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Manchester Encoding for Non-coherent Detection
of Ambient Backscatter in Time-Selective Fading
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Abstract—Simplifying the detection procedure and improving
the bit error rate (BER) performance of a non-coherent receiver
in ambient backscatter is vital for enhancing its ability to function
without the channel state information (CSI). In this work, we
analyze the BER performance of Manchester encoding which
is implemented at the transmitter for data transmission, and
demonstrate that the optimal decision rule is independent of the
system parameters. Further, through extensive numerical results,
it is shown that the ambient backscatter system can achieve
a signal-to-noise ratio (SNR) gain with Manchester encoding
compared to the commonly used uncoded direct on-off keying
(OOK) modulation, when used in conjunction with a multi-
antenna receiver employing the direct-link cancellation.

Index Terms—Ambient backscatter, non-coherent detection,
Manchester encoding, time-selective fading, bit error rate.

I. INTRODUCTION

The potential applications of ambient backscatter for the
next generation wireless networks necessitates the technology
to support information transfer not only among heterogeneous
user equipment (UE), but also under diverse channel scenarios.
For example, the emerging paradigm of smart cities will require
ambient backscatter to perform well in both the slow and fast
varying channels. While there have been a lot of studies on slow
fading channels in the literature [1], the investigation into time-
selective fading channels has not received enough attention.
Due to the difficulty of acquiring channel state information
(CSI) for such fast varying channels, it might be detrimental to
build a system based on coherent communication, and could
be more beneficial to choose non-coherent transmission as
the preferred mode of communication in such channels. It is,
therefore, very important to improve the performance of non-
coherent detection for the ambient backscatter to accelerate
its widespread adoption and implementation for applications
that experience fast varying channels, such as the vehicular
communications systems. Towards this goal, we investigate the
advantages of employing Manchester encoding for the non-
coherent transmission of ambient backscatter symbols under a
time-selective fading setup. We show that this encoding scheme
can result in reduction of detection complexity at the receiver,
while improving the BER performance compared to the popular
on-off keying (OOK) modulation.

Related Work: With respect to the assumptions about the
channel model, the current literature on non-coherent ambient
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backscatter can be broadly divided into two categories. The
first category belongs to slow fading channels, for which the
non-coherent receiver designs based on maximum-likelihood
(ML) detection [2], semi-coherent detection [3], and orthogonal
frequency division multiplexing (OFDM) [4], [5] are proposed.
Also, the blind channel estimation techniques that do not require
transmission of separate pilot signals are studied in [6], [7]
for the ambient backscatter setup. Manchester encoding was
first explored in [8] for a slow fading ambient backscatter
setup. In [9], the angle of arrival estimation (AoA) using a
reader with a massive number of antennas is explored for the
ambient backscatter setup. The second category relates to the
time-selective fading channels, which is of more interest to us
but has not received much attention. The most relevant prior
art in this direction is our own work [10], which focuses on
the non-coherent multi-antenna receiver design for direct OOK
modulation. However, the bit error rate (BER) analysis of the
ambient backscatter systems under Manchester encoding and
time-selective fading is an open problem, which is solved in
this paper. A particular technical novelty of the paper is in
carefully handling the correlation between the test statistics
corresponding to the two codewords of the encoded symbol,
which is crucial for the exact BER analysis.

Contributions: In this work, we introduce Manchester
encoding to the time-selective fading setup of an ambient
backscatter system, and analyze the performance of the scheme.
We also determine the advantages of Manchester encoding over
the direct OOK modulation by comparing the complexity of the
two detection mechanisms and their BER performance. A low-
complexity receiver architecture based on the direct averaging
of the received signal samples is considered for the setup. This
architecture diverges from the conventional one based on the
averaging of energy of the received signal samples, which is
commonly used in the ambient backscatter literature [1]. The
main contributions of our current work can be summarized
as follows: 1) evaluation of the conditional joint distributions
and the average BER of Manchester encoding for both the
single antenna (SA) and multi-antenna (MA) receivers, and 2)
novel analysis that demonstrates the advantages of Manchester
encoding over the popular direct OOK modulation. To be exact,
we analytically show that the optimal detection rule of the
ambient backscatter with Manchester encoding is independent
of the system and channel parameters, which greatly simplifies
the receiver implementation. In addition, the encoding scheme
also results in an SNR gain over the direct OOK modulation,
when used in conjunction with an MA receiver implementing
the direct-link (DL) cancellation. The exact gain in SNR is
dependent on the joint distribution of the AoAs of the DL and
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Fig. 1: System model for the ambient backscatter setup.

backscatter link (BL). For the uniform spread and narrow spread
joint distributions of the AoAs considered in our work, the
SNR gain comes out to be around 4 dB and 3 dB, respectively.

II. SYSTEM MODEL

The setup for the ambient backscatter system mainly consists
of three devices, namely the ambient power source (PS), the
backscatter transmitter (BTx), and the receiver (Rx). The
ambient PS and BTx are surrounded by local scatterers resulting
in independent sub-paths with uniformly distributed angle of
departure (AoD), while the Rx only has dominant scatterers
that are far away, resulting a narrow spread for the AoA. Hence,
the signal at Rx can be modeled as spatially correlated with
two receive links, namely DL and BL that arrive at AoAs θ1

and θ2, respectively, after propagating through a flat Rayleigh
fading channel. The described system setup of the ambient
backscatter is illustrated in Fig. 1. In addition, the ambient
PS and BTx could be in motion independently of each other,
resulting in a time-varying channel. Under the local scattering
assumptions, the auto-correlation function (ACF) for the fading
process of the DL and BL links is given by J0(2πfdtd), where
J0() is the zero order Bessel function of the first kind, fd is
the maximum Doppler spread (DS) of the link and td is the
delay [11]. Similarly, the ACF for the PS-BTx link is given
by J0(2πfdtd)J0(2πafdtd), where a is the ratio of the DS
present at these two devices of the link [11]. For tractability,
the temporal fading of each link is modeled as a first-order AR
process given by h[n]=ρh[n−1]+

√
1−ρ2g[n], where h[n] and

h[n−1] are the gains of the current and previous time instants,
respectively, g[n] is the complex Gaussian process of variance
σ2
h, and ρ ∈ [0, 1) is the correlation factor [12]. Depending

on the link, the value of ρ is given by either J0(2πfdTs) or
J0(2πfdTs)J0(2πafdTs), where Ts is the symbol duration.
The MA receiver of the current setup utilizes the slow varying
rate of the large scale parameter AoA, in comparison to varying
rate of the overall channel gain of the fading channel, to track
the AoA of the DL and cancel its interference [10].

By intentionally keeping the data rate of backscatter lower
compared to that of the ambient data, the signal at the SA
receiver can be expressed as:

y[n] = hr[n]x[n] + αbhb[n]ht[n]x[n] + w[n], (1)

where x[n] is the ambient data sequence, w[n] is the additive
Gaussian noise, hr[n], hb[n] and ht[n] are i.i.d. zero mean
complex Gaussian channel coefficients with variance σ2

h and
are unknown at Rx, b is the backscatter data bit, and α is
related to the parameter Γ1 (the reflection coefficient of the
tag when bit ‘1’ is transmitted) of the BTx node. The channel
coefficients hr[n], hb[n] and ht[n] are modeled using a first-
order AR process, each having a separate correlation factor
ρr, ρb, and ρt, respectively. Similarly, the resultant signal at
the MA receiver after the DL cancellation is given by:

ỹ[n] = ãαbhb[n]ht[n]x[n] + w̃[n], (2)

where the resultant vectors ã and w̃[n] are given by:

ã =


2 sin(φ2−φ1

2 )ej(
φ2−φ1

2 )

...
2 sin(Mr − 1)(φ2−φ1

2 )ej(Mr−1)(
φ2−φ1

2 )

,

w̃[n] =

 e−jφ1w1[n]− w0[n]
...

e−j(Mr−1)φ1wMr−1[n]− w0[n]

. (3)

The phase offset φi of each link is given by 2π
λ d cos θi.

Additional details on the setup, channel and signal model can
be found in [10]. However, unlike the direct OOK modulation
used in [10], the transmitter in this case sends out codewords
[0 1] and [1 0], known as Manchester coding, using the OOK
modulation for message (b) bits 0 and 1, respectively. For
completeness, note that a preliminary study of Manchester
encoding appears in our conference paper [13], which is limited
to a dual-antenna receiver and assumed independent fading
across the ambient symbols. For a fair comparison with the
direct OOK modulation, we assume that each codeword of
Manchester encoding is sent within a single symbol duration of
the backscatter data instead of the time duration of two symbols.
The test statistics (TSs) Z0 and Z1 are evaluated for the two
symbols of the codeword by taking half the samples each from
the sample size N , and are given by Z0 = 2

N

∑N/2
n=1 y[n] and

Z1 = 2
N

∑N
n=N/2+1 y[n]. Although the setup of the paper is

inspired by [10], the new analysis for Manchester encoding
under time-selective fading channel is fundamentally different
and non-trivial due to correlation between Z0 and Z1.

III. DETECTION AT THE SINGLE ANTENNA RECEIVER

In this section, we evaluate the performance of Manchester
encoding in a SA receiver by deriving the conditional proba-
bility density functions (PDFs) and BER of the receiver. The
BER probability of the detector is represented using one of the
commonly used notations P (e), where e is the bit error event.

A. Conditional Distributions of the Signal
The null and alternate hypothesesH0 andH1 of the encoding

scheme correspond to the backscatter bit b ≡ 0 and b ≡ 1,
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respectively. Since the transmitter sends out codewords, we
have to derive the joint conditional distributions of the TSs Z0

and Z1 evaluated for each symbol of the codeword.

Lemma 1. The joint PDFs of Z0 and Z1 conditioned on H0

and H1 for Manchester encoding in SA receiver are given by:

H0 : fZ0,Z1
(z0, z1)

=

exp

{
−
(
|z0|2VarSA

1 +|z1|2VarSA
0 −(z0z

∗
1+z∗0z1)CovSA

VarSA
0 VarSA

1 −(CovSA)
2

)}
π2
(

VarSA
0 VarSA

1 −
(
CovSA

)2) , (4)

H1 : fZ0,Z1
(z0, z1)

=

exp

{
−
(
|z0|2VarSA

0 +|z1|2VarSA
1 −(z0z

∗
1+z∗0z1)CovSA

VarSA
0 VarSA

1 −(CovSA)
2

)}
π2
(

VarSA
0 VarSA

1 −
(
CovSA

)2) , (5)

where VarSA
0 =

2(σ2
hE[|X|2]+σ2

h
2ρr

1−ρr (1− 2(1−ρN/2r )
N(1−ρr)

)|E[X]|2+σ2
n)

N ,

VarSA
1 =

2

N
(σ2
h(1+|α|2σ2

h)E
[
|X|2

]
+σ2

h

[ 2ρr
1−ρr

(1−2(1−ρN/2r )

N(1−ρr)
)

+|α|2σ2
h

2ρtρb
1− ρtρb

(1−
2(1−ρN/2t ρ

N/2
b )

N(1−ρtρb)
)
]
|E [X] |2 + σ2

n),

and CovSA =
4ρr(1−ρN/2r )

2

N2(1−ρr)2
|E [X]|2.

Proof: See Appendix A.

B. Bit Error Rate

The conditional PDFs of Z0 and Z1 under the two hypotheses
are compared to derive the optimal threshold, which is used
to evaluate the BER of the SA receiver.

Theorem 1. The average BER of Manchester encoding in the
SA receiver is given by:

PSA(e) =

∫ ∞
0

∫ ∞
v

exp
{
−
(

u
(1−ρ2)VarSA

0
+ v

(1−ρ2)VarSA1

)}
π(1− ρ2)VarSA

0 VarSA
1

× I0(
ρ
√
uv

(1− ρ2)
√

VarSA
0 VarSA

1

) dudv, (6)

where I0 is zeroth order modified Bessel function of the first
kind. The expression in (6) can be well approximated as

PSA(e) =

(
1+

VarSA
1

VarSA
0

)−1

(7)

for large values of the sample size N , since the two variances
VarSA

0 and VarSA
1 both decay at the rate of Θ(N−1) while

the covariance CovSA decays at the rate of Θ(N−2).

Proof: See Appendix B.
Asymptotic analysis: The ratio of the variances of the null

and alternate hypotheses of the SA receiver is

K = 1 +

|α|2σ4
h

{
1 + 2ρtρb

1−ρtρb (1− 2(1−ρN/2t ρ
N/2
b )

N(1−ρtρb) ) |E[X]|2
E[|X|2]

}
σ2
h

{
1 + 2ρr

1−ρr (1−2(1−ρN/2)r

N(1−ρr) ) |E[X]|2
E[|X|2]

}
+ SNR−1

.

The asymptotic BER of Manchester encoding in the SA receiver
is given by:

P asym
SA (e) = lim

SNR→∞
(1 +K)−1

=

2+
|α|2σ4

h+|α|2σ4
h

2ρtρb
1−ρtρb (1− 2(1−ρN/2t ρ

N/2
b )

N(1−ρtρb) ) |E[X]|2
E[|X|2]

1 + 2ρr
1−ρr (1−2(1−ρN/2)r

N(1−ρr) ) |E[X]|2
E[|X|2]

−1

.

Remark 1. It is important to highlight the advantages of
Manchester encoding over the direct OOK modulation. The
decision rule, given in (13), for Manchester encoding is just
a function of the relative magnitudes of the two RVs Z0 and
Z1. On the other hand, the decision rule of the direct OOK
modulation is based on the comparison of the magnitude of
a single TS Z (evaluated over all the N samples) with a
threshold, which can be expressed as follows:

|z|2 ≷1
0 ln(

s1

s0
)
s1s0

s1 − s0
, (8)

where s0 =
(σ2
hE[|X|2]+σ2

h
2ρr

1−ρr (1− (1−ρNr )

N(1−ρr)
)|E[X]|2+σ2

n)

N and

s1=
1

N
(σ2
h(1+|α|2σ2

h)E
[
|X|2

]
+σ2

h

[ 2ρr
1−ρr

(1− (1−ρNr )

N(1−ρr)
)

+|α|2σ2
h

2ρtρb
1− ρtρb

(1− (1−ρNt ρNb )

N(1−ρtρb)
)
]
|E [X]|2 + σ2

n).

The optimal decision rule for the direct OOK modulation is a
function of the system parameters such as the SNR of ambient
signal, the fading variance σ2

h, the sample size N , and the
correlation factors ρr, ρb and ρt [10]. Hence, this scheme
considerably reduces the receiver complexity, and will most
likely be preferred for the cases where optimizing the energy
consumption of the device is a priority.

Even though the optimal decision rule is simplified with
Manchester encoding, the asymptotic BER still suffers from an
error floor. Therefore, the performance of the encoding scheme
in the MA receiver needs to be evaluated to demonstrate its
full potential. In the next section, we discuss the antenna
gain, detection procedure and the BER performance of the
MA receiver when Manchester encoding is employed at the
backscatter transmitter.

IV. DETECTION AT THE MULTI-ANTENNA RECEIVER

The effective signal obtained after the DL cancellation, and
proper weighting of the resultant signal vector in the MA
receiver is given by [10]:

yeff [n] = r∗ãαbhb[n]ht[n]x[n] + r∗w̃[n], (9)

where r =
K̂−1

W̃
ã

|K̂
− 1

2
W̃

ã|
is the weight vector with the optimal

MMSE detection. The antenna gain G = ã∗K̂−1
W̃

ã due to
multiple antennas is given by [10]:

G = Mr−
1

Mr
− 2

Mr

sin((Mr−1)φ2−φ1

2 )

sin(φ2−φ1

2 )
cos(Mr

φ2 − φ1

2
)

− 1

Mr

sin2((Mr−1)φ2−φ1

2 )

sin2(φ2−φ1

2 )
,
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and the expression can be further simplified as follows:

G = Mr −
1

Mr

sin2(Mr
φ2−φ1

2 )

sin2(φ2−φ1

2 )
. (10)

Although the antenna gain is a function of the two phase
offsets (and thereby the AoAs), it is represented as a single
variable G without any arguments to simplify the notation.

The exact expression of the average BER is dependent on
the joint distribution of the two variables θ1 and θ2. For further
exposition, we consider two kinds of distributions: 1) uniform
spread of AoAs: the two AoAs θ1 and θ2 are independent and
uniformly distributed between (−π, π], and 2) narrow spread
of AoAs: the AoA θ1 is uniformly distributed between (−π, π]
while θ2 is uniformly distributed with mean equal to the value
of θ1 and some angular spread (considered to be 10◦).

Theorem 2. The average BER of Manchester encoding in the
MA receiver with uniform spread of the two AoAs is given by:

PMA(e) =

∫ π

−π

∫ π

−π

1

2π
× 1

2π
×

σ2
n

G|α|2σ4
h

{
E[|X|2]+ 2ρtρb

1−ρtρb(1−
2(1−ρ

N
2
t ρ

N
2
b )

N(1−ρtρb) )|E[X]|2
}

+2σ2
n

dθ1dθ2.

(11)

Proof: See Appendix C.
Asymptotic analysis: The ratio of the variances of the null

and alternate hypotheses of the MA receiver is

K=1+G|α|2σ4
h

{
1+

2ρtρb
1−ρtρb

(1−
2(1−ρN/2t ρ

N/2
b )

N(1−ρtρb)
)
|E[X]|2

E[|X|2]

}
SNR.

The asymptotic conditional BER of the Manchester encoding
in the MA receiver is given by:

P asym
MA (e|φ1, φ2) = lim

SNR→∞
(1 +K)−1

=
SNR−1

G|α|2σ4
h

{
1+ 2ρtρb

1−ρtρb (1− 2(1−ρ
N
2
t ρ

N
2
b )

N(1−ρtρb) ) |E[X]|2
E[|X|2]

}
+2SNR−1

=0.

V. NUMERICAL RESULTS AND DISCUSSION

We now compare the BER performance of Manchester
encoding with the direct OOK modulation. In addition, the
analytical results are compared with Monte-Carlo simulation to
verify the accuracy of our analysis. The value of α is configured
to result in a signal attenuation of 1.1 dB, while the variance
of the channel gains σ2

h is set to 1. The values of all the
correlation factors ρr, ρb and ρt are assumed to be the same,
and are represented using another variable ρ. First, we discuss
the average BER results for the uniformly spread AoAs before
comparing with the performance under narrowly spread AoAs.
The BER result of the uncoded and coded schemes of the SA
receiver for the independent fading scenario (ρ = 0) is shown
in Fig. 2a, and it can be verified from the plot that both of
the schemes suffer from an error floor which can be attributed
to the DL interference. In the same Fig. 2a, the BER results
of the MA receiver for the two schemes with varying values
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Fig. 2: BER vs SNR comparison of Manchester encoding and the
direct OOK modulation for varying correlation factor ρ, Mr = 4 and
N = 2000: (a) uniform spread of AoAs, (b) narrow spread of AoAs.

of the correlation factor ρ are also plotted. The effect of the
DL cancellation on the performance can be inferred from the
improved BER of the two schemes. It can also be verified from
the figure that Manchester encoding results in an SNR gain
of around 4 dB over the uncoded direct OOK modulation for
the uniformly spread AoAs. In comparison, the SNR gain of
the Manchester encoding over the uncoded OOK modulation
obtained for the narrowly spread AoAs is around 3 dB, as
shown in Fig. 2b. As expected, the exact SNR gain with the
Manchester encoding is dependent on the joint distribution of
the two AoAs but remains constant for different values of ρ. In
addition, the BER curves of the two schemes with increasing
sample-size N for the uniformly spread and narrow spread
AoAs are respectively plotted in Figs. 3a and 3b, which are
flat beyond a threshold value of N . The mismatch between
the theoretical and simulation results for small N is due to the
requirement of minimum number of samples for the averaging
operation to work properly, and larger number of samples are
required with increasing value of the correlation factor ρ.
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Fig. 3: BER vs N comparison of Manchester encoding and the direct
OOK modulation for varying correlation factor ρ, Mr = 4, and
SNR = 20dB: (a) uniform spread of AoAs, (b) narrow spread of
AoAs.

VI. CONCLUSION

In this work, we have analyzed the impact of Manchester
encoding on non-coherent transmission with respect to an
ambient backscatter system under time-selective fading, where
we have analytically and numerically shown the advantages
of the scheme over the conventional direct OOK modulation
used in the literature. The optimal decision rule for Manchester
encoding is only dependent on the relative magnitude of the test
statistic for the two symbols of the codeword, and hence the
optimal detection threshold turns out to be independent of all
the system parameters. In addition, the proposed encoding
scheme also achieves an SNR gain over the direct OOK
modulation with the MA receiver, the exact value of which
will vary based on the joint distribution of the two AoAs.
In our analysis, the SNR gain evaluated for the uniformly
and narrowly spread AoAs came to be around 4 dB and 3
dB, respectively, which is a substantial improvement in the
performance of the ambient backscatter system.

APPENDIX

A. Proof of Lemma 1

The test statistics Z0 and Z1 are correlated due to the
common signal component from the DL present in the two
codeword symbols. And, since they are jointly Gaussian,
deriving covariance for the two symbols in addition to their
individual variances is sufficient. The joint distribution of the
bivariate Gaussian random variables is given by:

fZ0,Z1 (z0, z1) =
1

π2|Cz|1/2
e−

1
2 (z−m)HC−1

z (z−m), (12)

where the mean in this case is m = E[Z0Z1] = 0̄ since the
channel is Rayleigh faded, and from this the covariance matrix
also simplifies as follows:

Cz =

[
Var[Z0] ¯Cov[Z0, Z1]

Cov[Z0, Z1] Var[Z1]

]
.

The covariance is non-zero as a result of the DL present in
the two consecutive symbols, and it can be easily verified
that Cov[Z0, Z1] = ¯Cov[Z0, Z1] from the symmetry of the
problem (and therefore real). Due to this symmetry, it is
enough to evaluate Cov[Z0, Z1] under null hypothesis H0.
The conditional covariance of any two samples y[i] and y[j],
for j > i, is given by:

Cov [y[i], y[j]]
(a)
= E [y[i]y∗[j]]

=E

[
(ρi+j−2
r |hr[1]|2+

√
1−ρ2

r

j−1∑
k2=1

ρi+j−k2−2
r hr[1]g∗r [k2])x[i]x∗[j]

+ ρi−1
r hr[1]x[i]w∗[j]+(

√
1− ρ2

r

i−1∑
k1=1

ρi+j−k1−2
r h∗r [1]gr[k1]

+ (1− ρ2
r)

i−1∑
k1=1

j−1∑
k2=1

ρi+j−k1−k2−2
r gr[k1]g∗r [k2])x[i]x∗[j]

+
√

1− ρ2
r

i−1∑
k1=1

ρi−k1−1
r w∗[j]gr[k1]x[i]+ρj−1

r hr[1]x∗[j]w[i]

+
√

1− ρ2
r

j−1∑
k2=1

ρj−k2−1
r w[i]g∗r [k2]x∗[j] + w[i]w∗[j]

]

=σ2
h(ρ

i+j−2
r +(1−ρ2

r)

i−1∑
k=1

ρi+j−2k−2
r )x[i]x∗[j]=σ2

hρ
j−i
r x[i]x∗[j],

where (a) follows from the fact that the conditional expectation
of the samples is zero. The covariance CovSA can be evaluated
as:

CovSA = Cov[Z0, Z1] =
4

N2
(
∑
n1,n2

Cov [y[n1], y[n2]])

=
4σ2

h

N2

N/2∑
n1=1

N∑
n2=N/2+1

ρn2−n1
r x[n1]x∗[n2]=

4ρr(1−ρN/2r )2

N2(1−ρr)2 |E[X]|2.

For the null hypothesis H0, the variances Var[Z0] and Var[Z1]
are given by VarSA

0 and VarSA
1 , respectively, whose derivations

follow a procedure similar to the one used for CovSA. These
derivations are, therefore, skipped here due to space constraints,
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and interested readers can refer to [10, Lemmas 2 and 3] for
the details. The variances of H0 are simply exchanged to
get the respective variances of Z0 and Z1 under the alternate
hypothesis H1.

B. Proof of Theorem 1

Comparing the joint conditional PDFs derived in Lemma 1,
the optimal decision rule can be obtained as:

ln
[
fZ0,Z1|H0

(z0, z1)
]
≷0

1 ln
[
fZ0,Z1|H1

(z0, z1)
]

=⇒ −|z0|2 VarSA
1 − |z1|2 VarSA

0 + (z0z
∗
1 + z∗0z1)CovSA

≷0
1 − |z0|2 VarSA

0 − |z1|2 VarSA
1 + (z0z

∗
1 + z∗0z1)CovSA

=⇒ |z0|2 ≷1
0 |z1|2. (13)

Since the two hypotheses are symmetric, it is sufficient to
evaluate the average BER for the null hypothesis H0, which
is evaluated using the joint PDF as follows:

PSA(e)=Pr
{
|Z0|2> |Z1|2 |H0

}
=

∞∫
0

∞∫
v

f|Z0|2,|Z1|2 (u, v) dudv

(a)
=

∫ ∞
0

∫ ∞
v

exp
{
−
(

u
(1−ρ2)Var[Z0] + v

(1−ρ2)Var[Z1]

)}
π(1− ρ2)Var[Z0]Var[Z1]

× I0(
ρ
√
uv

(1− ρ2)
√

Var[Z0]Var[Z1]
) dudv,

where (a) results from the fact that the joint distribution of
magnitude squares of the bi-variate Gaussian random variables
is characterized as a bi-variate Rayleigh [14].

From the expressions given for VarSA
0 ,VarSA

1 and CovSA

in Lemma 1, one can conclude that the covariance CovSA

decays faster compared to the variances VarSA
0 and VarSA

1 .
Hence, for a sufficiently large value of the sample-size N ,
the random variables |Z0|2 and |Z1|2 can be approximated as
independent. Consequently, the joint distribution of |Z0|2 and
|Z1|2 simplifies to the product of their marginal distributions.
Note that the marginal PDFs of |Z0|2 and |Z1|2 are exponential.
Due to the symmetry present in the two hypotheses of the
problem, we only need to derive the error probability for H0.
The derivation for the theoretical average BER of the SA
receiver is given as follows:

PSA(e)=Pr
{
|Z0|2> |Z1|2 |H0

}
=Pr

{
|Z0|2>t | |Z1|2 = t,H0

}
=

∫ ∞
0

[
1− FExp

(
t,VarSA

0

)]
fExp

(
t,VarSA

1

)
dt

=

∫ ∞
0

e
− t

VarSA
0
e
− t

VarSA
1

VarSA
1

dt =

∫ ∞
0

e
−t

(
1

VarSA
0

+ 1

VarSA1

)
VarSA

1

dt

=

(
1 +

VarSA
1

VarSA
0

)−1

,

where FExp(x, λ) and fExp(x, λ) are the cumulative distribu-
tion function and the PDF of an exponential RV with mean λ,
respectively.

C. Proof of Theorem 2
Since the DL is canceled in the MA receiver, no correlation

exists between the two variables Z0 and Z1 of the codeword.
Hence, the conditional joint PDFs of Z0 and Z1 are given by:

H0

{
Z0 ∼ CN

(
0,VarMA

0

)
Z1 ∼ CN

(
0,VarMA

1

)
,
H1

{
Z0 ∼ CN

(
0,VarMA

1

)
Z1 ∼ CN

(
0,VarMA

0

)
,

where VarMA
1 =

G|α|2σ4
h

{
E[|X|2]+ 2ρtρb

1−ρtρb

(
1− 1−ρNt ρ

N
b

N(1−ρtρb)

)
|E[X]|2

}
+σ2

n

N

and VarMA
0 =

σ2
n

N are the variances of the MA receiver as derived
in [10] for the direct OOK modulation. The optimal decision
rule once again turns out to be (13), from which the conditional
BER can be derived as:

P (e|φ1, φ2) =

(
1+

VarMA
1

VarMA
0

)−1

=
σ2
n

G|α|2σ4
h

{
E[|X|2]+ 2ρtρb

1−ρtρb (1− 2(1−ρ
N
2
t ρ

N
2
b )

N(1−ρtρb) )|E[X]|2
}

+2σ2
n

.

Since the antenna gain depends on the phase offsets of the two
links (and thereby their AoAs), the average BER is derived by
marginalizing over the range (−π, π] of the AoAs θ1 and θ2.
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