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Real-Time Predictive Energy Management of Hybrid
Electric Heavy Vehicles by Sequential Programming

Toheed Ghandriz , Bengt Jacobson , Nikolce Murgovski , Peter Nilsson, and Leo Laine

Abstract—With the objective of reducing fuel consumption, this
paper presents real-time predictive energy management of hybrid
electric heavy vehicles. We propose an optimal control strategy that
determines the power split between different vehicle power sources
and brakes. Based on model predictive control (MPC) and sequen-
tial programming, the optimal trajectories of the vehicle velocity
and battery state of charge are found for upcoming horizons with
a length of 5–20 km. Then, acceleration and brake pedal positions
together with the battery usage are regulated to follow the requested
speed and state of charge, which is verified using a high-fidelity
vehicle plant model. The main contribution of this paper is the
development of a sequential linear program for predictive energy
management that is faster and simpler than sequential quadratic
programming in tested solvers and provides trajectories that are
very close to the best trajectories found by nonlinear programming.
The performance of the method is also compared to that of two
different sequential quadratic programs.

Index Terms—Predictive energy management strategy,
hybrid electric heavy vehicle, optimal control, sequential linear
programming.

I. INTRODUCTION

INCREASING concerns about the environment and global
warming together with regulations and consumer expecta-

tions have motivated the development of new solutions for reduc-
ing emissions from road transport. According to [1], heavy-duty
vehicles are responsible for 25% of CO2 emissions from road
transport in Europe. Among the different solutions for reducing
emissions, energy management control strategies based on road
topographic data have been shown to be effective in reducing the
fuel consumption of conventional heavy vehicles [2]–[4]. Here,
the challenge is to efficiently solve optimal control problems that
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can be implemented in real time on board, where the optimal
trajectories of the vehicle velocity and gear are found. In [5],
an efficient algorithm based on dynamic programming (DP) is
presented for optimal control of vehicle speed and gear selection.

Despite the recent improvements in the fuel efficiency of
conventional vehicles, emissions from road transport are still
rising due to increasing road freight traffic, as reported by [1].
Moreover, according to Regulation (EU) 2018/842, CO2 emis-
sions of new heavy-duty vehicles shall be reduced by 15% and
30% by the years 2025 and 2030, respectively, compared to those
of 2019, forcing the deployment of battery electric and hybrid
heavy vehicles to further reduce the emissions caused by road
transport and meet the environmental goals.

The problem of energy management of battery electric vehi-
cles is similar to that of conventional vehicles, where the only
dynamic state is the vehicle velocity. However, the problem
of energy management is more complicated for hybrid electric
vehicles (HEVs) since they have multiple power sources. In such
vehicles, the regenerative braking energy can be stored and used
when the internal combustion engine (ICE) is off or to help the
engine function in better operational conditions. HEVs benefit
from optimal energy management where the optimal trajectories
of the speed, power usage of different power sources and gear
selection are found based on the information of the upcoming
road. Hence, the size of the optimal control problem of HEVs
is larger than that of conventional vehicles, making its efficient
solution more challenging.

Different studies have been performed for solving the opti-
mal control problem of HEVs. Model-based solution methods
studied in the literature include strategies based on Pontryagin’s
minimum principle (PMP) and DP. These strategies can also
be divided in terms of the dynamic states of the problem and
the used simplifications as well as offline and online methods.
Methods using PMP are often online and attempt to derive ana-
lytic solutions by exploiting the necessary optimality solutions.
A well-known example in the HEV energy management field is
the equivalent consumption minimization strategy (ECMS) [6],
where the battery state of charge in the original problem is
replaced with its dual variable. The dynamic original problem
is then translated into a two-point boundary-value problem
that can be solved efficiently with single shooting techniques.
However, the computational advantage of PMP diminishes for
problems where the state constraints are frequently activated or
integer decisions are required. The problems of frequent active
constraints or integer decisions are typically addressed by direct
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transcription and then solved numerically. Common examples
are the multiple shooting and collocation methods for smooth
nonlinear programs [7], [8] or DP and branch, bound and cut
techniques for mixed-integer programs [9]–[11] that involve
decoupling the speed optimization from power-split and gear
optimization or by assuming that the speed profile is known a
priori.

DP is also a common method used for energy management
of HEVs [12], [13] that requires a high computational effort for
the number of states greater than one, which makes it suitable
mainly for offline implementations in that case. A comparison
between PMP and DP is provided by [6] for a fixed velocity
profile.

However, inclusion of speed optimization coupled with bat-
tery usage control is important. As discussed in [14], the velocity
profile affects the optimal energy management of HEVs. An
intuitive example of using the information about the upcoming
horizon for optimization of the vehicle velocity is that the ve-
locity can increase on downhill road segments by using only the
gravitational force while the engine is off. If the vehicle already
has a high velocity prior to reaching a downhill road section, then
its capacity for using the gravitational force is reduced because
it cannot have a speed higher than the legal maximum speed,
and thus, the use of the brakes becomes necessary. The vehicle
velocity can be reduced prior to the downhill part of the road, thus
avoiding the use of the brakes. In HEVs, the use of regenerative
braking is not the best option either because the wheel-to-wheel
energy efficiency (i.e., the efficiency of storing the electric
energy caused by regenerative braking in the battery and using it
for propulsion) is often less than 75%. Therefore, increasing the
vehicle velocity using the gravitational force should have priority
compared to using electric propulsion. Therefore, considering
the velocity as a dynamic state and optimizing its profile have
impacts on the energy management of HEVs that are coupled
with the power-split and gear optimization. Moreover, inclusion
of velocity optimization in energy management helps the vehicle
react optimally to traffic disturbances.

For problems comprising two or more continuous states,
online control strategies include stochastic DP [15] that predicts
future driving cycles and model predictive control where the
velocity, state of charge (SOC), and engine on/off and gear
profiles are simultaneously optimized, either by combining di-
rect methods, i.e., convex optimization and DP [16], [17], or by
combining DP and PMP [18]. Overviews of different methods
can be found in [19] and [20].

Solving and validating the actual problem of predictive energy
management of HEVs is challenging. In such a problem, the
cost function may include components such as fuel and electric
energy costs, battery and friction brake wear, and driving com-
fort. The system state can be described by the vehicle speed,
gear ratios, battery energy and engine on/off state, or any other
variables related to these characteristics, forming dynamic state
variables. In addition, control variables may include ICE power
requests, electric machine (EM) power requests on different
axles, and gear and braking power requests, depending on the
powertrain degrees of freedom. Including all these states and

control variables results in a dynamic, mixed–integer and nonlin-
ear optimal control problem that is very difficult to solve in real
time. In this paper, instead, the problem is segregated into three
control layers with different horizons and update frequencies,
enabling us to test the algorithm using a high-fidelity complex
plant vehicle model representing an actual vehicle.

This paper proposes using a sequential linear program (SLP)
rather than the sequential quadratic program (SQP) presented
in [16], [17], [21] to find optimal trajectories of the vehicle
velocity and SOC together with continuous and discrete inputs.
The primary benefit of using the SLP is that it is faster than
the SQP for the tested solvers, e.g., Gurobi, by a factor of 4 on
average for different horizon lengths. The performance of the
SLP was compared to that of the SQP in terms of the single
sequence computation speed, number of sequential iterations
before convergence and obtained optimal trajectories. Moreover,
in the SLP, the cost function and constraints were sequentially
updated to remove the linearization error. In addition, this paper
presents two different SQP methods that are slightly different
from the methods previously presented in the literature. In the
first SQP, the convex approximation of the fuel rate measurement
data was updated during sequential iterations by extracting the
positive semidefinite part of the Hessian of the quadratic approx-
imation to ensure convexity. In the second SQP, the quadratic
approximating function of the fuel rate was not updated during
sequential iterations. However, the included terms of quadratic
approximation were selected to keep the approximation always
convex for the given measurement data, resulting in a better fit;
i.e., the convex approximation was 34% closer to the measure-
ment data compared to similar works [16], [21]–[23] where the
quadratic approximation was used for general nonlinear fuel rate
measurement data. However, the second SQP does not remove
the error caused by the approximation of the fuel rate during
sequential iterations. Nevertheless, it requires less computations
compared to the first SQP and avoids overfitting the noisy
data.

In all three methods, the states are the velocity, battery energy
and time, and discrete control variables, namely, gear and engine
on/off, are also present. The discrete control variables were
handled by solving a secondary optimization subproblem at
each sequential iteration in the first control layer. While the gear
optimization subproblem is not predictive, it is constrained by
the rate of the gearshift. There is no restriction on replacing the
instantaneous gear optimization subproblem with a predictive
optimal control subproblem, e.g., using DP as presented in [16],
[17], [24] with the expense of additional computational effort.
Furthermore, in this paper, the engine on/off state was incorpo-
rated into the gear selection, where gear number zero indicated
an inactive engine and any other number indicated an operating
engine.

The rest of the paper is organized as follows. Section II
presents a vehicle model together with the nonlinear and mixed–
integer optimal control problem. Section III outlines the solution
method, including the control hierarchy and sequential linear
and quadratic programs. Section IV presents the results. Finally,
section V and VI provide a discussion and conclude the paper,
respectively.
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Fig. 1. Energy flow (i.e., input/output powerP ) in different powertrain subsys-
tems. The arrows illustrate the direction of the energy flow. Red arrows indicate
that the energy can also flow in the opposite direction. A dot before an arrow
shows a source of power. The subscripts f, e, de, det, ew, br, and w represent
fuel, engine, dissipation in engine, dissipation in the transmission from wheels
to the engine, engine at wheels, friction brake (or engine brake), and wheels,
respectively. Similarly, subscripts b, db, a, mc, m, dm, mw, and dmt represent
battery, dissipation in the battery, auxiliaries, motor (i.e., EM) consumption,
motor, dissipation in the motor, motor at wheels, and dissipation in the EM
transmission, respectively.

II. PROBLEM FORMULATION

A. Vehicle Model

A vehicle is modeled as a lumped mass with wheels that have
rolling resistances. The total force at the wheels Fw(t) at time t
is given by

Fw(t) = mv̇(t) +mg sin α(s(t)) +mgfr cos α(s(t))

+ 0.5ρaAfcdv(t)
2, (1)

where m is the vehicle total mass or the equivalent total mass,
v is the vehicle longitudinal velocity, the three last terms in
the right-hand side of Eq. (1) represent the road grade, rolling
resistance (modeled as a body force), and air resistance forces,
respectively, and g,α, fr, ρa, s(t),Af and cd are the gravitational
acceleration, road grade, distance traveled at time t, rolling
resistance coefficient, air density, equivalent vehicle front area
and air drag coefficient, respectively.

Then, the total power Pw(t) needed for the vehicle acceler-
ation and the compensating resistance forces at the wheels is
given by

Pw(t) = Fw(t)v(t). (2)

Fig. 1 illustrates the parallel hybrid powertrain used in this
paper and the energy flow (i.e., power) between the different
powertrain subsystems. In this figure, at an instance or a given
interval of time, for diesel propulsion,Pf ,Pe,Pde,Pew, andPdet

denote the fuel power, the power at the ICE output, the power
dissipated in the ICE, the power at the ICE transmission output
and the power dissipated in the ICE transmission, respectively.
On the electric propulsion side, Pb, Pdb, and Pa denote the
power provided by or stored in the battery, dissipated in the
battery, and used for the auxiliaries, respectively, and Pmc, Pdm,
Pm, Pdmt and Pmw denote the power consumed or regenerated
by the EM, dissipated in the EM, at the EM output/input to/from
the transmission, dissipated in the EM transmission and at the
output/input to/from wheels, respectively, and Pbr is the friction

brake power. No inertial flywheels or elastic shafts are modeled
in the powertrain used in this paper. Therefore, for each pow-
ertrain subsystem, a power balance can be assumed since no
energy is stored or generated inside the powertrain, except in
the fuel tank and the battery. For example, the energy balance
for the ICE transmission, wheel, and EM transmission can be
written as

Pew + Pdet − Pe = 0 (3a)

Pw + Pbr − Pew − Pmw = 0 (3b)

Pmw + Pdmt − Pm = 0, (3c)

where the energy flow is positive if energy flows out of a
subsystem, e.g. all dissipative terms are positive.

The function arguments are omitted in Eqs. (3) for increased
readability. Generally, the powertrain component dissipations
are nonlinear functions of the speed, component power, selected
ICE gear,γe, or EM gear,γm. Furthermore, notably, stopping and
reversing are not modeled, and the terms describing the inertia
of rotating parts in the driveline and wheels and energy loss due
to tire slip are neglected. However, the inertia of rotating parts
can be considered by using an equivalent additional mass.

Measured data can be used for describing the power dissipa-
tion in the ICE and EM for varying torques and angular speeds.
The data can be read directly from the maps or be fitted by
high-degree nonlinear curves. The torque and angular speed of
the ICE and EM are related to their power and the vehicle speed
according to

ωe(t) =
re(γe(t))

Rw
v(t), Te(t) =

1
ωe(t)

Pe(t), (4)

ωm(t) =
rm(γm(t))

Rw
v(t), Tm(t) =

1
ωm(t)

Pm(t), (5)

whereRw, re,Te, andωe are the wheel radius, gear ratio from the
wheel to engine, engine torque, and engine speed, respectively,
and similarly for the EM, rm, Tm and ωm denote the gear ratio
from the wheel to EM, EM torque and speed, respectively. Eqs.
(4) and (5) are not valid for the neutral gear.

The measurement data can be fitted by a polynomial surface of
degreen for the ICE fuel energy rate Ėf = Pf and EM consumed
powerPmc as follows; however, any other surface fitting function
could also be valid.

Pf(ωe(t), Te(t)) =

n∑
i=0

n∑
j=0

aijωe(t)
iTe(t)

j , (6)

Pmc(ωm(t), Tm(t)) ={∑n
i=0

∑n
j=0 h

+
ijωm(t)

iTm(t)
j , Tm(t) > 0,∑n

i=0

∑n
j=0 h

−
ijωm(t)

iTm(t)
j , Tm(t) ≤ 0,

(7)

where aij , h+
ij and h−ij denote the coefficients of the fitted

functions. Fig. 2 shows the measurements and a polynomial
surface fitting of degree 5 for the engine fuel energy rate. Using a
high degree of the fitted surface resulted in a relatively accurate
approximation of the measurement data. Similarly, the fitted sur-
faces ofPmc are illustrated in Fig. 3, where the measurement data
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Fig. 2. Fuel consumption rate versus engine torque and speed based on the
experimental measurements. The experimental data are fitted by a surface of
degree 5.

Fig. 3. EM power consumption Pmc versus torque and speed based on the
experimental measurements. The positive and negative torques are fitted by
surfaces of degree 5.

of the positive and negative torques are fitted using two different
surfaces to ensure that the EM torque and the EM consumed
power Pmc have the same sign. The raw measurement data of
the power loss in the EM are based on the machine efficiency.
The conversion from the efficiency map to the consumed-power
map is explained in the Appendix.

The battery can be modeled assuming a constant open-circuit
voltage Vb and a resistance R, whereas the voltage drop due to
the battery resistance is negligible [23].

Pdb(Pmc(t), Pa(t)) =
R

V 2
b

(Pmc + Pa)
2. (8)

Furthermore, in this paper, the transmission dissipation is
a linear function of the power input independent of the gear
selection, and therefore,

Pdet(Pe(t)) = Pe(t)− ηtePe(t), Pe(t) ≥ 0, (9)

and

Pdmt(Pm(t)) =

{
Pm(t)− ηtmPm(t), Pm(t) > 0

−(Pm(t)
ηtm

− Pm(t)), Pm(t) ≤ 0,
(10)

where ηte represents the transmission efficiency of the engine
and ηtm denotes the transmission efficiency of the EM. The
dissipation power Pdmt is always positive; therefore, a negative
sign is necessary in the second part of Eq. (10).

The limits of the powertrain components in transforming
energy (or power, force and torque) must also be taken into
account. These limits on torques in the engine and EM are shown
in Fig. 4 together with piecewise fitted curves. The polynomial
fitted curves of degree n for each of the pieces are given by

Tli(ω(t)) =
n∑

j=0

bijω(t)
j , i = 1, . . . , 4, (11)

where Tl denotes the torque limit fitted curve and bi is the
polynomial coefficient.

The capacity and power of the battery are also limited. The
battery SOC is given by

soc(tf) = soc(t0)− 1
Ebmax

∫ tf

t0

Pb(t)dt, (12)

where Ebmax is the battery maximum energy capacity.

B. Nonlinear and Mixed–Integer Problem of Predictive
Energy Management

The nonlinear and mixed–integer optimal control problem in
this paper is defined as follows.

Find uc(s) ∈ Rncc ,ud(s) ∈ Nncd

to minimize J = C(x(s0),x(sf))

+

∫ sf

s0

L(x(s),u(s), s)ds (13a)

subject to
dx(s)

ds
= f(x(s),u(s), s), x(s) ∈ Rns (13b)

x(s0) = x0 (13c)

x(sf) = xf (13d)

g(x(s),u(s), s) ≤ 0, (13e)

where x represents ns states, u = [uc,ud] represents ncc con-
tinuous andncd discrete control variables, and J ,C, s0, sf andL
represent the cost function, cost of initial and final states, initial
position, final position and stage cost function, respectively.
Dynamic model equations are given by the constraint equations
(13b)-(13d). Finally, constraint equation (13e) restrains the ca-
pability of the powertrain components and the bound state and
control variables. In the above optimal control problem, any
other independent variable instead of position s can be used.

In the case of predictive energy management of HEVs, the
road grade profile is described by the position, so it is easier
to describe the optimal control problem and the vehicle model
with respect to the distance traveled rather than time since
this removes the nonlinearity of the road grade as a function
of position in the optimal control problem. Moreover, it helps
avoid the mixed-integer problem caused by an abrupt change
in the road speed limit over distance traveled because modeling
the step-change in the speed limit in the time domain yields a



GHANDRIZ et al.: REAL-TIME PREDICTIVE ENERGY MANAGEMENT OF HYBRID ELECTRIC HEAVY VEHICLES BY SEQUENTIAL PROGRAMMING 4117

Fig. 4. Torque limit as a function of speed obtained by performing experimental measurements, and the fitted curves: a) Engine, where the fitted curves are
Tle1-Tle4; b) EM, where the fitted curves are Tlm1-Tlm4.

mixed-integer problem. The conversion from the time to distance
s is performed by integrating

dt =
ds

v̄(s)
, v̄(s) = v(t). (14)

Basically, v̄(·) and v(·) are different functions; however, ¯ is
removed from future equations for simplicity of notation.

Furthermore, the relationships between power P , energy E,
force F , torque T and velocity v are given by the following.

P (s) =
dE(s)

dt
= v(s)

dE(s)

ds
= v(s)F (s) = ω(s)T (s).

(15)

The states comprise vehicle velocity v, battery SOC soc,
and travel time t, i.e., x = [v, soc, t]. The travel time must
be introduced as a state since calculation of time is necessary
for constraining the total trip time, whereas other equations
remain independent of time. Furthermore, the control variables
are equivalent engine output force Fe =

dEe(s)
ds , EM force on

wheels Fmw = dEmw(s)
ds , brake force on wheels Fbr =

dEbr(s)
ds ,

integer gears of ICE γe and integer gears of EM γm, which
are uc = [Fe, Fmw, Fbr] and ud = [γe, γm]. Thereby, using the
vehicle model, the nonlinear and mixed–integer optimal control
problem of energy management of HEVs can be defined as
follows. Notably, the problem below does not have any discrete
states. A compact form of the problem in the form of Eqs. (13)
where all of the algebraic equations are solved for the state and
control variables is given below in this section of the paper.

Find Fe(s), Fmw(s), Fbr(s), γe(s), γm(s)

to minimize Jnl =

∫ sf

s0

(Ff(·) + Fbr(s) + Fdel(s)) ds

(16a)

subject to Fw(s) = mv(s)
dv(s)

ds
+mg sin α(s)+

mgfr cos(α(s)) + 0.5ρaAfcdv(s)
2 (16b)

dsoc(s)

ds
= − Fb(s)

Ebmax
(16c)

dt(s)

ds
=

1
v(s)

(16d)

v(s0) = v0, soc(s0) = soc0, t(s0) = t0

(16e)

soc(sf) = socf (16f)

Fw(s) + Fbr(s)− Few(s)− Fmw(s) = 0
(16g)

Few(s) = ηteFe(s) (16h)

Fb(s) = Fmc(s) + Fdb(s) + Fa(s) (16i)

Fdb(s) =
Rv(s)

V 2
b

(Fmc(s) + Fa(s))
2 (16j)

Fmc(s) = (16k)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
v(s)

∑5
i=0

∑5
j=0

(
h+
ij

(
rm(γm(s))

Rw
v(s)

)i

(
Rw

rm(γm(s))Fm(s)
)j

)
, Fmw(s) > 0

1
v(s)

∑5
i=0

∑5
j=0

(
h−ij

(
rm(γm(s))

Rw
v(s)

)i

(
Rw

rm(γm(s))Fm(s)
)j

)
, Fmw(s) ≤ 0

Fdel(s) = Fdmt(s) + Fdm(s) + Fdb(s) (16l)

Fdm(s) = Fmc(s)− Fm(s) (16m)

Fdmt(s) = Fm(s)− Fmw(s) (16n)

Fm(s) =

{
Fmw(s)
ηtm

, Fmw(s) > 0

ηtmFmw(s), Fmw(s) ≤ 0
(16o)

Rw

re(γe(s))
Fe(s)
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≤ min

⎧⎨
⎩

3∑
j=0

beij

(
re(γe(s))

Rw
v(s)

)j

, i = 1, . . . , 4

⎫⎬
⎭

(16p)

Rw

rm(γm(s))
Fm(s)

≤ min

⎧⎨
⎩

3∑
j=0

bmij

(
rm(γm(s))

Rw
v(s)

)j

, i = 1, 2

⎫⎬
⎭

(16q)

− Rw

rm(γm(s))
Fm(s)

≤ −max

⎧⎨
⎩

3∑
j=0

bmij

(
rm(γm(s))

Rw
v(s)

)j

, i = 3, 4

⎫⎬
⎭

(16r)

t(sf) ≤ ttref (16s)

soc(s) ∈ [socmin, socmax] (16t)

v(s)Fb(s) ∈ [pbmin, pbmax] (16u)

vmin(s) ≤ v(s) ≤ vmax(s) (16v)

0 ≤ Fe(s) (16w)

0 ≤ Fbr(s). (16x)

The cost function Jnl in Eq. (16a) is nonlinear, and its mini-
mization represents the minimization of the input engine energy,
i.e., fuel Ef , and energy dissipated in the EM Edel and by the
brakes Ebr, thereby minimizing their utilization. The energy
dissipated in the EM Edel was included in the cost function to
make later linearization of the EM energy losses possible, as
described in later sections. While the brake energy Ebr does not
have to be included in the cost function, it helps achieve faster
convergence of the nonlinear program, SQP, and SLP.

The term Ff is the equivalent engine fuel force and can be
obtained as follows. Using Eqs. (4) and (6) and surface fitting
of degree n = 5 together with the change of the variable from
time to space, the derivative of the fuel energy consumption with
respect to the distance traveled (i.e., the equivalent fuel force)
can be derived as

Ff(Fe(s), v(s), γe(s), s)

=
dEf(Fe(s), v(s), γe(s), s)

ds

=
1

v(s)

5∑
i=0

5∑
j=0

aij

(
re(γe(s))

Rw
v(s)

)i (
Rw

re(γe(s))
Fe(s)

)j

.

(17)

Furthermore, Eqs. (16b), (16c) and (16d) are dynamic or state
equations equivalent to Eqs. (1), (12) and (14), respectively. Eqs.
(16e)-(16f) determine the initial and final values of the states,
respectively. Eq. (16g) represents the force equilibrium on the
wheels, where Few represents the equivalent force at the ICE
transmission output. Eq. (16h) accounts for energy dissipation

in ICE transmission. Eq. (16i) represents the equivalent force
equilibrium in the battery, where Fmc represents the equivalent
force between the battery and EM given by Eq. (16k), which
also accounts for dissipation in the EM for positive and negative
torques, similar to Eq. (7), Fdb is the equivalent force dissipated
in the battery given by Eq. (16j), and Fa is the given auxiliary
force. Eqs. (16l)-(16o) represent the equivalent dissipated force
Fdel in the electric driveline, which can be derived using Eqs.
(3), (15), (7), (8), (10) and (5), where Fdm and Fdmt represent
equivalent forces dissipated in the EM and EM transmission,
respectively. Eqs. (16p), (16q) and (16r) impose limits on the
torques of the ICE and EM shown in Fig. 4. The total trip time is
constrained to be equal to or less than the reference trip time ttref
through Eq. (16s), where the method for obtaining the reference
trip time is explained in the Appendix. The battery energy level
constraint is enforced through limiting battery SOC soc in (16t).
Eqs. (16u) and (16v) limit the battery power and vehicle velocity,
and finally, Eqs. (16w) and (16x) impose a lower bound on the
ICE equivalent force and brake force, respectively.

By solving the algebraic constraints for control variables and
performing back-substitution, a compact form of Eqs. (16) is
obtained in the form of Eqs. (13).

Find Fe(s), Fmw(s), Fbr(s), γe(s), γm(s)

to minimize Jnl =

∫ s=sf

s=s0

(
Ff(·) + Fbr(s)− Fmw(s)

+Fmc(s) +
Rv(s)

V 2
b

(Fmc(s) + Fa(s))
2

)
ds

(18a)

subject to f1 :
dv(s)

ds
=

1
mv(s)

(Fbr(s)− ηteFe(s)

− Fmw(s)−mg sin α(s)−mgfr cos α(s)

−0.5ρaAfcdv(s)
2
)

(18b)

f2 :
dsoc(s)

ds
= − 1

Ebmax

(
Fmc(s)

+
Rv(s)

V 2
b

(Fmc(s) + Fa(s))
2 + Fa(s)

)
(18c)

f3 :
dt(s)

ds
=

1
v(s)

(18d)

v(s0) = v0, soc(s0) = soc0, t(s0) = t0

(18e)

soc(sf) = socf (18f)

g1 :
Rw

re(γe(s))
Fe(s)

−min

⎧⎨
⎩

3∑
j=0

beij

(
re(γe(s))

Rw
v(s)

)j

, i = 1, . . . , 4

⎫⎬
⎭

≤ 0 (18g)
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g3 : −RwFmw(s)ηtm
rm(γm(s))

+ max

⎧⎨
⎩

3∑
j=0

bmij

(
rm(γm(s))

Rw
v(s)

)j

, i = 3, 4

⎫⎬
⎭

≤ 0 (18h)

g4 : t(sf)− ttref ≤ 0 (18i)

g5 : socmin − soc(s) ≤ 0 (18j)

g6 : soc(s)− socmax ≤ 0 (18k)

g7 : pbmin − v(s)

(
Fmc(s) +

Rv(s)

V 2
b

(Fmc(s)

+Fa(s))
2 + Fa(s)

) ≤ 0 (18l)

g8 : v(s)

(
Fmc(s) +

Rv(s)

V 2
b

(Fmc(s) + Fa(s))
2

+ Fa(s)

)
− pbmax ≤ 0 (18m)

g9 : vmin(s)− v(s) ≤ 0 (18n)

g10 : v(s)− vmax(s) ≤ 0 (18o)

g11 : −Fe(s) ≤ 0 (18p)

g12 : −Fbr(s) ≤ 0, (18q)

where C(x(s0),x(sf)) = 0, and Fmc is given by Eq. (16k).
A constraint on the acceleration can also be considered .

However, it is not directly applied in this paper. The constraints
on the acceleration and jerk can be applied in the second control
layer in order to increase comfort. However, they are indirectly
applied in the first layer through the minimization of the cost
function where acceleration and deceleration are discouraged
through the use of the propulsion and brake energies.

III. METHOD

A. Control Layers

The overall control hierarchy from the top to bottom layers is
depicted in Fig. 5. There are three control layers with different
update frequencies. The focus of this paper is the first control
layer. However, a short description of other control layers is
provided here to give an overview of the vehicle propulsion
control system.

The first control layer plans the vehicle velocity vreq, energy
of the battery socreq and gear trajectories using information from
the surrounding environment up to 20 km ahead. The surround-
ing environment information includes traffic, topography, road
curvature, lanes, legal speed limits, dynamic speed limits due to
traffic and speed limits due to road curvature; in this paper, road
topography and legal speed limit information has been included.
The outputs of the first layer are the requested speed, battery
SOC and gear trajectories, which are sent to the second and
third layers. The gear trajectory includes the neutral state that is
equivalent to the ICE being off. In the first layer, the states are

Fig. 5. Overall control hierarchy. The first layer plans vehicle velocity vreq,
battery SOC socreq, ICE gear γe,req and EM gear γm,req for horizons of up to
20 km. The vehicle speed control layer is responsible for tracking the requested
speed coming from the first layer by generating the propulsion power Pprop,req

and brake power Pbrk,req requests, or equivalently the brake and acceleration
pedal positions. Finally, the SOC-following control layer that is a part of the
vehicle device actuation is responsible for following the SOC trajectory coming
from the first layer using the ECMS. Signals a, v, s, soc, γe and γm denote
feedback signals, i.e., acceleration, velocity, distance traveled, battery SOC, ICE
gear and EM gear, respectively.

the velocity, battery energy and time, and the control variables
are the ICE, EM, brake force, and gear. Based on MPC theory,
optimal trajectories have been found using the SLP or SQP.
The gear trajectories serve as inputs to the linear or quadratic
programs, while they are sequentially optimized separately in
each sequential iteration, converging to a suboptimal trajectory
as explained later in this section.

The second and third layers are necessary for compensating
the imperfections of the actual road and vehicle that cannot
be described by the model used in the first layer. The second
layer plans requested propulsion power Pprop,req and brake
powerPprop,req, or equivalently the brake and acceleration pedal
positions. The main objective of this layer is to provide suitable
power requests for the vehicle to follow the requested speed
trajectory provided in the first layer while guaranteeing comfort
and efficiency. This layer was implemented as short horizon
MPC similar to the controller presented in [25].

Finally, the third layer is responsible for monitoring and
control of device actuation. This layer includes an instantaneous
control strategy of battery energy – in particular, the ECMS [6],
[26], [27], using the reference SOC trajectory generated in the
first control layer.

Notably, when testing the high-fidelity vehicle plant model,
it was assumed that the vehicle was equipped with an automatic
gearbox that handled gear selection in the best possible manner.
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Fig. 6. First control layer and sequential programming. Arrows illustrate data
flow, where blue arrows represent data flow in a loop. Upon convergence of the
sequential program, γ̂e(s), γ̂m(s), v̂(s) and ˆsoc(s) are sent to the next layer as
requests, where (ˆ) above a variable indicates that it is a reference value around
which linearization is performed. Convergence occurs if the difference between
two successive state trajectories is less than a certain value.

Therefore, such a gearbox was allowed to override the gear
request coming from the first layer, except for the neutral gear
request.

B. Predictive Energy Management Using Sequential
Programming

A sequential program solves the optimal control problem
sequentially until convergence is reached. First, the problem
must be initialized and reference variables, i.e., reference vehicle
velocity, engine, and EM energy (or equivalent force) trajecto-
ries, must be determined together with the gear trajectory. Then,
the sequential program can be performed as follows for a single
horizon.

1) Solve the optimal control problem by linear programming
(LP) or quadratic convex programming (QP).

2) Update the continuous reference variables, i.e., continuous
state and control variables, based on the solution of LP or
QP.

3) Solve the gear optimization subproblem to find new ref-
erence discrete control variables, i.e., gear trajectory.

4) Stop if convergence is reached; otherwise, go to step 1.
Algorithm 1 and Fig. 6 explain the above stages. In Algorithm

1, (ˆ) above a variable indicates that it is a reference value, i.e.,
it comes from the previous sequence in sequential programming
or is generated by initial–reference generation around which lin-
earization is performed. Initialization of the problem is explained
in the Appendix.

LP and QP cannot handle mixed–integer problems. Thereby,
this paper finds suboptimal discrete variables, i.e., gears, by
solving a heuristic optimization subproblem that is sequentially
iterated to reach convergence. The gear optimization subprob-
lem instantaneously finds the best gear γ(si) by minimizing
the energy consumption given the component (i.e., ICE or EM)
force and speed; then, starting from position zero, γ(si−1) is

Algorithm 1: Sequential Programming and Gear Optimiza-
tion in the First Control Layer.

Input:
Initial states:
x(s0) = [v(s0), soc(s0), γe(s0), γm(s0)],
initial reference (guess) state trajectories (around which the
nonlinear equations will be linearized in the first
iteration): x̂0(s) = [v̂0(s), ˆsoc0(s), t̂0(s)],

initial reference (guess) input trajectories:
û0(s) = [ûc0(s), ûd0(s)],

where the initial (guess) continuous input trajectories are:
ûc0(s) = [F̂e0(s), F̂mw0(s), F̂br0(s)]

and the initial (guess) discrete input trajectories are:
ûd0(s) = [γ̂e0(s), γ̂m0(s)];

Initialization: j ← 0;
1: while not convergeddo
2: Evaluate the gradient of the cost function and

Jacobians of constraints, linearize the constraints, and
perform a convex approximation of the cost function if
needed to build LP or QP;

3: Solve the LP or QP by calling the optimization solver
to find x(s) and continuous inputs uc(s);

4: Solve the two-gear optimization problems (one for the
EM and one for the ICE), given x̂(s) and ûc(s), to find
discrete inputs ud(s);

5: Update the state-input guess (reference trajectories)
x̂j(s) and ûj(s) = [ûcj(s), ûdj(s)] to ensure descent
in the Newton direction, e.g., with step size α ∈]0, 1]
[28]:
[x̂(j+1)(s), ûc(j+1)(s)] = [x̂j(s), ûcj(s)] +
α([x(s), uc(s)]− [x̂j(s), ûcj(s)]);
ûd(j+1)(s) = ud(s)

6: j ← j + 1;
7: end while
8: return [x̂j(s), ûcj(s), ûdj(s)].

updated to γ(si) if 1) a certain time Δt has passed after the
latest gearshift, 2) the fuel conservation is higher than a certain
value, and 3) γ(si−1) is not feasible anymore. The mentioned
three conditions prevent frequent gearshifts.

For the ICE, γe(si) is found as follows for the given position
si.

Find γe(si) ∈ [0, . . . , 12]

to minimize Ff(γe(s)) (19a)

subject to 0 ≤ Rw

re(γe(s))
F̂e(s) ≤ Tle(

re(γe(s))

Rw
v̂(s))

(19b)

ωemin ≤ re(γe(s))

Rw
v̂(s) ≤ ωemax. (19c)

Gearshift is allowed in several steps, e.g., from neutral gear
0 to the highest gear 12 or vice versa. Tel, ωemin and ωemax

represent engine maximum torque and speed limits according
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to Fig. 4. The cost function and constraints of the optimization
problem (19) are nonlinear. However, the solution can be found
quickly along the horizon due to the low number of feasible
gearshifts. A similar optimization problem can be solved for EM
gear selection, while in this paper, γm(s) = γ̂m(s) is assumed
to be a fixed value. Initial–reference generation is described in
Appendix A.

C. Sequential Linear Programming

To derive a linear optimal control problem, the cost func-
tion L and constraints f and g should be linearized with re-
spect to the control variables and continuous states z(s) =
[Fe(s), Fmw(s), Fbr(s), Fdel(s), v(s), soc(s), t(s)] around ref-
erence ẑ(s), i.e.,

Llin(z, s) = L(ẑ, s) +∇TL(ẑ, s)[z − ẑ], (20)

f lin
i (z, s) = fi(ẑ, s) +∇T fi(ẑ, s)[z − ẑ], i = 1, . . . , 3,

(21)

glinj (z, s) = gj(ẑ, s) +∇T gj(ẑ, s)[z − ẑ], j = 1, . . . , 12,
(22)

where ∇ = d
dz is the gradient operator. The function argument

is removed from z(s) for increased readability. Notably, the
LP and QP discrete variables are fixed, i.e., γe(s) = γ̂e(s) and
γm(s) = γ̂m(s). Obtaining the initial value of these reference
trajectories is described in Appendix A. New control variable
Fdel(s) has been added as explained below.

Notably, not all of the terms of the cost function and con-
straints of optimization problem (18) are nonlinear with respect
to all state and control variables. Moreover, terms involvingFmc

given by Eq. (16k) have two different function descriptions for
positive and negative Fmw, which are necessary for accurately
modeling electric dissipation. A linear dissipation model can be
derived for electric propulsion components. Using Eqs. (16l)-
(16n), it can be shown that

Fdel(s) = Fmc(s)− Fmw(s) + Fdb(s)

= Fmc(s)− Fmw(s) +
Rv(s)

V 2
b

(Fmc(s) + Fa(s))
2.

(23)

Furthermore, by substituting Fm(s) from Eq. (16o) into Eq.
(16k), it is obtained that

Fmc(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
v(s)

∑5
i=0

∑5
j=0

(
h+
ij

(
rm(γ̂m(s))

Rw
v(s)

)i

(
RwFmw(s)

rm(γ̂m(s))ηtm

)j
)
, Fm(s) > 0

1
v(s)

∑5
i=0

∑5
j=0

(
h−ij

(
rm(γ̂m(s))

Rw
v(s)

)i

(
RwFmw(s)ηtm

rm(γ̂m(s))

)j
)
, Fm(s) ≤ 0.

(24)

Therefore, Fdel is an explicit nonlinear function of Fmw(s)
and v(s) that can be linearized using first-order Taylor expansion

as follows.

F lin
del(Fmw(s), v(s), s) = Fdel(F̂mw(s), v̂(s), s)

+
∂Fdel(·)
∂Fmw

|(F̂mw(s),v̂(s))(Fmw(s)− F̂mw(s))

+
∂Fdel(·)

∂v
|(F̂mw(s),v̂(s))(v(s)− v̂(s)), (25)

where F̂mw(s) and v̂(s) are the reference values determined in
the previous SLP sequence.

Eq. (25) is a piecewise linear function of Fmw(s) with two
pieces, for positive and negative values of Fmw(s). To handle
this term in linear programming, the equality constraint was
relaxed in this paper, and Fdel was introduced as a new control
or optimization design variable such that

g13 : F lin
del(Fmw(s), v(s), s)− Fdel(s) ≤ 0. (26)

However, the above relaxation enlarges the feasible set by
including Fdel in the objective function; therefore, we ensured
that the optimal solution is tight, i.e., it will not reside in the
enlarged feasible region. This means that one of the pieces in
Eq. (25) or Eq. (24) holds for equality at the optimal solution.
Tightness is intuitively ensured, as the relaxation leads to the
generation of higher losses that are minimized by the optimizer.
Hence, the optimizer makes the relaxation tight. Further discus-
sion about the tightness of the optimal solution can be found
in [29] and [30].

Furthermore, in the cost function, the equivalent engine fuel
force Ff given by Eq. (17) is an explicit function of Fe(s) and
v(s) that can be linearized (i.e., affine approximation) using
first-order Taylor expansion as

F lin
f (Fe(s), v(s), s) = Ff(F̂e(s), v̂(s), s)

+
∂Ff(.)

∂Fe
|(F̂e(s),v̂(s))

(Fe(s)− F̂e(s))

+
∂Ff(.)

∂v
|(F̂e(s),v̂(s))

(v(s)− v̂(s)). (27)

Therefore, the linear cost function is obtained as follows.

J lin =

∫ sf

s0

(
F lin
f (Fe(s), v(s), s) + Fbr(s) + Fdel(s)

)
ds.

(28)

Moreover, Fdel(s), which is introduced as a control variable,
linearizes constraint f2 and changes constraints g7 and g8 using
Eq. (23).

f2 :
dsoc(s)

ds
= − 1

Ebmax
(Fmw(s) + Fdel(s) + Fa(s)) (29)

g7 : pbmin − v(s) (Fmw(s) + Fdel(s) + Fa(s)) ≤ 0 (30)

g8 : v(s) (Fmw(s) + Fdel(s) + Fa(s))− pbmax ≤ 0. (31)

In addition, more constraints should be defined to determine
the linearization trust region. The trust region is a region around
the reference in which the approximation remains close to some
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extent to the original nonlinear function.

g14 : v̂(s)− ρv − v(s) ≤ 0 (32)

g15 : v(s)− v̂(s)− ρv ≤ 0 (33)

g16 : F̂e(s)− ρ1F̂e(s)− ρ0 − Fe(s) ≤ 0 (34)

g17 : Fe(s)− F̂e(s)− ρ1F̂e(s)− ρ0 ≤ 0 (35)

g18 : F̂mw(s)− ρ1F̂mw(s)− ρ0 − Fmw(s) ≤ 0 (36)

g19 : Fmw(s)− F̂mw(s)− ρ1F̂mw(s)− ρ0 ≤ 0, (37)

where ρv, ρ1 and ρ0 define the boundaries of the trust region
that have a direct effect on the convergence rate of the sequential
programming. The trust regions for Fbr(s), Fdel(s), soc(s) and
t(s) include their entire feasible range. Constant ρ0 is used to
ensure that Fe(s) and Fmw(s) are not fixed to zero in case of
F̂e(s) and F̂mw(s) being zero.

D. Sequential Convex Quadratic Programming With an
Updating Cost Function

In a convex quadratic program (QP), the cost function is
convex quadratic, and the constraints are linear in the state and
control variables. Therefore, the only difference between an LP
and a QP is that in a QP, cost function (28) should be convex
quadratic rather than linear. The only nonlinear term of the cost
function is Ff given by Eq. (17), which must be approximated
by a quadratic function F sqp

f according to

F sqp
f (Fe(s), v(s), s) = Ff(F̂e(s), v̂(s), s)

+
∂Ff(·)
∂Fe

|(F̂e(s),v̂(s))
(Fe(s)− F̂e(s))

+
∂Ff(·)
∂v
|(F̂e(s),v̂(s))

(v(s)− v̂(s))

+
1
2

[
∂2Ff(·)
∂F 2

e

|(F̂e(s),v̂(s))
(Fe(s)− F̂e(s))

2

+ 2
∂2Ff(·)
∂Fe∂v

|(F̂e(s),v̂(s))
(Fe(s)− F̂e(s))(v(s)− v̂(s))

+
∂2Ff(·)
∂v2

|(F̂e(s),v̂(s))
(v(s)− v̂(s))2

]
. (38)

However, the quadratic approximation in Eq. (38) is not
always convex for all values of s, as the resulting Hessian matrix
H(s) is not always symmetric and positive semidefinite. The
Hessian matrix can be derived by rearranging the terms of Eq.
(38) in the form

F sqp
f (·) = [Fe(s), v(s)]

TH(s)[Fe(s), v(s)]

+ fT (s)[Fe(s), v(s)]. (39)

In this paper, the convexity of the quadratic approximation
has been ensured by extracting the positive semidefinite part of
the Hessian matrix so that

F sqp
f (·) = [Fe(s), v(s)]

THpsd(s)[Fe(s), v(s)]

+ fT (s)[Fe(s), v(s)], (40)

Fig. 7. Fuel consumption rate versus engine torque and speed obtained by
experimental measurements; fitted surface of degree 3 including the following
terms: a10ωe + a20ω

2
e + a11ωeTe + a30ω

3
e + a21ω

2
eTe + a12ωeT

2
e .

whereHpsd(s) is the positive semidefinite part ofH(s). Hessian
matrix H(s) is symmetric. It can be written in the form QTDQ,
where D = diag(λ1, . . ., λn) and λi, i = 1. . .n, are the eigen-
values of the Hessian matrix. Then, matrix D can be written
as the sum of two matrices such that D = Dpos +Dneg, where
Dpos and Dneg have only positive and negative eigenvalues on
the diagonal, respectively. Then,

Hpsd(s) = QT (s)Dpos(s)Q(s). (41)

Equation (40) is convex and quadratic in Fe(s) and v(s).
Therefore, the quadratic cost function becomes

J sqp =

∫ sf

s0

(F sqp
f (Fe(s), v(s), s) + Fbr(s) + Fdel(s)) ds.

(42)

Notably, matrices Hpsd(s) and fT (s) depend on reference
F̂e(s) and v̂(s) obtained from the previous sequential iteration
around which the quadratic approximation is performed. There-
fore, the convex quadratic approximation of the cost function is
updated in every sequential iteration.

E. Sequential Convex Quadratic Programming With a
Non-Updating Cost Function

The calculation of Hpsd(s) in Eq. (41) adds to the compu-
tational time of the whole SQP, which may not be desirable in
real-time application. Alternatively, a surface fitting function of
the engine fuel rate can be used as shown in Fig. 7 for improving
the convex quadratic approximation of the fuel consumption
rate. In this figure, the degree of the polynomial surface fitting
is 3, and it is performed to obtain a convex approximation of the
engine fuel energy where coefficients a00, a01, a02 and a03 are
zero. By applying the change of variable from time to distance
and using the fitted surface, the fuel energy consumption rate Pf

becomes

Pf(Fe(s), v(s)) = v(s)Ff(s)

= a10ωe(s) + a20ω
2
e(s) + a11ωe(s)Te(s)

+ a30ωe(s)
3 + a21ωe(s)

2Te(s) + a12ωe(s)Te(s)
2, (43)
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TABLE I
VEHICLE AND POWERTRAIN PARAMETERS

0In addition, re = [39.88, 31.28, 24.11, 18.94, 14.79, 11.59, 9.18, 7.21,
5.54, 4.35, 3.40, 2.69]. The data apply to both 40-ton and 80-ton vehicles. Moreover,
Afcdρa = 9.984 kg

m for the 80-ton vehicle, and Afcdρa = 4.992 kg
m for the 40-ton

vehicle. In this paper, the efficiency maps of the ICE and EM are not provided to protect
the confidential data.

and after rearranging the terms and using Eq. (4), the quadratic
fuel energy consumption can be calculated according to the
following.

F qp
f (s) = a10

re(γ̂e(s))

Rw
+ a20(

re(γ̂e(s))

Rw
)2v(s) + a11Fe(s)

+ a30(
re(γ̂e(s))

Rw
)3v(s)2 + a21

re(γ̂e(s))

Rw
v(s)Fe(s)

+ a12
Rw

re(γ̂e(s))
Fe(s)

2. (44)

Notably, a quadratic function in the general form given by
Eq. (44) is not necessarily convex. However, for the given
fuel rate measurement data, Eq. (44) is convex because the
resulting Hessian matrix H(s) is always symmetric and positive
semidefinite. Moreover, fitting function (43) does not depend on
reference F̂e(s) and v̂(s) and is thus called non-updating even
though reference γ̂e(s) updates in every sequential iteration as
a solution of the gear optimization subproblem.

IV. RESULTS AND COMPARISONS

A. Comparing the Optimal Solutions Found by SLP, SQP
(Updating and Non-Updating) and NLP in the First Control
Layer

For solving SLP, SQP and the nonlinear program (NLP),
Gurobi LP solver, Gurobi QP solver and MATLAB fmincon
function have been used, respectively. Gurobi uses simplex and
barrier methods, whereas the interior-point method was used in
MATLAB fmincon.

The optimal velocity and SOC trajectories found by applying
the three solution methods described above are shown in Fig. 8
for two different vehicle masses of 40 and 80 tons on four dif-
ferent roads, i.e., horizons. The horizon length of approximately
11-13 km is discretized in 300 distance steps using the Euler
discretization method, vmin = 5 m/s, and vmax varies based on
the road legal speed limit from 18 m/s to 23.6 m/s. The SOCs
at the beginning and end of the horizon are constrained to be
the same. Several vehicle parameters are shown in Table I .
Fig. 8 shows that the optimal trajectories obtained by the SLP are
very close to those obtained by the SQP and QP, while the SLP
computation time was on average 4 times faster; see Table III.
In all cases, the difference in the optimum fuel consumption is
less than 1% for different optimization methods; see Table II. An
example gear trajectory obtained with the SLP is shown in Fig. 9.

Fig. 10 shows that optimal trajectories obtained by the SLP
are very close to those obtained by nonlinear programming.

TABLE II
FUEL CONSUMPTION OF THE 80-TON VEHICLE IN DIFFERENT ROAD SECTIONS

SHOWN IN FIG. 8

TABLE III
COMPUTATIONAL TIMES

Nonlinear solutions were obtained using different trajectories
of continuous variables as initial guesses for the NLP and with
a fixed trajectory of integer variables, i.e., gears, which was
obtained by solving the sequential program. The best attained
solution is shown in Fig. 10.

The number of iterations or sequences before the SLP and
SQP reach convergence is shown in Fig. 11. The SLP and
SQP require 3 iterations before the change in the optimal speed
reaches well below the speed-following accuracy of the second
control layer, i.e., an RMS error of 0.02 m/s versus 0.1 m/s; by
contrast, the computational time of the SLP for a sequential
iteration is much lower than that of the SQP. Notably, the
convergence shown in Fig. 11 refers to sequential convergence
of the SLP or SQP. It should not be confused with the internal
LP or QP convergence of the optimization solver.

The computation times of the optimization solvers for a single
iteration are shown in Table III based on the number of horizon
stages, i.e., the road distance steps. The other computations
between iterations, including the linearization of the constraints
and finding the gears, require 50-100% additional time compared
to the time spent by the LP solver for the SLP and SQP with a
non-updating cost function. For the SQP with an updating cost
function, the between-iteration computations that are needed for
the convex approximation of the cost function require 100-200%
additional time. Notably, the optimization solver is Gurobi in
the MATLAB platform. The use of different solvers on different
platforms may reduce the computational time. Moreover, the
computational time also depends on the driving cycle and the
vehicle powertrain.

Fig. 12 illustrates the optimal trajectories for different horizon
lengths. Up to four stages, i.e., approximately 75 m, all the
trajectories are alike; this is usually the case for many different
horizons with different road profiles. Thus, it can be concluded
that the horizon length of approximately 6 km can be sufficient
for the given road in this study if the horizon is updated in less
than 75 m, corresponding to an available computation time of
approximately 3.4 s when driving at the speed of 80 km/h. On
the other hand, if the road is flat, the horizon length will not be
of much importance. If the horizon is too short, then it may not
be able to capture the hill.
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Fig. 8. Comparison of optimal velocities and SOCs obtained by solving the SQP with an updating cost function at each sequential iteration, SQP (with a fixed cost
function) and SLP for different horizons and including gear optimization; 40-ton vehicle (left); 80-ton vehicle (right). From top to bottom, the maximum altitude
differences are 49 m, 81 m, 93 m and 113 m, respectively, and the maximum velocity limit is 20.83 m/s (75 km/h) for the top figures and 23.61 m/s (85 km/h) for
all the other figures. For all cases, the minimum velocity limit is 5 m/s (18 km/h).

B. Implementing the Controller on the High-Fidelity Simulator

The proposed SLP has been tested with a high-fidelity simula-
tion of an 80-ton vehicle with a driving cycle of approximately
150 km. The optimal trajectories of the vehicle velocity and
SOC together with the outputs of the third control layer are
shown in Fig. 13. The vehicle device actuation is a black box.
Here, a high-fidelity complex vehicle model, the Volvo GTT in-
house validated simulation model Global Simulation Platform
(GSP), has been used to represent the actual vehicle, including
the second and third control layers shown in Fig. 5. For the
selected driving cycle, a 5% reduction in fuel consumption has
been observed as a result of predictive energy management in

addition to a 15% reduction from hybridization and applying
the ECMS and instantaneous gear optimization. The reference
conventional vehicle follows a varying reference speed profile
and the best instantaneous gear selection that together help
reduce the fuel consumption by approximately 7% compared
to the fuel consumption resulting from following the road speed
limit for the 80-ton vehicle. Therefore, the total fuel conservation
of the HEV using the predictive energy management compared
to a conventional vehicle that tries to follow the road speed limit
is 27% for the given powertrain and vehicle, with no reduction in
the trip time. The speed-following quality of the second control
layer is measured by the RMS of the difference between actual



GHANDRIZ et al.: REAL-TIME PREDICTIVE ENERGY MANAGEMENT OF HYBRID ELECTRIC HEAVY VEHICLES BY SEQUENTIAL PROGRAMMING 4125

Fig. 9. Example gear trajectory optimized with the SLP. The maximum
velocity limit is 23.61 m/s (85 km/h), the minimum velocity limit is 5 m/s
(18 km/h), and the maximum elevation difference is 81 m.

Fig. 10. Best attained and local optimal trajectories compared to the solutions
of the SLP and SQP. The maximum velocity limit is 20.83 m/s (75 km/h),
the minimum velocity limit is 5 m/s (18 km/h), and the maximum elevation
difference is 34 m.

Fig. 11. Sequential convergence of the SQP with an updating cost function,
SQP and SLP algorithms including gear optimization. RMS of the speed change
is the RMS of the difference between the velocity trajectory found in the current
sequential iteration and that found in the next sequential iteration.

and requested speeds, which is approximately 0.6 m/s for the
shown driving cycle. If the requested speed is always feasible
for the plant vehicle model, then the speed-following quality
increases, resulting in an RMS value of approximately 0.1 m/s.

V. DISCUSSION

At each sequential iteration, several computation steps need to
be performed. The most expensive step is solving the predictive
control problem. Solving the instantaneous gear optimization
requires approximately 10% of the time spent on solving the pre-
dictive control problem. Another set of computations relates to

Fig. 12. Optimal velocity and SOC for different horizon lengths. For four road
stages, which is equivalent to approximately 75 m here, the optimal trajectories
of different horizons are alike. The road topography is shown in Fig. 13 starting
from zero position.

the updating of the cost function and constraints. The latter set of
computations is heavier in the case of the SQP with an updating
cost function due to the additional computations needed for mak-
ing the problem convex by extracting the positive semidefinite
part of the Hessian. Different variants of approximating the Hes-
sian exist in the literature, e.g., the BFGS method, [31]. These
types of computations can still be performed in real time on-
board the vehicle with a long horizon using the real-time iteration
of the SLP/SQP rather than the sequential iterations, as explained
by [32]–[34]. The idea of the real-time iteration is to perform one
sequential iteration in the current horizon and then let the SQP in
the next horizon use the reference values found for the current
horizon. In this case, the approximation error will be reduced
after several horizons, but the solution may be suboptimal.

Moreover, the SQP with non-updating cost is slightly faster
than the SQP with updating cost because it is already convex.
In addition, it offers the benefit of not overfitting the noisy
measurement data.

The SLP and SQP may give different solutions due to conver-
gence to different local optima. This is because the simplex LP
and interior point QP handle initial guesses in different ways.
The interior point QP usually does not accept an initial guess as
an input. By contrast, a simplex method uses an initial guess.
Another reason for the convergence to different local optima is
the effect of gear optimization. The gear is optimized in-between
SLP/SQP sequential iterations. Since the SLP and SQP converge
with different rates, i.e., the SLP generally requires more albeit
faster steps, the intermediate gear optimizations may point the
solutions in slightly different directions.

Other variables can be used as a state rather than the vehicle
velocity, e.g., the vehicle kinetic energy. The advantage of the
change of the variable from the velocity to the kinetic energy
used by [5], [16] and [17] is the linear relation between the
change of the kinetic energy and acceleration, i.e., linear force
equilibrium Eq. (1) or linear Eq. (18b). The kinetic energy Ev

is given by

Ev(s) =
1
2
mv(s)2. (45)

Using Eq. (14) and noting that dv(s)
ds = v̇(t)

v(t) , the derivative of
the kinetic energy with respect to the distance traveled is
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Fig. 13. Requested optimal velocity and SOC trajectories of a 150 km driving cycle together with actual velocity and SOC, i.e., outputs from the third control
layer (plant model) shown in Fig. 5.

dEv(s)

ds
= mv(s)

dv(s)

ds
= mv̇(t), (46)

making Eq. (18b) linear.
In [5], using the kinetic energy as a state helped remove the

linear interpolation error in DP. By contrast, in the SLP and
SQP, there is no need for linear interpolation of states, and the
linearization error can be removed by sequential programming.
Moreover, in this paper, a good non-updating fit function such as
that given by Eq. (43) could not be obtained if the kinetic energy
had been used as a state variable rather than the vehicle velocity.
Therefore, regardless of the benefit of using the kinetic energy,
this paper uses the vehicle velocity as a state. Another type of
variable that can be used instead of the vehicle velocity is the
inverse of the velocity, which linearizes the time dynamics [35].
However, investigation of the influence of such a change of
variables on the convergence rate is outside the scope of this
paper and will be pursued in future studies.

Notably, the proposed methodology is not limited exclusively
to heavy vehicles and is also valid for light vehicles. However,
heavy vehicles benefit more from predictive energy manage-
ment, including speed profile optimization on hilly roads.

Moreover, it was assumed that the subject vehicle is equipped
with driving automation systems of level-2 or higher (i.e., partial
or full driving automation according to the SAE standard [36])
that enable following the desired speed, e.g., using a cruise
controller. A human driver, if present, can take control of the
speed of the vehicle whenever necessary.

The speed limit can be caused either by the legal road speed
limit or by the speed of the leading vehicles and is updated in
every distance step within the MPC framework. Therefore, the
influence of the leading vehicles can be considered via their
speed, for example, in a situation in which there is traffic con-
gestion. Additional constraints of keeping the required distance
between the vehicles do not need to be included in the first
control layer, and in this paper, they were assumed to be handled
by the other lower-level vehicle controllers and were hence
excluded from the predictive control. However, a constraint on

the time headway can be added in the first control layer since
the time is a state as a function of the distance traveled in that
layer. The time required for the subject vehicle to reach a certain
position must be greater than a given headway plus the time
required for the leading vehicle to reach that position, assuming
that the time state trajectory of the leading vehicles is known for
the controller.

Finally, notably, gear optimization can be performed with
DP while preserving the same SLP/SQP algorithm. Moreover,
driver comfort penalties (acceleration and jerk) can be included
in the cost function of the first control layer without a significant
change in computational effort. Additionally, including a penalty
on battery energy throughput as a term in the cost function is
straightforward, thus taking battery health into consideration
according to [14].

VI. CONCLUSION

In this paper, a sequential linear program (SLP) has been
proposed for predictive energy management of hybrid electric
vehicles. The performance of the method has been assessed by
comparison with sequential quadratic programming (SQP). The
SLP has been shown to be computationally more efficient by a
factor of 4 on average compared to the SQP yet gives trajectories
that are very close to the best optimal trajectories attained by
the SQP. The generated speed and SOC optimal trajectories, as
well as the speed-tracking controller together with the equivalent
minimization strategy for following the SOC optimal trajectory,
constitute a three-layer control hierarchy that has been tested on
a high-fidelity vehicle model, resulting in 5% fuel conservation.

Moreover, two different SQP methods have been introduced
with an updating approximating convex function and a fixed
approximating function of the fuel rate. Compared to the SLP,
the SQP methods need a lower number of sequential iterations
to converge, while the SLP is computationally faster.

Future work will extend the application of direct optimal con-
trol and the SLP in predictive energy management to include the
constraints imposed by lateral dynamics in long heavy vehicles
where propelled axles are away from each other with articulation
points in between. Moreover, lane change decisions as a result of
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traffic situations combined with predictive energy management
will be studied by the authors, and the algorithms are planned
to be tested on a real-world hybrid heavy vehicle in the future.

APPENDIX A
INITIAL-REFERENCE GENERATION

The initial trajectories of the reference values, i.e., vehicle
velocity, ICE gear and engine force, are generated by solving
a combination of backward and forward simulation [37] for
a conventional reference vehicle. Backward simulation refers
to the case when the set acceleration or the set velocity is
known and feasible; then, the engine power and torque can be
calculated directly if the gear is known. Forward simulation is
used when the set acceleration is not feasible. In this case, the
actual acceleration is calculated based on the known powertrain
limits, e.g., the engine maximum torque and power and the
maximum gear ratio. The set velocity vs can be either the road
speed limit or the expected velocity of the driving cycle obtained
statistically using the recorded traffic data [38], [39]. In this
paper, the combination of backward and forward simulations is
summarized according to the following system of equations in
the time domain.

v̇(t) =

⎧⎪⎨
⎪⎩
v̇s(t), Femin ≤ Fe(v(t), t) ≤ Femax(v(t))
Fewmax(t)−fr(t)

m , Fe(v(t), t) > Femax(v(t))
Fewmin(t)−fr(t)+Fbr(t)

m , Fe(v(t), t) < Femin

(47a)

fr(t)=mg sinα(s(t)) +mgfr cosα(s(t)) + 0.5ρaAfcdv(t)
2

(47b)

Fwmax(t) = ηteFemax(v(t)) (47c)

Fwmin(t) = 0 (47d)

Fe(v(t), t) =
mv(t)−mvs(t) + fr(t)

ηte
(47e)

Femax(v(t)) =
re(γ

∗
e(t))

Rw
Tel(

re(γ
∗
e(t))

Rw
v(t)) (47f)

γ∗e(t) = argmaxγe
Tel(

re(γe)

Rw
v(t)), γe ∈ [1, . . . , 12] (47g)

Fbr(t) = mv̇s(t) + fr(t), Fbr(t) ≤ 0.2 mg. (47h)

In Eq. (47h), the maximum brake force is set to 20% of the total
possible available brake force to ensure smooth deceleration in
case of a sudden change in the set speed. System of equations
(47) must be integrated forward in time form the start to the end
of the driving cycle sf , i.e., from t0 to tf , where sf =

∫ tf
t0

v(t)dt
and v(t0) = vs(t0). Furthermore, the reference trajectory of the
engine equivalent force F̂e(t) can be calculated:

F̂e(t) =
mv̇(t) + fr(t)

ηte
. (48)

Conversion from the time to space domain can be done using
Eq. (14). Knowing the reference velocity and engine equivalent
force, optimization problem (19) can be solved to obtain the
initial reference gear trajectory γ̂e(s). Finally, the initial brake

force, equivalent EM force and SOC reference trajectory are set
to F̂br(s) = 0, F̂m(s) = 0 and ˆsoc(s) = soc0.

Notably, solving Eq. (47) is only necessary for the calculation
of ttref = tf and setting constraint Eq. (18i). Generally, initial
reference trajectories do not need to be calculated and can be
set arbitrarily. For example, the reference speed can be set to the
road legal limit, F̂e(t) = 0 and γ̂e(s) = 10 can be taken. The
gear γ̂e(s) should be feasible for the entire driving cycle.

APPENDIX B
DERIVING THE EM-CONSUMED POWER MAP BASED ON THE

EM EFFICIENCY MAP

If the measurement data of the power losses in the EM are
provided based on the efficiency ηm rather than on the consumed
power, then the conversion can be performed according to the
following.

Pmc(ωm, Tm) =

{
ωmTm

ηm(ωm,Tm) , Tm > 0

ωmTmηm(ωm, Tm), Tm ≤ 0.
(49)

However, a problem occurs when the torque is zero, where
efficiency is not defined while losses can be nonzero. Then,
the consumed power at zero torque can be calculated by data
interpolation similar to Eq. (7).
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