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Abstract

Non-orthogonal multiple access (NOMA) and spectrum sharing are two potential tech-

nologies for providing massive connectivity in beyond fifth-generation (B5G) networks. In this

paper, we present the performance analysis of a multi-antenna-assisted two-user downlink

NOMA system in an underlay spectrum sharing system. We derive closed-form expressions

for the average achievable sum-rate and outage probability of the secondary network under

a peak interference constraint and/or peak power constraint, depending on the availability of

channel state information (CSI) of the interference link between secondary transmitter (ST) and

primary receiver (PR). For the case where the ST has a fixed power budget, we show that

performance can be divided into two specific regimes, where either the interference constraint

or the power constraint primarily dictates the performance. Our results confirm that the NOMA-

based underlay spectrum sharing system significantly outperforms its orthogonal multiple

access (OMA) based counterpart, by achieving higher average sum-rate and lower outage

probability. We also show the effect of information loss at the ST in terms of CSI of the link

between the ST and PR on the system performance. Moreover, we also present closed-form

expressions for the optimal power allocation coefficient that minimizes the outage probability

of the NOMA system for the special case where the secondary users are each equipped with a

single antenna. A close agreement between the simulation and analytical results confirms the

correctness of the presented analysis.
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I. INTRODUCTION

The commercial deployment of the 5G wireless communications network has already begun

in mid-2019 in many countries. The first phase of 5G mobile communications is expected to

be operating in the 3.6 GHz range. However, the amount of spectrum in the sub-GHz and

below 6 GHz range, which will support many crucial applications in 5G, is very congested [1].

With the advent of many new wireless communication applications and services, the number

of devices/users accessing the wireless spectrum is increasing very rapidly, resulting in the

problem of spectrum scarcity. On the other hand, it is well-known that the 3.5 GHz band

(along with some ISM and mmWave bands) are currently under-utilized, and therefore spectrum

sharing is considered as a potential solution to enhance the spectrum usage efficiency [2]–[4].

On the other hand, NOMA has also gained tremendous attention as a potential multiple access

technique for the next-generation mobile communications network, as it can provide massive

connectivity and can also enhance the spectral efficiency [5], [6].

In general, spectrum sharing between a licensed/primary network and an unlicensed/secondary

network can be accomplished in three ways: underlay, interweave and overlay [2]. In the case of

underlay spectrum sharing, the ST transmits simultaneously with the primary-user transmitter

(PT) using the band of frequencies originally owned by the primary network, in such a manner

that the interference inflicted by the secondary network on the primary network is below a

tolerance limit. In interweave spectrum sharing, a cognitive engine first determines the spectrum

bands for which the usage license is owned by a primary network and the secondary network

uses those licensed bands when primary activity is not detected in those bands. Determination

of these spectrum holes by the cognitive engine is termed as spectrum sensing. In the case of

overlay spectrum sharing, the secondary user transmits simultaneously with the primary user,

but compensates for the interference caused on the primary network by relaying a part of the

primary user’s message to the intended receiver(s). The fusion of NOMA and spectrum sharing

has gained particular attention in the past few years, as it has the potential to provide massive

connectivity and to further enhance the spectrum utilization efficiency in beyond-5G systems.

For the case of overlay spectrum sharing, many notable works analyzing the achievable

rate, outage probability, throughput and optimal power allocation have been presented for

different NOMA systems such as multi-user secondary network, energy harvesting STs, relay-

based cooperative systems and hybrid satellite-terrestrial networks [7]–[11].

On the other hand, there has also been particular research attention given to underlay spec-
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trum sharing NOMA systems. Different cooperative and non-cooperative NOMA-based spec-

trum sharing architectures were proposed in [12], including underlay, overlay and cognitive

radio (CR) inspired NOMA. It was shown in [12] that NOMA-based spectrum sharing outper-

forms its OMA-based counterpart in terms of outage probability. The outage probability analysis

of a NOMA-based underlay spectrum sharing system was presented in [13], where the power

transmitted by the ST was constrained by a peak tolerable interference power at PRs as well

as a peak power budget at the ST. In [14], the outage performance analysis of a relay-based

underlay spectrum sharing NOMA system, consisting of one ST, one detect-and-forward relay,

one PR and two SRs, was presented, where the power transmitted from the ST was constrained

by a peak interference constraint at the PR as well as a peak power budget at the ST. However,

in [14], it was assumed that the transmission from the relay does not cause any interference at

the PR (due to a large separation between them), and the signal received at the relay and the

two SRs were also assumed to be free from any interference from the primary network. The

analysis of outage probability for a relay-based spectrum sharing NOMA system considering the

relay-to-PR interference was presented in [15]. The outage probability and throughput analysis

of an underlay spectrum sharing hybrid OMA/NOMA system consisting of a PT, a PR, an ST

and two SRs was presented in [16], where the authors considered both primary-to-secondary

and secondary-to-primary interference. The power transmitted from the ST was constrained

by a peak interference constraint at the PR as well as a peak power budget constraint at the

ST. However, it is noteworthy that the closed-form expressions for the system throughput (or

the average achievable sum-rate) was not derived in [16]. The performance analysis in terms of

average achievable sum-rate, outage probability and asymptotic behavior (of outage probability)

of a NOMA-based cooperative relaying system in an underlay spectrum sharing scenario,

considering only the peak interference constraint, was presented in [17] (here the authors

assumed that the ST and relay do not have any power budget constraints). In [18], the analysis of

the outage probability for an underlay spectrum-sharing-inspired amplify-and-forward relay-

based two-user downlink NOMA system was presented, where the power transmitted from

the ST was assumed to be constrained by a peak power budget at the ST as well as a peak

interference constraint at the PR.

In summary, for the case of NOMA-based underlay spectrum sharing, most of the research

deals only with the outage probability analysis (as in [13]–[16], [18]) or consider only the peak

interference constraint at the PR (as in [17]). It is also noteworthy that only single-antenna

receivers were considered in [13]–[16], [18]. Motivated by this, in this paper, we present the
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TABLE I

DETAILS OF THE DIFFERENT SYSTEM CONFIGURATIONS ANALYZED IN THIS WORK.

Case
Power budget

at ST

Interference

constraint at PR
IL-CSI at ST

IntICSI Unlimited Peak interference Instantaneous

IntSCSI Unlimited Peak interference Statistical

PowIntICSI Limited Peak interference Instantaneous

PowIntSCSI Limited Peak interference Statistical

PowIntOneBit Limited Peak interference No CSI

average achievable sum-rate and outage probability analysis of a two-user downlink NOMA

system in underlay spectrum sharing (over Rayleigh fading wireless channels) where both of

the (secondary) users are assumed to be equipped with multiple antennas. We also consider

that only statistical channel state information (CSI) is available at the ST regarding the links

between the ST and the users, whereas, for the case of the link between the ST and PR, we

consider different scenarios, as explained in Table I. Hereafter, we will refer to the CSI of the

ST-PR link as the interference-link CSI (IL-CSI).

The main contributions of this paper are summarized as follows:

• We derive closed-form expressions for the average achievable sum-rate and outage proba-

bility for the spectrum sharing NOMA system for all the five cases shown in Table I.

• For the special case where the secondary users are each equipped with a single receive

antenna, we derive an explicit analytical expression for the optimal power allocation co-

efficient that minimizes the outage probability of the spectrum sharing NOMA system

(except for the case of PowIntICSI). For the general case, where the users are equipped

with more than one receive antenna, the value of optimal power allocation coefficient is

obtained numerically.

• By comparing the performance of the spectrum sharing NOMA system with the correspond-

ing OMA system, we show that the NOMA system outperforms its OMA-based counterpart

by achieving lower outage probability and higher achievable rate. More interestingly, we

show a performance comparison among different system configurations of the spectrum

sharing NOMA system (as described in Table I) to show the effect of loss of information

(in terms of CSI) on the overall system performance.

The achievable rate analysis of an underlay spectrum sharing OMA system consisting of one
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Fig. 1. System model for underlay spectrum sharing. Here Un and U f are the secondary-user receivers.

PR, one ST and one SR, considering similar interference and power-budget constraints, was

presented in [19]. However, it is noteworthy that in [19], the analysis of outage probability was

not presented. Also, the consideration of a NOMA system with multiple-antenna-assisted users

makes the analysis of the system different and more challenging as compared to [19].

II. SYSTEM MODEL

Consider the system shown in Fig. 1, consisting of a secondary-user transmitter ST, a primary-

user receiver PR and two secondary-user receivers Un and U f . It is assumed that the ST and

PR are each equipped with a single antenna, whereas Un and U f are equipped with Nn(≥ 1)

and N f (≥ 1) antennas, respectively. The channel fading coefficient between the ST and the

PR is denoted by hp, whereas that between the ST and the i-th antenna of Un, and the ST

and the j-th antenna of U f are denoted by hn,i and h f ,j, respectively, where i ∈ {1, 2, . . . , Nn}
and j ∈ {1, 2, . . . , N f }. We assume that hp ∼ CN (0, Ωp = d−α

p ), hn,i ∼ CN (0, Ωn = d−α
n ) and

h f ,j ∼ CN (0, Ω f = d−α
f ) where dp, dn and d f denote the distance between the ST and PR, ST

and Un, and ST and U f , respectively, and α denotes the path-loss exponent. Throughout this

paper, we assume that the ST has statistical channel state information (CSI) regarding the links

between the ST and Un, and ST and U f , i.e., the knowledge of Ωn, Ω f and the corresponding
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distribution of these links, whereas the availability of the CSI regarding the ST-PR link, i.e., the

IL-CSI for different scenarios, is given in Table I. It is also assumed that dn < d f < dp, and we

therefore refer to Un and U f as the near and far users respectively. We consider the scenario

where the secondary network (consisting of ST, Un and U f ) is deployed outside the coverage

of the primary-user transmitter, and therefore, we do not consider the interference at Un and

U f caused by the primary-user transmitter.

In the case of NOMA, the ST broadcasts a power-division multiplexed symbol√
anPt(gp)xn +

√
a f Pt(gp)x f ,

where xn and x f are the unit-energy symbols intended for users Un and U f , respectively, an

and a f are the power allocation coefficients for users Un and U f , respectively (we assume that

an < a f and an + a f = 1), gp , |hp|2, and Pt(gp) is the total power transmitted from the ST. In

general, Pt(gp) is a one-to-one mapping from the channel gain gp to the set of non-negative real

numbers R+. Note that the notation Pt(gp) indicates that the ST has the perfect knowledge of

the channel gain gp; in the sequel, when we consider the case where the ST has no knowledge

or only statistical knowledge of the channel gain gp, we will denote the power transmitted from

the ST simply by Pt.

After receiving the signals, the user Uu, u ∈ {n, f } first combines the signals using maximal-

ratio combining (MRC), and therefore, the channel gain between the ST and Uu is given by

gu , hH
u hu, where hu = [hu,1 hu,2 · · · hu,Nu ]

T ∈ CNu×1. The near user Un first decodes x f

by considering the inter-user interference due to the presence of xn in the received signal as

additional noise. It then applies successive interference cancellation (SIC) to remove x f from

the received signal and then decodes its intended symbol xn. On the other hand, the far user

U f decodes x f directly considering the interference due to xn as additional noise. Assuming

the noise contributions at all receiver nodes to be distributed as CN (0, 1), the instantaneous

signal-to-interference-plus-noise ratio (SINR) and instantaneous signal-to-noise ratio (SNR) at

Un to decode x f and xn are, respectively, given by

γ
(w)
n =

a f gnPt(gp)

angnPt(gp) + 1
, γ

(s)
n = angnPt(gp).

Similarly, the instantaneous SINR at U f to decode x f is given by

γ
(w)
f =

a f g f Pt(gp)

ang f Pt(gp) + 1
.
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Since symbol xn needs to be decoded only by Un, the instantaneous achievable rate for Un is

given by

log2

[
1 + γ

(s)
n

]
= log2[1 + angpPt(gp)].

On the other hand, since x f needs to be decoded by both users, the instantaneous achievable

rate for U f is given by

min
{

log2

[
1 + γ

(w)
n

]
, log2

[
1 + γ

(w)
f

]}
= log2

[
1 +

a f gminPt(gp)

angminPt(gp) + 1

]
,

where gmin , min{gn, g f }.
In contrast to this, for the case of OMA, the ST transmits

√
Pt(gp)xn and

√
Pt(gp)x f to Un

and U f , respectively, in two orthogonal time slots. Therefore, the instantaneous SNR at Un and

U f to decode the intended symbol is, respectively, given by

γ̂n = gnPt(gp), γ̂ f = g f Pt(gp).

Throughout this paper, fX (·), FX (·), F−1
X (·) and FX (·) denote the probability density function

(PDF), cumulative distribution function (CDF), inverse distribution function (IDF), and comple-

mentary CDF (CCDF) of the random variable X , respectively.

Next, we will present the achievable rate, outage probability and optimal power allocation

for the spectrum sharing system.

III. SECONDARY PERFORMANCE FOR INTICSI

In this section, we assume that the ST has perfect instantaneous IL-CSI, and adapts its

transmission power such that the instantaneous interference caused by the ST at the PR is

less than a predefined threshold value I. In addition, we do not consider any power budget

limit for the ST. Such a scenario is relevant when the ST is one with unlimited power, such as

a base station.

A. Average achievable sum-rate

The average achievable sum-rate for the NOMA system is given by

Csum = max
Pt(gp)≥0

Egp,gn,g f

{
log2

[
1 + angnPt(gp)

]
+ log2

[
1 +

a f gminPt(gp)

angminPt(gp) + 1

]}
, (1)

s.t. gpPt(gp) ≤ I. (2)
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The optimal transmit power P∗t (gp) that maximizes Csum in (1) is given by I/gp. Therefore, the

expression for the average achievable sum-rate is given by

Csum = EXn {log2 (1 + an IXn)}+ EXmin {log2 (1 + IXmin)} −EXmin {log2 (1 + an IXmin)} , (3)

where Xn , gn/gp and Xmin , gmin/gp.

Theorem 1. For the case of IntICSI, the average achievable sum-rate for the NOMA system is given by

Csum =
1

ln 2

 1
Γ(Nn)

(
Ωp

Ωnan I

)Nn

G3,2
3,3

(
Ωp

Ωnan I

∣∣∣∣ −Nn, −Nn, 1−Nn

0, −Nn, −Nn

)
+

N f−1

∑
k=0

ΩNn+k
p

Γ(Nn)k!ΩNn
n Ωk

f INn+k

×
{

G3,2
3,3

(
Ωp

ΩI

∣∣∣∣ −Nn−k, −Nn−k, 1−Nn−k

0, −Nn−k, −Nn−k

)
− 1

aNn+k
n

G3,2
3,3

(
Ωp

Ωan I

∣∣∣∣ −Nn−k, −Nn−k, 1−Nn−k

0, −Nn−k, −Nn−k

)}
+

Nn−1

∑
l=0

Ω
N f +l
p

Γ(N f )l!

× 1

Ω
N f
f Ωl

n IN f +l

{
G3,2

3,3

(
Ωp

ΩI

∣∣∣∣ −N f−l, −N f−l, 1−N f−l

0, −N f−l, −N f−l

)
− 1

a
N f +l
n

G3,2
3,3

(
Ωp

Ωan I

∣∣∣∣ −N f−l, −N f−l, 1−N f−l

0, −N f−l, −N f−l

)} ,

(4)

where Ω , ΩnΩ f /(Ωn + Ω f ) and G(·) denotes Meijer’s G-function.

Proof. See Appendix A. �

On the other hand, for the case of OMA, the average achievable sum-rate is given by

Csum = 0.5 ∑
u∈{n, f }

EXu {log2(1 + IXu)} , (5)

where Xu , gu/gp. We do not provide a closed-form analysis for the case of OMA, as the focus

of this paper is on the NOMA-based system. For the purpose of comparison, we will evaluate

the performance of the OMA-based system numerically.

Next we present the analysis of the outage probability for both NOMA and OMA systems.

B. Outage probability

We assume that the target data rates for users Un and U f are the same, and are denoted by

rtarget. Therefore, for the case of NOMA, the outage threshold is defined as θ , 2rtarget − 1.

Theorem 2. For the case of IntICSI, the outage probability for the NOMA system is given by

Pout = 1− ∏
u∈{n, f }

[
1−

(
Ωpξu

Ωu I + Ωpξu

)Nu
]

, (6)

where ξn , θ max
{

1
a f−anθ , 1

an

}
and ξ f ,

θ
a f−anθ .
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Proof. See Appendix B. �

It is noteworthy that the term a f − anθ in the denominator of ξ f indicates that we require

a f > anθ, i.e., an < 1/(1 + θ), otherwise both Un and U f will fail to decode x f and the outage

probability of the system will always be equal to 1. A similar phenomenon was observed in [17]

and [20].

For the limiting case where I → ∞, it can be shown using the binomial expansion that

Pout =
∞

∑
k=0

(−1)k
(

N f + k− 1
k

)
Ψ

N f +k
f I−(N f +k) +

∞

∑
l=0

(−1)l
(

Nn + l − 1
l

)
ΨNn+l

n I−(Nn+l)

−
N f

∑
k=0

Ns

∑
l=0

(−1)k+l
(

N f + k− 1
k

)(
Nn + l − 1

l

)
Ψ

N f +k
f I−(N f +k)ΨNn+l

n I−(N f +Nn+K+l),

where Ψu , Ωpξu/Ωu. Using the preceding expression, it is straightforward to conclude that

Pout decays as min{Nn, N f } for large values of I.

On the other hand, for the case of OMA, the outage threshold is defined as Θ , 22rtarget − 1

and the outage probability is given by

Pout = 1− ∏
u∈{n, f }

Pr (IXu ≥ Θ) . (7)

Here we do not provide a closed-form expression for the outage probability for the case of

OMA, but we will rather evaluate via simulation for the purpose of comparison.

C. Optimal power allocation

In this subsection, we attempt to find a closed-form expression for the optimal an, denoted

by a∗n, that minimizes the outage probability of the spectrum sharing NOMA system. By differ-

entiating (6), it can be observed that a closed-form expression for a∗n is not possible in general.

However, in the following theorem we show that this is possible in the special case Nn = N f = 1.

Theorem 3. For the case of IntICSI with Nn = N f = 1, a∗n is given by

a∗n =
IΩ f + Ωpθ

I{(1 + θ)Ω f −Ωn}
−

√
(1 + θ)(IΩ f + Ωpθ){IΩn + Ωpθ(1 + θ)}

I(1 + θ){(1 + θ)Ω f −Ωn}
. (8)

Proof. See Appendix C. �

With simple algebraic manipulation, it can be shown that for the case when Nn = N f = 1,

the value of a∗n decreases with an increase in the value of I. For the case when Nn > 1 and

N f > 1, we find the optimal value of an numerically.



10 SUBMITTED

IV. SECONDARY PERFORMANCE FOR INTSCSI

In a practical system, it is often not possible to obtain instantaneous CSI at the transmitter

side. Motivated by this issue, we consider the scenario where the ST has only the statistical CSI

regarding the ST-PR link, i.e., only the information regarding Ωp and the distribution of hp is

available at the ST (along with the statistical CSI of the ST-Uu links). In this case, the quality-

of-service (QoS) at the PR is protected through a statistical constraint which states that the

probability that the interference caused by the ST to the PR is above the interference threshold

I should be lower than a preset threshold δ. Denoting the power transmitted from ST by Pt,

we have

Pr(gpPt > I) ≤ δ =⇒ 1− Fgp(I/Pt) ≤ δ =⇒ Pt ≤
I

F−1
gp (1− δ)

. (9)

Given that gp is an exponentially distributed random variable with mean value given by Ωp, the

IDF of gp is given by F−1
gp (x) = −Ωp ln(1− x). Substituting the expression for F−1

gp (·) into (9),

the optimal transmit power to maximize the average achievable sum-rate is given by

P∗t = −I/(Ωp ln δ). (10)

Next, we will provide analytical expressions for the average achievable sum-rate, outage

probability and optimal power allocation in spectrum sharing NOMA system for the IntSCSI

case.

A. Average achievable sum-rate

The expression for the average achievable sum-rate in NOMA is be given by

Csum = Egn {log2(1 + angnP∗t )}+ Egmin {log2(1 + gminP∗t )} −Egmin {log2(1 + angminP∗t )} . (11)

Theorem 4. For the case of IntSCSI, the average achievable sum-rate for NOMA is given by

Csum =
1

ln 2

 1

Γ(Nn)ΩNn
n (anP∗t )Nn

G3,1
2,3

(
1

ΩnanP∗t

∣∣∣∣ −Nn, 1−Nn

0, −Nn, −Nn

)
+

1

Γ(Nn)ΩNn
n

N f−1

∑
k=0

1
k!Ωk

f (P∗t )Nn+k

×
{

G3,1
2,3

(
1

ΩP∗t

∣∣∣∣ −Nn−k, 1−Nn−k

0, −Nn−k, −Nn−k

)
− 1

aNn+k
n

G3,1
2,3

(
1

ΩanP∗t

∣∣∣∣ −Nn−k, 1−Nn−k

0, −Nn−k, −Nn−k

)}
+

1

Γ(N f )Ω
N f
f

×
Nn−1

∑
l=0

1

l!Ωl
n(P∗t )

N f +l

{
G3,1

2,3

(
1

ΩP∗t

∣∣∣∣ −N f−l, 1−N f−l

0, −N f−l, −N f−l

)
− 1

a
N f +l
n

G3,1
2,3

(
1

ΩanP∗t

∣∣∣∣ −N f−l, 1−N f−l

0, −N f−l, −N f−l

)}]
.

(12)
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Proof. See Appendix D. �

On the other hand, for the case of OMA, the expression for the average achievable sum-rate

is given by

Csum = 0.5 ∑
u∈{n, f }

Egu

{
log2

(
1− gu I

Ωp ln δ

)}
. (13)

B. Outage probability

Following similar arguments as used in Section III-B, the outage probability for NOMA is

given by

Pout = 1− Pr
( a f P∗t gn

1 + anP∗t gn
≥ θ, anP∗t gn ≥ θ

)
Pr

(
a f P∗t g f

1 + anP∗t g f
≥ θ

)

= 1− Pr

(
gn ≥

θ

P∗t
max

{
1

a f − anθ
,

1
an

})
Pr

(
g f ≥

θ

P∗t (a f − anθ)

)

= 1− ∏
u∈{n, f }

Fgu

(
ξu

P∗t

)

= 1− ∏
u∈{n, f }

1

Γ(Nu)ΩNu
u

∫ ∞

ξu/P∗t
xNu−1 exp

(−x
Ωu

)
dx

= 1− ∏
u∈{n, f }

Γ[Nu, ξu/(ΩuP∗t )]
Γ(Nu)

, (14)

where the integral above is solved using [21, eqn. (3.381-3), p. 346] and Γ[·, ·] denotes the upper-

incomplete Gamma function.

Using [22, eqn. (8.7.2), p. 178], it can be shown that

Pout =
1

Γ(N f )

∞

∑
k=0

(−1)kΥ
N f +k
f

k!(N f + k)
I−(N f +k) +

1
Γ(Nn)

∞

∑
l=0

(−1)lΥNn+l
n

l!(Nn + l)
I−(Nn+l)

− 1
Γ(N f )Γ(Nn)

∞

∑
k=0

∞

∑
l=0

(−1)k+lΥ
N f +k
f ΥNn+l

n

k!l!(N f + k)(Nn + l)
I−(N f +Nn+k+l),

where Υu , −ξuΩp ln δ/Ωu. From the preceding equation, it is straightforward to conclude that

Pout decays as min{Nn, N f } for large values of I.

On the other hand, for the case of OMA, the outage probability is given by

Pout = 1− ∏
u∈{n, f }

Pr (P∗t gu ≥ Θ) . (15)
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C. Optimal power allocation

Theorem 5. For the case of IntSCSI with Nn = N f = 1, a∗n is given by

a∗n =
Ω f

(1 + θ)Ω f −Ωn
−

√
ΩnΩ f (1 + θ)

(1 + θ)
{
(1 + θ)Ω f −Ωn

} . (16)

Proof. See Appendix E. �

It is important to note that in this case, the optimal value of an does not depends on I or Ωp.

Next, we present the analysis for the spectrum sharing system where a power budget con-

straint also exists at the ST, along with a peak interference constraint at the PR.

V. SECONDARY PERFORMANCE FOR POWINTICSI

For the case when the ST is a battery-operated device, the power transmitted from the ST

is often constrained by a peak power budget at the ST. Therefore, in this section, we analyze

the performance of the spectrum sharing system where the power transmitted from the ST is

constrained by the peak interference caused at the PR as well as a peak power budget at the

ST.

A. Average achievable sum-rate

The average achievable sum-rate for the NOMA system is given by

Csum = max
Pt(gp)≥0

Egp,gn,g f

{
log2[1 + angnPt(gp)] + log2

[
1 +

a f gminPt(gp)

angminPt(gp) + 1

]}
, (17)

s.t. gpPt(gp) ≤ I, (18)

Pt(gp) ≤ Ppeak, (19)

where Ppeak denotes the peak power budget at the ST. Therefore, the optimal power to maximize

the average achievable sum-rate in NOMA is given by

P∗t (gp) = min
{

Ppeak,
I

gp

}
=


Ppeak, if gp ≤

I
Ppeak

I
gp

, otherwise.
(20)

Therefore, using (17)-(20), the expression for the average achievable sum-rate for NOMA is

given by

Csum = Egp,gn

{
log2[1 + angnP∗t (gp)]

}
+ Egp,gmin

{
log2[1 + P∗t (gp)gmin]

}
−Egp,gmin

{
log2[1 + anP∗t (gp)gmin]

}
,

(21)
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where P∗t (gp) is given by (20). It can be shown that in general, it is very difficult (if not impos-

sible) to find an analytical expression for (21). Therefore, we present the analytical expression

for the special case where Nn = N f = 1.

Theorem 6. For the case of PowIntICSI with Nn = N f = 1, the average achievable sum-rate for NOMA

is given by

Csum =
1

ln 2
[T(anΩn) + T(Ω)− T(anΩ)] , (22)

where T(x) is given by

T(x) = −
[

1− exp

(
−I

ΩpPpeak

)]
exp

(
1

xPpeak

)
Ei

(
−1

xPpeak

)
+

[
Ei

(
−I

ΩpPpeak

)
− Ωp

Ωp − xI

{
Ei

(
−I

ΩpPpeak

)

− exp

(
Ωp − xI

x ΩpPpeak

)
Ei

(
−1

xPpeak

)}
+ exp

(
Ωp − xI

x ΩpPpeak

){
Shi

(
1

xPpeak

)
−Chi

(
1

xPpeak

)}]
.

(23)

Here Shi(·) and Chi(·) denote the hyperbolic sine and hyperbolic cosine integrals, respectively.

Proof. See Appendix F. �

On the other hand, the corresponding average achievable sum-rate for OMA is given by

Csum = 0.5 ∑
u∈{n, f }

Egu

{
log2

(
1 + guP∗t (gp)

)}
. (24)

B. Outage probability

Following the arguments in Section III-B, the outage probability for the case of NOMA is

defined as

Pout =1− Pr
(

gn ≥
ξn

P∗t (gp)

)
Pr
(

g f ≥
ξ f

P∗t (gp)

)
. (25)

Theorem 7. For the case of PowIntICSI, the outage probability for NOMA is given by

Pout = 1−


[

1− exp

(
−I

ΩpPpeak

)]
∏

u∈{n, f }

Γ[Nu, ξu/(ΩuPpeak)]

Γ(Nu)
+

1
Ωp

N f−1

∑
k=0

Nn−1

∑
l=0

ξ l
nξk

f

k!l!Ωl
nΩk

f Ik+l

×Γ

[
k + l + 1,

(
1

Ωp
+

ξn

Ωn I
+

ξ f

Ω f I

)
I

Ppeak

](
1

Ωp
+

ξn

Ωn I
+

ξ f

Ω f I

)−(k+l+1)
 . (26)

Proof. See Appendix G. �
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As will be shown in Section VIII, the spectrum sharing system exhibits an outage floor for the

case when the ST has a limited power budget. Therefore, we will not analyze the asymptotic

behavior of the outage probability for such systems.

On the other hand, for the case of OMA, the outage probability is given by

Pout = 1− ∏
u∈{n, f }

Pr
(

gu ≥
Θ

P∗t (gp)

)
. (27)

C. Optimal power allocation

It can be shown that for the case of PowIntICSI, it is very complicated (if not impossible) to

find a closed-form expression for a∗n, even for the case where Nn = N f = 1. Therefore, for the

case of PowIntICSI, we find the optimal value of an numerically.

VI. SECONDARY PERFORMANCE FOR POWINTSCSI

For the analysis in this section, we assume that the power transmitted from the ST is con-

strained by the peak interference constraint at the PR as well as the peak power budget at the

ST. Additionally, we assume that only statistical IL-CSI is available at the ST.

A. Average achievable sum-rate

The average achievable sum-rate for the case of NOMA is given by

Csum = max
Pt≥0

Egn,g f {log2(1 + anPtgn) + log2(1 + Ptgmin)− log2(1 + anPtgmin)} , (28)

s.t. Pr(gpPt ≥ I) ≤ δ, (29)

Pt ≤ Ppeak. (30)

Using (29), (30) and (10), the optimal transmit power to maximize the sum-rate for NOMA is

given by

P∗t = min
{

Ppeak,
−I

Ωp ln δ

}
. (31)

Therefore, using (28)-(31), an expression for the average achievable sum-rate for NOMA is given

by

Csum = Egn {log2(1 + angnP∗t )}+ Egmin {log2(1 + gminP∗t )} −Egmin {log2(1 + angminP∗t )} . (32)

Note that (32) is same as (11), however, the definition of P∗t in (32) and (11) are different.

Therefore, an analytical expression for (32) is given by (12), with P∗t given by (31).
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On the other hand, for the case of OMA, the average achievable sum-rate is given by

Csum = 0.5 ∑
u∈{n, f }

Egu {log2(1 + guP∗t )} , (33)

where P∗t is given by (31).

B. Outage probability

Following arguments similar to those in the previous subsection, the outage probability for

NOMA is given by (14), where P∗t is given by (31).

On the other hand, for the case of OMA, the outage probability is given by

Pout = 1− ∏
u∈{n, f }

Pr
(

gu ≥
Θ
P∗t

)
. (34)

C. Optimal power allocation

Following the arguments in Section IV-C, for the case where Nn = N f = 1, a∗n is given by

a∗n =
Ω f

(1 + θ)Ω f −Ωn
−

√
ΩnΩ f (1 + θ)

(1 + θ)
{
(1 + θ)Ω f −Ωn

} . (35)

Similar to case in Section IV-C, a∗n does not depends on Ppeak, I or Ωp.

VII. SECONDARY PERFORMANCE WITH ONE-BIT FEEDBACK

In this section, we consider the scenario where the ST does not have any CSI regarding the

ST-PR link. We rather assume that the PR has instantaneous CSI regarding the ST-PR link.

Also, we assume that the power transmitted from the ST is constrained by a peak interference

constraint at the PR, as well as a peak power budget constraint at the ST.

Based on the peak power budget at the ST, and the peak interference constraint at the PR,

the PR calculates a threshold value τ for the channel gain gp. If the instantaneous channel gain

of the ST-PR link is less than τ, the PR sends a “1” to the ST via a low-bandwidth zero-delay

feedback link, and sends a “0” otherwise. For the case when ST receives a “1” from the PR, it

transmits its signal to Un and U f with full power Ppeak, otherwise it remains silent. Therefore,

the transmit power from the ST is modeled as

P∗t =


Ppeak, if gp ≤ τ =

I
Ppeak

0, otherwise.
(36)

Note that the power transmission scheme in (36) ensures that the interference caused by the ST

at the PR is either less than or equal to the peak tolerable interference at the PR or zero.
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A. Average achievable sum-rate

The average achievable sum-rate for the case of NOMA is given by

Csum = Egn,g f {log2(1 + anP∗t gn) + log2(1 + P∗t gmin)− log2(1 + anP∗t gmin)}

= Pr(gp ≤ τ)
[
Egn

{
log2(1 + anPpeakx)

}
+ Egmin

{
log2(1 + Ppeakx)

}
−Egmin

{
log2(1 + anPpeakx)

}]
.

(37)

Following the steps in Appendix D, an analytical expression for (37) is given by

Csum =
1− exp(−τ/Ωp)

ln 2

 1

Γ(Nn)ΩNn
n (anPpeak)Nn

G3,1
2,3

(
1

ΩnanPpeak

∣∣∣∣ −Nn,1−Nn

0,−Nn,−Nn

)
+

1

Γ(Nn)ΩNn
n

N f−1

∑
k=0

1
k!Ωk

f

× 1
(Ppeak)Nn+k

{
G3,1

2,3

(
1

ΩPpeak

∣∣∣∣ −Nn−k,1−Nn−k

0,−Nn−k,−Nn−k

)
− 1

aNn+k
n

G3,1
2,3

(
1

ΩanPpeak

∣∣∣∣ −Nn−k,1−Nn−k

0,−Nn−k,−Nn−k

)}
+

1

Γ(N f )Ω
N f
f

×
Nn−1

∑
l=0

1

l!Ωl
n(Ppeak)

N f +l

{
G3,1

2,3

(
1

ΩPpeak

∣∣∣∣ −N f−l,1−N f−l

0,−N f−l,−N f−l

)
− 1

a
N f +l
n

G3,1
2,3

(
1

ΩanPpeak

∣∣∣∣ −N f−l,1−N f−l

0,−N f−l,−N f−l

)}]
.

(38)

On the other hand, for the case of OMA, the average achievable sum-rate is given by

Csum = 0.5 ∑
u∈{n, f }

Egu {log2(1 + guP∗t )} , (39)

where P∗t is given by (36).

B. Outage probability

Similar to Section III-B, the outage probability for the case of NOMA is given by

Pout = 1− Pr
( a f P∗t gn

anP∗t gn + 1
≥ θ, anP∗t gn ≥ θ

)
Pr

(
a f P∗t g f

anP∗t g f + 1
≥ θ

)

= 1− Pr
(

gp ≤ τ
)

Pr

(
gn ≥

ξn

Ppeak

)
Pr

(
g f ≥

ξ f

Ppeak

)

= 1−
{

1−exp
(−τ

Ωp

)}
∏

u∈{n, f }

Γ[Nu, ξu/(ΩuPpeak)]

Γ(Nu)
. (40)

On the other hand, for the case of OMA, the outage probability is given by

Pout = 1− ∏
u∈{n, f }

Pr
(

gu ≥
Θ
P∗t

)
, (41)

where P∗t is given in (36).
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Fig. 2. Outage probability for the IntICSI and IntSCSI

systems. Here solid lines are plotted using the analytical

expressions.
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Fig. 3. Outage probability for the PowIntICSI system.

The tuples in the parenthesis denote (N, Ppeak).

-14 -10 -6 -2 2 6 10 14 18 20
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Fig. 4. Outage probability for the PowIntSCSI system.

The tuples in the parenthesis denote (N, Ppeak).
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Fig. 5. Outage probability for the PowIntOneBit system.

The tuples in the parenthesis denote (N, Ppeak).

C. Optimal power allocation

Following the arguments in Section IV-C, for the case where Nn = N f = 1, a∗n is given by

a∗n =
Ω f

(1 + θ)Ω f −Ωn
−

√
ΩnΩ f (1 + θ)

(1 + θ)
{
(1 + θ)Ω f −Ωn

} . (42)

Similar to case in Section IV-C, a∗n does not depends on Ppeak, I, Ωp or τ.
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VIII. RESULTS AND DISCUSSION

In this section, we present the simulation and analytical results for the performance of the

spectrum sharing NOMA/OMA systems. Throughout this section, we assume dn = 30m, d f =

100m, dp = 200m, α = 2, δ = 0.1 and Nn = N f = N. However, note that the analytical results

presented in this paper are also valid for the case when Nn 6= N f .

Fig. 2 shows a comparison between IntICSI and IntSCSI NOMA/OMA systems in terms of

outage probability, for different values of N. It is clear from the figure that the spectrum sharing

NOMA system significantly outperforms the corresponding OMA system for both IntICSI and

IntSCSI cases. It is important to note that for large values of I, the difference between the outage

probability of the NOMA system and the corresponding OMA system increases with an increase

in the value of N. It is also noteworthy that for large values of I, the difference between the

outage probability of the NOMA system for IntICSI and IntSCSI decreases with an increase in

the value of N, indicating that the impact of information loss becomes less significant for larger

values of N and I.

Fig. 3 shows the outage probability of the PowIntICSI system for both NOMA and OMA,

with different values of N and Ppeak. For both NOMA and OMA systems, the outage probability

first decreases for small values of I (which we refer to as the interference-constrained regime) and

then becomes saturated for large values of I (which we refer to as the power-constrained regime).

This occurs because the average power transmitted from the ST first increases with an increase

in the value of I and when the value of I is large, the average power transmitted from the

ST becomes constant, resulting in an outage floor. It is evident from the figure that the outage

probability of NOMA system is significantly lower than that of the corresponding OMA system.

More interestingly, for the NOMA/OMA system, the outage probability remains (almost) the

same in the interference-constrained regime for a fixed value of N, regardless of the value of

Ppeak, whereas the effect of Ppeak becomes significantly evident in the power-constrained regime.

The outage probability of the PowIntSCSI NOMA/OMA system is shown in Fig. 4 for different

values of N and Ppeak. Similar to the case of Fig. 3, the interference-constrained and power-

constrained regimes are clearly evident in Fig. 4, with the NOMA system outperforming the

corresponding OMA system. However, different from the case in Fig. 3, the outage probability

of NOMA/OMA for a fixed value of N is exactly the same in the interference-constrained

regime, irrespective of the value of Ppeak. This occurs because the power transmitted by the ST
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Fig. 6. Analytical plots for the outage probability of

the PowIntICSI, PowIntSCSI and PowIntOneBit NOMA

systems. Here Ppeak is fixed at 50 dB.
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Fig. 7. Average achievable sum-rate for the IntICSI

and IntSCSI systems. Here solid lines are plotted using

analytical expressions.
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Fig. 8. Average achievable sum-rate for the PowIntICSI

system. Here markers with dotted lines represent the

simulation results, whereas the solid lines represent the

analytical results.
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Fig. 9. Average achievable sum-rate for the PowIntSICSI

system. Here markers with dotted lines represent the

simulation results, whereas the solid lines represent the

analytical results.

is given by P∗t = min{Ppeak,−I/(Ωp ln δ)}; in the interference-constrained regime, this is equal

to −I/(Ωp ln δ), which is independent of Ppeak.

Fig. 5 depicts the outage probability performance of the PowIntOneBit NOMA/OMA systems

for different values of N and Ppeak. It is clearly evident from the figure that the NOMA

system outperforms its OMA-based counterpart, by achieving a lower outage probability. How-
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Fig. 10. Average achievable sum-rate for the PowIn-

tOneBit system. Here markers with dotted lines rep-

resent the simulation results, whereas the solid lines

represent the analytical results.
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Fig. 11. Analytical plots for the average achievable sum-

rate of the PowIntICSI, PowIntSCSI and PowIntOneBit

NOMA systems. Here Ppeak is fixed at 50 dB.

ever, different from the case in Figs. 3 and 4, for a fixed value of N, the outage probability

of NOMA/OMA systems with larger value of Ppeak is higher in the interference-constrained

regime. This occurs because when the value of Ppeak is large (for a fixed N), the value of

τ , I/Ppeak becomes small and therefore, the probability of receiving a feedback “1” at the

ST becomes smaller (c.f. (36)), which in turn leads to a higher probability of the ST being

silent. Therefore, different from the other cases, having a higher peak power budget is not

always beneficial in the interference-constrained regime for the case of the PowIntOneBit system.

However, in the power-constrained regime, having a large Ppeak is always advantageous, as is

evident from the figure.

Fig. 6 shows a comparison of the outage probability for PowIntICSI, PowIntSCSI and Pow-

IntOneBit NOMA systems with Ppeak = 50 dB. It is evident from the figure that in the power-

constrained regime, the outage probability for all the three NOMA systems for a fixed value

of N converges to the same outage floor. In the interference-constrained regime, the effect of

information loss in terms of IL-CSI between PowIntICSI and PowIntSCSI systems is not very

significant. However, in the case of PowIntOneBit system, the effect of information loss in terms

of IL-CSI becomes significantly dominant in the interference-constrained regime, especially for

large N.

Fig. 7 shows a comparison of the average achievable sum-rate for IntICSI and IntSCSI NOMA
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and OMA systems. It is evident from the figure that the NOMA-based system outperforms the

corresponding OMA-based system in terms of achievable sum-rate for large values of N. It is

noteworthy that in contrast to the behavior in the case of outage probability, the performance

degradation in IntSCSI system as compared to IntICSI system in terms of achievable rate due

to information loss is significant even for large values of N.

In Fig. 8, the average achievable sum-rate for the PowIntICSI NOMA/OMA system is shown

for different values of N and Ppeak. Interestingly, the difference between the sum-rate of the

NOMA systems with Ppeak = 45 dB and 50 dB is less significant in the interference-constrained

regime, whereas the performance difference between the two systems becomes significant in

the power-constrained regime.

Fig. 9 shows the average achievable sum-rate for PowIntSCSI NOMA and OMA systems

for different values of N and Ppeak. It is noteworthy from the figure that for a fixed N in the

interference-constrained regime, the sum-rate for the NOMA/OMA system is exactly the same

for both Ppeak = 45 dB and 50 dB, because of the same reason as explained previously for Fig. 4.

Also, as explained for the previous figure, the achievable rate for both NOMA and OMA systems

saturates in the power-constrained regime, due to the fact that the power transmitted from the

ST is constant and independent of the value of I.

Fig. 10 depicts the average achievable sum-rate performance of the PowIntOneBit NOMA and

OMA systems for different values of N and Ppeak. For a fixed value of N in the interference-

constrained regime, the sum-rate of the NOMA/OMA system with larger Ppeak achieves lower

sum-rate as compared to the NOMA/OMA system with smaller Ppeak, because of the same

reason as explained previously for Fig. 5. Therefore, having a higher peak power budget in

the PowIntOneBit NOMA/OMA system is not always beneficial in the interference-constrained

regime. However, in the power-constrained regime, a larger value of Ppeak results in a higher

achievable sum-rate.

Fig. 11 shows the achievable sum-rate performance of PowIntICSI, PowIntSCSI and PowIn-

tOneBit NOMA systems for the case when Ppeak = 50 dB. It can be noticed from the figure

that in the interference-constrained regime, there is a significant performance degradation due

to the information loss in terms of IL-CSI, whereas in the power-constrained regime, there is

no effect of information loss in terms of IL-CSI.
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IX. CONCLUSION

In this paper, we presented the performance analysis of a multi-antenna-assisted NOMA-

based underlay spectrum sharing system over Rayleigh fading channels. We derived closed-form

expressions for the average achievable sum-rate and outage probability for the downlink NOMA

system under a peak interference as well as a peak power budget constraint with different CSI

availability at the ST regarding the link between ST and PR. Our results confirm that for a large

number of antennas at the secondary users, the performance difference between the system with

instantaneous IL-CSI and statistical IL-CSI in the interference-constrained regime is negligible

in terms of outage probability, whereas this difference is significant in terms of achievable sum-

rate. On the other hand when no IL-CSI is available at the ST, the NOMA and OMA systems

both suffer from a significant performance degradation in the interference-constrained regime

for a large number of antennas, in terms of outage probability as well as achievable sum-rate.

However, in the power-constrained regime, the effect of information loss in IL-CSI is negligible

for both outage probability and achievable sum-rate. We also derived closed-form expressions

for the optimal power allocation to minimize the outage probability of NOMA systems for the

special case when the secondary users are each equipped with a single antenna.

APPENDIX A

PROOF OF THEOREM 1

Given that channel gains for all of the wireless links are exponential distributed, the PDF and

CDF of gu(u ∈ {n, f }), are respectively given by

fgu(x) =
xNu−1

Γ(Nu)ΩNu
u

exp
(−x

Ωu

)
, (43)

and

Fgu(x) = 1− exp
(−x

Ωu

) Nu−1

∑
k=0

1
k!

(
x

Ωu

)k
. (44)

Also, the PDF of gp is given by

fgp(x) =
1

Ωp
exp

(−x
Ωp

)
. (45)

Now, the PDF of gmin can be obtained by

fgmin(x) = fgn(x)[1− Fg f (x)] + fg f (x)[1− Fgn(x)]

=
1

Γ(Nn)ΩNn
n

N f−1

∑
k=0

xNn+k−1

k!Ωk
f

exp
(−x

Ω

)
+

1

Γ(N f )Ω
N f
f

Nn−1

∑
l=0

xN f +l−1

l!Ωl
n

exp
(−x

Ω

)
. (46)
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Also, the PDF of Xu , gu/gp can be obtained as

fXu(x) =
∫ ∞

0
y fgu(yx) fgp(y)dy

=
xNu−1

Γ(Nu)ΩNu
u Ωp

∫ ∞

0
yNu exp

[
−
(

x
Ωu

+
1

Ωp

)
y
]

dy =
NuxNu−1

ΩNu
u Ωp

(
x

Ωu
+

1
Ωp

)−(Nu+1)
, (47)

where the integration above is solved using [21, eqn. (3.351-3), p. 340]. Similarly, the PDF of

Xmin , gmin/gp can be given by

fXmin(x) =
∫ ∞

0
y fgmin(yx) fgp(y)dy

=
1

Γ(Nn)ΩNn
n Ωp

N f−1

∑
k=0

xNn+k−1

k!Ωk
f

∫ ∞

0
yNn+k exp

[
−
(

x
Ω

+
1

Ωp

)
y
]

dy

+
1

Γ(N f )Ω
N f
f Ωp

Nn−1

∑
l=0

xN f +l−1

l!Ωl
n

∫ ∞

0
yN f +l exp

[
−
(

x
Ω

+
1

Ωp

)
y
]

dy

=

N f−1

∑
k=0

xNn+k−1Γ(Nn + k + 1)

Γ(Nn)k!ΩNn
n Ωk

f Ωp

(
x
Ω

+
1

Ωp

)−(Nn+k+1)
+

Nn−1

∑
l=0

xN f +l−1Γ(N f + l + 1)

Γ(N f )l!Ω
N f
f Ωl

nΩp

(
x
Ω

+
1

Ωp

)−(N f +l+1)
.

(48)

The integration above is solved using [21, eqn. (3.351-3), p. 340]. Using (47), an analytical

expression for the first expectation in (3) is be given by

EXn{log2(1 + an IXn)} =
1

ln 2

∫ ∞

0
ln(1 + an Ix) fXn(x)dx

=
NnΩNn

p

ΩNn
n ln 2

∫ ∞

0
xNn−1 ln(1 + an Ix)

(
1 +

Ωp

Ωn
x
)−(Nn+1)

dx

=
NnΩNn

p

ΩNn
n Γ(Nn + 1) ln 2

∫ ∞

0
xNn−1G1,2

2,2

(
an Ix

∣∣∣∣ 1, 1

1, 0

)
G1,1

1,1

(
Ωp

Ωn
x
∣∣∣ −Nn

0

)
dx

=
1

Γ(Nn) ln 2

(
Ωp

Ωnan I

)Nn

G3,2
3,3

(
Ωp

Ωnan I

∣∣∣∣ −Nn, −Nn, 1−Nn

0, −Nn, −Nn

)
, (49)

where the integration above is solved using [23, eqns. (7), (11), (21), and (22)]. Similarly, us-

ing (48), an analytical expression for the second expectation in (3) is given by

EXmin{log2(1 + IXmin)}

=
1

ln 2

N f−1

∑
k=0

Γ(Nn + k + 1)

Γ(Nn)k!ΩNn
n Ωk

f Ωp

∫ ∞

0
xNn+k−1 ln(1 + Ix)

(
x
Ω

+
1

Ωp

)−(Nn+k+1)
dx

+
Nn−1

∑
l=0

Γ(N f + l + 1)

Γ(N f )l!Ω
N f
f Ωl

nΩp

∫ ∞

0
xN f +l−1 ln(1 + Ix)

(
x
Ω

+
1

Ωp

)−(N f +l+1)
dx


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=
1

ln 2

N f−1

∑
k=0

ΩNn+k
p

Γ(Nn)k!ΩNn
n Ωk

f

∫ ∞

0
xNn+k−1G1,2

2,2

(
Ix
∣∣∣∣ 1, 1

1, 0

)
G1,1

1,1

(
Ωp

Ω
x
∣∣∣ −Nn−k

0

)
dx

+
Nn−1

∑
l=0

Ω
N f +l
p

Γ(N f )l!Ω
N f
f Ωl

n

∫ ∞

0
xN f +l−1G1,2

2,2

(
Ix
∣∣∣∣ 1, 1

1, 0

)
G1,1

1,1

(
Ωp

Ω
x
∣∣∣∣ −N f−l

0

)
dx



=
1

ln 2


N f−1

∑
k=0

ΩNn+k
p G3,2

3,3

(
Ωp

ΩI

∣∣∣∣ −Nn−k, −Nn−k, 1−Nn−k

0, −Nn−k, −Nn−k

)
Γ(Nn)k!ΩNn

n Ωk
f INn+k

+
Nn−1

∑
l=0

Ω
N f +l
p G3,2

3,3

(
Ωp

ΩI

∣∣∣∣ −N f−l, −N f−l, 1−N f−l

0, −N f−l, −N f−l

)
Γ(N f )l!Ω

N f
f Ωl

n IN f +l

 .

(50)

The integral above is solved in a similar fashion as in (49). An analytical expression for the

third expectation in (3) can be obtained by replacing I with an I in (50). Therefore, using (49)

and (50), an analytical expression for (3) is given by (4); this concludes the proof.

APPENDIX B

PROOF OF THEOREM 2

We first define the non-outage event for NOMA as the event where x f and xn are decoded

successfully at Un, and x f is decoded successfully at U f . Therefore, the outage probability for

the NOMA system is given by

Pout = 1− Pr
(

γ
(w)
n ≥ θ, γ

(s)
n ≥ θ

)
Pr
(

γ
(w)
f ≥ θ

)
= 1− Pr

( a f Ign/gp

1 + an Ign/gp
≥ θ,

an Ign

gp
≥ θ

)
Pr

(
a f Ig f /gp

1 + an Ig f /gp
≥ θ

)

= 1− Pr
( a f IXn

1 + an IXn
≥ θ, an IXn ≥ θ

)
Pr

(
a f IX f

1 + an IX f
≥ θ

)

= 1− Pr

(
Xn ≥

θ

I
max

{
1

a f − anθ
,

1
an

})
Pr

(
X f ≥

θ

I(a f − anθ)

)
.

Using the relations ξn = θ max
{

1
a f−anθ , 1

an

}
and ξ f = θ

a f−anθ , the expression for Pout can be

written as

Pout = 1− Pr
(

Xn ≥
ξn

I

)
Pr
(

X f ≥
ξ f

I

)
= 1− ∏

u∈{n, f }
FXu

(
ξu

I

)
, (51)

where FXu(·) is evaluated as

FXu

(
ξu

I

)
=
∫ ∞

ξu/I
fXu(x)dx =

NuΩu

Ωp

∫ ∞

ξu/I
xNu−1

(
x +

Ωu

Ωp

)−(Nu+1)
dx = 1−

(
Ωpξu

Ωu I + Ωpξu

)Nu

.

(52)
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Substituting the expression for FXu(ξu/I) from (52) into (51), the closed-form expression for

Pout becomes equal to (6); this concludes the proof.

APPENDIX C

PROOF OF THEOREM 3

For the case where Nn = N f = 1, the outage probability is given by

Pout = 1− ∏
u∈{n, f }

Ωu

Ωu + Ωp(ξu/I)
.

Assuming, 1/(a f − anθ) > 1/an, i.e., ξn = 1/(1− an − anθ), we have

∂Pout

∂an
=

I2ΩpΩnΩ f θ(1 + θ)(an + anθ − 1)
{Ωpθ − IΩn(an + anθ − 1)}2 ×

{I(Ωn + Ω f )(an + anθ − 1)− 2Ωpθ}
{Ωpθ − IΩ f (an + anθ − 1)}2 .

Using the fact that an < 1/(1 + θ) (see Section III-B), we have

∂Pout

∂an
= 0 =⇒ I(Ω f + Ωn) {(1 + θ)an − 1}2 − 2θΩp {(1 + θ)an − 1} = 0.

The preceding equation is quadratic, leading to the following two solutions:

an =
1

1 + θ
,

1
1 + θ

+
2Ωpθ

I(Ωn + Ω f )(1 + θ)
.

Since, an < 1/(1 + θ), neither of the above optimal values is feasible. Now assuming that

1/(a f − anθ) < 1/an, i.e., ξn = 1/an, we have

∂Pout

∂an
=

I2ΩpΩnΩ f θ
{
−IΩ f −Ωpθ + 2an(1 + θ)(IΩ f + Ωpθ)− a2

n I(1 + θ)(−Ωn + Ω f + Ω f θ)
}

(an IΩn + Ωpθ)2{Ωpθ − IΩ f (an + anθ − 1)}2

Since an < 1/(1 + θ), we have

∂Pout

∂an
= 0

=⇒ I2ΩpΩnΩ f θ
{
−IΩ f −Ωpθ + 2an(1 + θ)(IΩ f + Ωpθ)− a2

n I(1 + θ)(−Ωn + Ω f + Ω f θ)
}
= 0

=⇒ a2
n I(1 + θ)(−Ωn + Ω f + Ω f θ)− 2an(1 + θ)(IΩ f + Ωpθ) + IΩ f + Ωpθ = 0

=⇒ an =
IΩ f + Ωpθ

I{(1 + θ)Ω f −Ωn}
±

√
(1 + θ)(IΩ f + Ωpθ){IΩn + Ωpθ(1 + θ)}

I(1 + θ){(1 + θ)Ω f −Ωn}
.

Define

a(1)n ,
IΩ f + Ωpθ

I{(1 + θ)Ω f −Ωn}
+

√
(1 + θ)(IΩ f + Ωpθ){IΩn + Ωpθ(1 + θ)}

I(1 + θ){(1 + θ)Ω f −Ωn}

=
1

(1 + θ)− (Ωn/Ω f )
+

Ωpθ/(IΩ f )

(1 + θ)− (Ωn/Ω f )
+

1
(1 + θ)− (Ωn/Ω f )

√√√√ (IΩ f + Ωpθ)

I2(1 + θ)Ω2
f
{IΩn + Ωpθ(1 + θ)}
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, X1 +X2 +X3.

For the case 1 + θ > Ωn/Ω f , X1, X2, X3 > 0 and X1 > 1/(1 + θ). Therefore, a(1)n > 1/(1 + θ).

On the other hand, if 1 + θ < Ωn/Ω f , X1, X2, X3 < 0 and a(1)n < 0. Therefore, the only feasible

solution for the optimal value of an is

a∗n = a(2)n =
IΩ f + Ωpθ

I{(1 + θ)Ω f −Ωn}
−

√
(1 + θ)(IΩ f + Ωpθ){IΩn + Ωpθ(1 + θ)}

I(1 + θ){(1 + θ)Ω f −Ωn}
.

This concludes the proof.

APPENDIX D

PROOF OF THEOREM 4

Using (43), an analytical expression for the first expectation in (11) can be given by

Egn {log2(1 + angnP∗t )}

=
1

Γ(Nn)ΩNn
n ln 2

∫ ∞

0
xNn−1 ln(1 + anP∗t x) exp

(−x
Ωn

)
dx

=
1

Γ(Nn)ΩNn
n ln 2

∫ ∞

0
xNn−1G1,2

2,2

(
anP∗t x

∣∣∣ 1, 1
1, 0

)
G1,0

0,1

(
x

Ωn

∣∣ −
0

)
dx

=
1

Γ(Nn)ΩNn
n (anP∗t )Nn ln 2

G3,1
2,3

(
1

ΩnanP∗t

∣∣∣∣ −Nn, 1−Nn

0, −Nn, −Nn

)
. (53)

The integral above is solved using [23, eqns. (7), (11), (21), and (22)]. Using (46), an analytical

expression for the second expectation in (11) can be given by

Egmin {log2(1 + gminP∗t )}

=
1

Γ(Nn)ΩNn
n ln 2

N f−1

∑
k=0

1
k!Ωk

f

∫ ∞

0
xNn+k−1 ln(1 + P∗t x) exp

(−x
Ω

)
dx

+
1

Γ(N f )Ω
N f
f ln 2

Nn−1

∑
l=0

1
l!Ωl

n

∫ ∞

0
xN f +l−1 ln(1 + P∗t x) exp

(−x
Ω

)
dx

=
1

Γ(Nn)ΩNn
n ln 2

N f−1

∑
k=0

1
k!Ωk

f (P∗t )Nn+k
G3,1

2,3

(
1

ΩP∗t

∣∣∣∣ −Nn−k,1−Nn−k

0,−Nn−k,−Nn−k

)

+
1

Γ(N f )Ω
N f
f ln 2

×
Nn−1

∑
l=0

1

l!Ωl
n(P∗t )

N f +l G3,1
2,3

(
1

ΩP∗t

∣∣∣∣ −N f−l,1−N f−l

0,−N f−l,−N f−l

)
.

(54)

The integrals above are solved using [23, eqns. (7), (11), (21), and (22)]. An analytical expression

for the third expectation in (11) can be obtained by replacing P∗t by anP∗t in (54). Therefore,

using (53) and (54), an analytical expression for (11) is given by (12); this completes the proof.
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APPENDIX E

PROOF OF THEOREM 5

Using the relation Γ[1, x] = exp(−x), the expression for the outage probability for the case

when Nn = N f = 1 is given by

Pout = 1− exp

{
−
(

ξn

P∗t Ωn
+

ξ f

P∗t Ω f

)}
.

Assuming 1/(a f − anθ) > 1/an, i.e., ξn = 1/(1− an − anθ), we have

∂Pout

∂an
= exp

{
−θ(Ωn + Ω f )

P∗t (1− an − anθ)ΩnΩ f

}
×

(Ωn + Ω f )(1 + θ)θ

ΩnΩ f P∗t (−1 + an + anθ)2 .

Since an < 1/(1 + θ), this implies that

exp

{
−θ(Ωn + Ω f )

P∗t (1− an − anθ)ΩnΩ f

}
6= 0.

Therefore,

∂Pout

∂an
= 0 =⇒

(Ωn + Ω f )(1 + θ)θ

ΩnΩ f P∗t (−1 + an + anθ)2 = 0.

It can easily be noticed that the only feasible solution for the above equation is an = ±∞.

On the other hand, when 1/(a f − anθ) < 1/an, i.e., ξn = 1/an, we have

∂Pout

∂an
=− exp

{
−
(

θ

ΩnP∗t an
+

θ

Ω f P∗t (1− an − anθ)

)}
×
{

θ

ΩnP∗t a2
n
− (1 + θ)θ

Ω f P∗t (1− an − anθ)2

}
.

Since an < 1/(1 + θ), this implies that

exp

{
−
(

θ

ΩnP∗t an
+

θ

Ω f P∗t (1− an − anθ)

)}
6= 0.

Therefore, using the constraint 0 < an < 1/(1 + θ), we have

∂Pout

∂an
= 0

=⇒ a2
n(1 + θ){(1 + θ)Ω f −Ωn} − 2anΩ f (1 + θ) + Ω f = 0

=⇒ an =
Ω f

(1 + θ)Ω f −Ωn
±

√
ΩnΩ f (1 + θ)

(1 + θ)
{
(1 + θ)Ω f −Ωn

} .

Define

a(1)n =
Ω f

(1 + θ)Ω f −Ωn
+

√
ΩnΩ f (1 + θ)

(1 + θ)
{
(1 + θ)Ω f −Ωn

} =
1

(1 + θ)− (Ωn/Ω f )
+

√
Ωn

(1+θ)Ω f

(1 + θ)− (Ωn/Ω f )

,X1 +X2.
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For the case when 1+ θ > Ωn/Ω f , X1, X2 > 0 and X1 > 1/(1+ θ), leading to a(1)n > 1/(1+ θ).

On the other hand, if 1 + θ < Ωn/Ω f , X1, X2 < 0, leading to a(1)n < 0. Therefore, the only

feasible solution is given by

a∗n = a(2)n =
Ω f

(1 + θ)Ω f −Ωn
−

√
ΩnΩ f (1 + θ)

(1 + θ)
{
(1 + θ)Ω f −Ωn

} .

This completes the proof.

APPENDIX F

PROOF OF THEOREM 6

Given that Nn = N f = 1, we have gn = |hn,1|2 and g f = |h f ,1|2. The expressions for the PDFs

of gu and gmin are respectively given by

fgu(x) =
1

Ωu
exp

(−x
Ωu

)
, fgmin(x) =

1
Ω

exp
(−x

Ω

)
.

Solving the first expectation in (21), we have

Egp,gn

{
log2[1 + angnP∗t (gp)]

}
=
∫ y= I

Ppeak

y=0

∫ x=∞

x=0
log2(1 + anPpeakx) fgn(x) fgp(y)dx dy

+
∫ y=∞

y= I
Ppeak

∫ x=∞

x=0
log2

(
1 + an I

x
y

)
fgn(x) fgp(y)dx dy

=
1

ΩnΩp

∫ y= I
Ppeak

y=0

∫ x=∞

x=0
log2(1 + anPpeakx) exp

(−x
Ωn

)
exp

(−y
Ωp

)
dx dy

+
1

ΩnΩp

∫ y=∞

y= I
Ppeak

∫ x=∞

x=0
log2

(
1 + an I

x
y

)
exp

(−x
Ωn

)
exp

(−y
Ωp

)
dx dy

=
1

ΩnΩp ln 2

[∫ y= I
Ppeak

y=0
exp

(−y
Ωp

)
dy

] [∫ x=∞

x=0
ln(1 + anPpeakx) exp

(−x
Ωn

)
dx
]

+
1

ΩnΩp ln 2

∫ y=∞

y= I
Ppeak

∫ x=∞

x=0
ln
(

1 + an I
x
y

)
exp

(−x
Ωn

)
exp

(−y
Ωp

)
dx dy

=
−1
ln 2

[
1− exp

(
−I

ΩpPpeak

)]
exp

(
1

anΩnPpeak

)
Ei

(
−1

anΩnPpeak

)

+
1

ln 2

[
Ei

(
−I

ΩpPpeak

)
− Ωp

Ωp − anΩn I

{
Ei

(
−I

ΩpPpeak

)
−exp

(
Ωp − anΩn I

anΩnΩpPpeak

)
Ei

(
−1

anΩnPpeak

)}

+ exp

(
Ωp − anΩn I

anΩnΩpPpeak

)
×
{

Shi

(
1

anΩnPpeak

)
−Chi

(
1

anΩnPpeak

)}]
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, T(anΩn). (55)

Similarly, the analytical expression for the second expectation in (21) can be obtained by replac-

ing anΩn by Ω, and the analytical expression for the third expectation in (21) can be obtained

by replacing Ωn by Ω in the preceding equation; this completes the proof.

APPENDIX G

PROOF OF THEOREM 7

Using (20) and (25), it follows that

Pout = 1− Pr
(

gn ≥
ξn

P∗t (gp)

)
Pr
(

g f ≥
ξ f

P∗t (gp)

)

=1−

Pr

(
gn≥

ξn

Ppeak

)
Pr

(
g f ≥

ξ f

Ppeak

)
Pr

(
gp≤

I
Ppeak

)
︸ ︷︷ ︸

X1

+Pr

(
gn

gp
≥ ξn

I
,

g f

gp
≥

ξ f

I
, gp >

I
Ppeak

)
︸ ︷︷ ︸

X2

 .

(56)

Solving for X1 yields

X1 =

 ∏
u∈{n, f }

∫ ∞

ξu
Ppeak

fgu(x)dx

 [1− exp

(
−I

ΩpPpeak

)]

=

[
1− exp

(
−I

ΩpPpeak

)]
∏

u∈{n, f }

1

Γ(Nu)ΩNu
u

∫ ∞

ξu
Ppeak

xNu−1 exp
(−x

Ωu

)
dx

=

[
1− exp

(
−I

ΩpPpeak

)]
∏

u∈{n, f }

Γ[Nu, ξu/(ΩuPpeak)]

Γ(Nu)
. (57)

The integral above is solved using [21, eqn. (3.381-3), p. 346]. Similarly, solving for X2 yields

X2 = Pr

(
gn

gp
≥ ξn

I
,

g f

gp
≥

ξ f

I
, gp >

I
Ppeak

)

=
1

Ωp

∫ ∞

I
Ppeak

exp
(−x

Ωp

)
Pr
(

gn≥
ξn

I
x
)

Pr
(

g f ≥
ξ f

I
x
)

dx

=
1

Ωp

∫ ∞

I
Ppeak

exp
(−x

Ωp

)[
1−Fgn

(
ξn

I
x
)][

1−Fg f

(
ξ f

I
x
)]

dx

=
1

Ωp

∫ ∞

I
Ppeak

exp
(−x

Ωp

)
exp

(−ξnx
Ωn I

) Nn−1

∑
l=0

1
l!

(
ξnx
Ωn I

)l
exp

(
−ξ f x
Ω f I

) N f−1

∑
k=0

1
k!

(
ξ f x
Ω f I

)k

dx

=
1

Ωp

N f−1

∑
k=0

Nn−1

∑
l=0

ξ l
nξk

f

k!l!Ωl
nΩk

f Ik+l

∫ ∞

I
Ppeak

xk+l exp
[
−
(

1
Ωp

+
ξn

Ωn I
+

ξ f

Ωn I

)
x
]

dx
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=
1

Ωp

N f−1

∑
k=0

Nn−1

∑
l=0

Γ

[
k + l + 1,

(
1

Ωp
+

ξn

Ωn I
+

ξ f

Ωn I

)
I

Ppeak

]
ξ l

nξk
f

k!l!Ωl
nΩk

f Ik+l

(
1

Ωp
+

ξn

Ωn I
+

ξ f

Ωn I

)−(k+l+1)

.

(58)

The integral above is solved using [21, eqn. (3.381-3), p. 346]. Therefore, using (56)-(58), an

analytical expression for (25) is given by (26); this concludes the proof.
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