form whose exact distribution is not available. With

the aid of a series of approximations based on the

gamma distribution, we obtained the QD probability over

MISO Rician fading channels in closed form. Our work

is versatile in capturing important channel parameters

including both the large-scale and the small-scale fad-

ing, the array factors, and the angular information of

LOS paths. Numerical results indicate that the obtained

expression is accuracy for a wide range of the Rician

factor and the angle difference between two users. Our

results also reveal the coupled impact of channel angles

and LOS dominance.

• Unlike the Rayleigh fading channels that permit

a high QD probability as long as two users have

very different channel gains, the QD probability

in the Rician fading channels is diminished if the

two user channels are LOS dominant and close in

the angular domain. This is true even their channel

gain difference is large.

• When two users are close in the angular domain,

NOMA is possible to achieve the same perfor-

mance as DPC with a high probability (> 85%) if

their LOS paths are not dominant (K < 5 dB) and

the channel gain difference is sufficiently large.

• The QD probability is proportional to the angle

between two channel vectors and this result holds

true for both LOS dominant and non-dominant

fading channels.

The results of our work may find some useful applica-

tions. For example, user grouping is essential to NOMA

systems and the QD probability can be used to assess if

the channels of potential NOMA users are likely to be

quasi-degraded. In the emerging aerial-ground commu-

nications, the cellular-connected UAVs may access the

cellular band using NOMA. Since UAV-to-BS channels

are mostly likely dominated by LOS, the BS should use

NOMA to serve two or more UAVs carefully without

degrading the QD probability. Also, the matrix quadratic

form commonly appears in the performance metric of

multi-antenna wireless systems. One can approximate

the matrix quadratic form in random vectors with non-

central distributions to the gamma distribution with ac-

ceptance accuracy. Another interesting direction is to

replace the gamma approximation used in this work by

the Nakagami random variable, based on the fact that the

squared Nakagami random variable is the gamma random

variable. While the Nakagami model is widely used to

capture different fading conditions, the channel power

gain of the MISO channel becomes the sum of squared
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non-identically distributed Nakagami random variables.

Thus the analysis for QD probability using the Nakagami

model is not trivial and deserves further work.

APPENDIX A

PROOF FOR LEMMA 4

Denote Y = (Xσ )
2. For X ∼ N (µ, σ2), it follows

that Y is non-central χ2 distributed with one degree of

freedom and the non-centrality parameter equal to (µσ )
2.

Consequently, the mean and variance of Y are given by

(1 + (µσ )
2) and 2(1 + 2(µσ )

2), respectively. Since X2 =
σ2Y , the mean and variance of X2 can be found as

E[X2] = E[σ2Y ] = σ2 + µ2 (A.1)

V[X2] = V[σ2Y ] = 2σ2(σ2 + 2µ2). (A.2)

Using the first two moments and Lemma 3, (4) can be

obtained that completes the proof.

APPENDIX B

PROOF FOR LEMMA 9

Following Lemma 8, the complex random vector Z can

be constructed from a pair of real random vectors X =
(XT

1 ,X
T
2 )

T . When X1 and X2 are drawn from the same

distribution, they have the same means and covariance

matrices, i.e.,

E[X1] = E[X2] = µ

ΣX1
= ΣX2

= Σ. (A.3)

Since A is symmetric, it can be shown that the complex

quadratic form QA(Z) is connected through the real

quadratic form through the following equation.

QA(Z) = (XT
1 − jXT

2 )A(X1 + jX2)

= QA(X1) +QA(X2) (A.4)

Therefore,

E[QA(Z)] = E[QA(X1)] + E[QA(X2)]

= 2tr(AΣ) + 2QA(µ). (A.5)

which is obtained using Lemma 1 and the notations

defined in (A.3). Let’s work on the covariance matrix

of Z, denoted by ΣZ. Using (10), we have

ΣZ = E[ZZH ]− E[Z]E[ZH ]

= 4MHΣM. (A.6)

Therefore,

tr(ΣZ) = 4tr(MHΣM)

= 4tr(ΣMHM)

= 2tr(Σ) (A.7)

where we have used the fact that MHM = 1
2IN . By

multiplying ΣZ with matrix A, we have

tr(AΣZ) = 2tr(AΣ). (A.8)

On the other hand, we can establish the quadratic form

QA(µZ) in terms of the real-numbered vectors µ as

QA(µZ) = (µT − jµT )A(µ+ jµ)

= 2µTAµ

= 2QA(µ). (A.9)

Based on (A.8) and (A.9), (A.5) can be rewritten as (22)

and the proof is completed.

APPENDIX C

PROOF FOR LEMMA 11

Using the same argument for obtaining (A.5), the

variance of QA(Z) can be given as

V[QA(Z)] = V[QA(X1)] + V[QA(X2)]

= 4tr((AΣ)2) + 8QAΣA(µ). (A.10)

With the aid of (A.8), it can be established that

tr((AΣZ)
2) = 4tr((AΣ)2). (A.11)

In addition, the complex quadratic form QAΣZA(µH
Z )

can be expressed in terms of the real quadratic form as

QAΣZA(µ
H
Z ) = (µ+ jµ)A(4MHΣM)(µT − jµT )

= 4µAΣAµ
T

= 4QAΣA(µT ), (A.12)

which is obtained because MHM = 1
2IN . Using (A.11)

and (A.12), (A.10) can be rewritten as (30) that com-

pletes the proof.

APPENDIX D

PROOF FOR LEMMA 12

The variance of QS(Z) for stochastic S can be found

as

V[QS(Z)] = ES

[

V[QS(Z)]
]

= ES

[

tr((SΣZ)
2) + 2QSΣZS(µZ)

]

(i)
= tr

(

ES[(SΣZ)
2]
)

+ 2µH
ZES[SΣZS]µZ

(ii)
= tr

(

Σ2
Z(E[S])

2
)

+ 2µH
ZΣZ(E[S])

2
µ.
(A.13)

where (i) is obtained by exchanging the expectation and

the trace operations due to the linearity of the trace

operator and (ii) is obtained because the covariance ΣZ

is constant to the expectation over A. Finally, (30) is

obtained by writing the last term in the quadratic form.
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