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Abstract—Automated Driving System (ADS) has attracted
increasing attention from both industrial and academic commu-
nities due to its potential for increasing the safety, mobility and
efficiency of existing transportation systems. The state-of-the-art
ADS follows the human-in-the-loop (HITL) design, where the
driver’s anomalous behaviour is closely monitored by the system.
Though many approaches have been proposed for detecting
driver fatigue, they largely depend on vehicle driving parameters
and facial features, which lacks reliability. Approaches using
physiological based sensors (e.g., electroencephalogram or elec-
trocardiogram) are either too clumsy to wear or impractical to
install. In this paper, we propose a novel driver fatigue detection
method by embedding surface electromyography (sEMG) sensors
on a steering wheel. Compared with the existing methods, our
approach is able to collect bio-signals in a non-intrusive way
and detect driver fatigue at an earlier stage. The experimental
results show that our approach outperforms existing methods
with the weighted average F1 scores about 90%. We also propose
promising future directions to deploy this approach in real-
life settings, such as applying multimodal learning using several
supplementary sensors.

Index Terms—Fatigue driving detection, sEMG sensor design,
feature generation

I. INTRODUCTION

The Automated Driving System (ADS) refers to an au-
tomated driving mechanism that takes over the vehicle and
allows human drivers to leave all responsibilities to the driving
system. Several companies have been actively implementing
Level 3 ADS projects, meaning that the vehicles can guide
themselves automatically under certain conditions [1]. How-
ever, driver-less vehicles are still far away from us. Alterna-
tively, ADS is currently adopting a human-in-the-loop (HITL)
design, where the driver’s anomaly needs to be detected [2].

Detecting anomalous driving behavior is not only important
for designing automated driving systems, but also is critical
for driving safety. One of the most serious anomalous driving
behaviors is fatigue, which can be referred as a state where the
person is neither in sleep nor awake state [3]. Fatigue driving
has become one of the major causes for deaths and accidents
across the world. According to NHTSA, around 50, 000 in-
juries and 800 deaths were reported from car accidents because
of the fatigue driving in the United States alone in 2017 [4].
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Similarly, it accounts 25%-30% of the total road accidents in
China [5]. The ever increasing number of accidents caused by
fatigue motivates us to propose a practical yet accurate driving
fatigue detection system, which could be eventually integrated
into the ADS.

Several approaches have been proposed for detecting driving
fatigue, such as the vehicle behaviour based method. In [6], the
authors offer fatigue detection systems by monitoring vehicle
movements, including steering wheel angle and lane deviation.
However, the shortcoming of such systems is that drivers are
typically warned only at a deep fatigue state, which could be
too late when the warning occurs. The facial-feature based
method is another way to detect fatigue driving. For example,
blink frequency is extracted to evaluate the drivers’ fatigue
state in [7]. But such methods may fail to detect fatigue
driving because of the surrounding context such as sunlight or
darkness, and wearable devices. Moreover, previous work also
uses bio-signals for fatigue driving detection. Electromyogra-
phy (EMG), electroencephalogram (EEG), electrocardiogram
(ECG), and electrooculography (EOG) are typical bio-signals
to measure the physiological state of a driver [5]. It is, how-
ever, difficult to collect data from such bio-sensors since they
require to attach electrodes and wires directly to the driver.
This requirement of attaching sensors to human body while
driving is not practical for real-world fatigue detection [8].
Some recent work also explores the possibility of attaching
sensors to driving seats for fatigue detection [9]. But in such a
scenario, a driver needs to wear thin clothing to facilitate direct
contact with the sensors, making such technique impractical
in real life. To overcome these limitations, our system adopts
surface electromyography (sEMG) sensors, which are attached
on the steering wheel of a vehicle for convenient and practical
fatigue detection.

In this paper, we propose a steering-wheel based sensor
deployment solution to detect fatigue driving degree. Com-
pared with existing methods, our approach is able to (1) keep
monitoring the drivers fatigue state while driving rather than a
later warning only at a deep fatigue state, (2) avoid failing to
detect fatigue driving because of the surrounding context, and
(3) collect the bio-signals in a non-intrusive way. The exper-
iment shows that our approach outperforms existing methods
with the weighted average F1 scores about 90%. In addition,
we conduct two real-life qualitative studies. The studies show
that there are insights and promising future directions to make
our solution a reality. Our primary contributions are five-fold:

1) Novel concept: We propose the idea of using steering-
wheel based sensor of deploying bio-signals sensor on
steering wheel to detect driver’s fatigue driving to address
the data collection issues with bio-signals.
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2) Tailored sEMG sensors: We design and build our own
sensors together with signal collection device.

3) Sound methodology: We propose a novel approach
called VeSEM to extract valid sEMG signals from noisy
data and design two-layer features for the underlying
sEMG signals.

4) Extensive studies: We conduct two extensive studies
(including a real-world study involving four experienced
drivers) and the results show useful insights to adopt our
approach for real-life usage.

5) New insights: Based on our study, we point out some
promising future research directions for using sEMG
sensors to detect driving fatigue, which can be used by
other ubiquitous computing applications in general.

The rest of the paper is organized as follows. Section II
discusses the related work of fatigue driving detection systems.
Section III walks through the unique characteristics of sEMG
sensors. The overview of our proposed method is presented in
Section IV. The empirical settings are discussed in Section V.
The experimental results are reported in Section VI. Finally,
the conclusion and future works are drawn in Section VII.

II. RELATED WORK
A. Vehicle Behavior based Methods

When getting fatigue, a driver’s ability to perceive the sur-
rounding traffic circumstance and judge the driving situation
will decrease. This change impacts how a driver controls the
vehicle, which can be reflected by the vehicle’s abnormal
performance [10]. Therefore, vehicle behaviors collected by
various types of sensors inside a vehicle (e.g., accelerometer
and gyroscope embedded in the steering wheel) can be used
to determine whether the driver is in the fatigue driving.
The major methods include vehicle speed detection, steering
wheel angle detection, brake pedal force detection and the
accelerator pedal force detection [11] [12] [13] [14] [15].
Vehicle behavior based methods can easily collect the data
from sensors embedded in the car without affecting the driver’s
normal driving. However, its detection accuracy is easily
affected by driver’s driving habits, the weather, road and traffic
conditions and other external factors. Moreover, the method is
only able to detect the fatigue driving when the driver is about
to lose the control of vehicle, which is obviously not safe for
the driver [6]. Therefore, the fatigue detection result from this
method is better to be used as supplementary information for
the driver.

B. Facial-feature based Methods

The techniques based on facial features have been exten-
sively adopted in fatigue driving detection, mainly due to
their non-disturbance on the driver’s attention in the driving
process. Most existing methods attempt to detect drivers’
fatigue facial features, e.g., yawning [16], blink frequency [7],
gaze direction [17], eye state and head position [18]. In
most cases, such methods are capable of recognizing fatigue
facial features. However, they may easily fail to detect fatigue
driving because of the surrounding context such as sunlight or
darkness, and wearable devices [19]. Zhang et al. [20] reported

that glasses disturbed the detection of eye state. Moreover, the
shape of eyes in the camera changed significantly during the
head rotation [21]. Therefore, it becomes difficult to recognize
the state of eyes for any fatigue detection. The current facial-
feature based fatigue driving methods lack precise gaze-
estimation algorithms to detect head orientation aligning with
eye movement. Also, they fail to differentiate the closed eyes
state caused by fatigue or vigorous laughter. Another major
weakness of the existing methods is their attempt to recognize
expressions from high resolution facial images that need to
be generated from a controlled environment [22]. However,
in the real scenario, the surveillance images are often of low
resolutions, making it more difficult to recognize expressions
in this setting.

C. Physiological based Methods

Physiological based methods are widely used for fatigue
driving detection. They are built to effectively evaluate the
fatigue symptoms of drivers based on the bio-signals, includ-
ing electroencephalogram (EEG) [23] [24], electrooculography
(EOG) [25] [26], electrocardiogram (ECG) [6] [27], and
surface electromyography (sEMG) [9] [28] collected by real-
time portable sensors. Although physiological based methods
have exhibited optimum performance in FDD, it is intrusive
in nature [29] and drivers may be simply not willing to drive
with many sensors attached to different parts of their bodies.

Another main issue with physiological based methods is the
difficulty of collecting the bio-signals in a non-contact way
(usually electrodes and wires need to be in direct contact with
drivers). The drivers are inevitably disturbed by the measuring
electrodes. In order to address this issue, in [9], sEMG and
ECG are collected from the sensors that were deployed in a
cushion on a driver’s seat. Similarly, a European project called
HARKEN developed a sensor system built into a safety belt
and seat cover of cars, which is able to detect fatigue driving
behaviour [30]. The proposed method of reading signals in
[9] requires a driver to wear cloth of thickness less than 2
mm. Besides, there are also methods to use sEMG sensors
to analyze muscle signals and detect fatigue driving [31].
However, they require sEMG sensors to be directly attached
on the human hands, skin or neck, which may not be practical
[29]. In contrast to the existing approaches, we apply sEMG
sensors on the steering-wheel to avoid attaching senors on
different parts of a human body.

In summary, there are no practical and reliable solutions for
the fatigue driving detection. Therefore, we propose the idea
of using sEMG sensor on steering-wheel in order to collect
physiological features from bio-sensors for FDD. Our work
aims to provide a practical and stable FDD compared to the
existing methods. In particular, we use objective quantification
of fatigue degree, mainly on the basis of features extracted
from the sEMG signals.

III. BACKGROUND AND PROBLEM STATEMENT

Most of the sEMG-based fatigue driving detection systems
are intrusive, and only a few studies are based on non-intrusive
detection systems but they usually have specific requirements,
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such as the thickness of clothes (less than 2 mm) in [9]. In
order to detect fatigue driving using non-intrusive and sEMG
based detection systems with minimal special requirements, a
new method needs to be proposed. Considering the exposed
skin on palms and fingertips are the most frequent contact
part of human body with the steering wheel, detecting fatigue
driving through the sEMG sensors attached to a steering
wheel could be a new feasible way. Similar design could be
found in gym and health clubs, where sensors are attached
to the handles of fitness equipment. For example, pulse heart
rate sensors are attached to the handgrip of treadmills. The
limitations of this kind of design are that: (1) the valid sensor
reading requires users to keep their hands very still. However,
it is not an easy thing to do if a user is running especially at
peak intensity; (2) handlebar fixed with sensors is awkward
for running posture and is discouraged. People could not run
naturally if they have their arms placed in front of them and
not swinging arms naturally by their side.

For the steering wheel based sEMG sensor, though it is
a lot more intuitive and easier to use and deploy, we have
greater problems comparing with the existing deployment
(e.g., handlebar in fitness equipment):

1) Problem 1 (P1): When drivers change a lane, or make
a turning, it is difficult to ask them to hold the steering
wheel still or constant contact with the steering wheel.
Such resultant hand movement causes sEMG signals
distortion or even loss.

2) Problem 2 (P2): Since different drivers may have
different driving habits, in order to make the driving
behaviour naturally, we cannot fix the position of a
sEMG sensor on a steering wheel.

These problems derive some particular research challenges
of fatigue driving detection as follows:

1) Challenge 1 (C1): sEMG signals distortion or loss
caused by P1 increases the difficulty of valid sEMG
signals acquisition from the raw signal. On the one hand,
distorted signals or lost signals (represented as a flat
reading) are noise signals which must be removed from
the raw signals. On the other hand, as the position of
a sEMG sensor is not fixed on a steering wheel (P2),
different drivers may have different holding postures,
resulting in various signal patterns of the valid sEMG
signals. Therefore, how to differentiate between the
valid sEMG signals and the noise signals, especially the
distorted signals, is one of the key challenges in this
study.

2) Challenge 2 (C2): In order to obtain distinctive fatigue
states from the sEMG signals, the interval of the de-
tection points for such fatigue state (Fatigue Detecting
Point: FDP) cannot differ greatly. For example, if we set
the first FDP at 15:00 and the second FDP at 15:05, it is
clearly not appropriate if we set the third FDP at 15:06,
but 15:10 will be reasonable. However, sEMG signals
distortion or loss caused by P1 may disturb the balance
of these intervals. Due to the complex road conditions
and unpredictable hand movements, the interval between
the occurrence of a valid sEMG signal in tn and tn+1 can

be significantly different with the one in tn+1 and tn+2

(“t” is a specific point of time for detection). Therefore,
how to choose the distinctive FDP to make the intervals
more reasonable is another key challenge in this study.

IV. METHODOLOGY

Our study consists of three main components: (1) signal pro-
cessing and noise filtering, (2) dynamic fatigue detection point
selection, and (3) feature generation. In the first component,
we pass the raw sEMG signals to filter the noise using band-
pass filters. Even so, there still exist some noises after that
(e.g., mechanical noises caused by big movement of the steer-
ing wheel). We thus segment the filtered signals into 5-minute
sliding windows and further divide each sliding window into
much smaller sub-sliding windows with 50% overlapping.
They are then fed into “valid sEMG sample selection machine”
to identify valid sEMG samples. Afterwards, fatigue detection
points are selected using our dynamic fatigue detection point
selection method. Finally, the valid sEMG samples in the
fatigue detection points become the input of feature generation
component, where 28 features will be generated based on our
two-layer feature generation method.

A. The Design of sEMG Sensor and Data Collection Device

In order to address the problem P2 in Section III and
satisfy different driving habits, the sEMG sensor is designed
with detachable style by using a flexible printed circuit (FPC)
board (10 cm × 5 cm), which easily fits to the shape of the
steering wheel. Therefore, drivers can adjust the position of
the sensor based on their own habit as shown in Figure 1. The
signal acquisition electrodes on the sEMG sensor include four
strips of copper in each FPC. Two strips are used as positive
and negative electrodes to collect the signals from sEMG in
a non-contact way. Such a design allows to get the sEMG
signal using only one FPC (i.e., one hand). Another strip is
ECG electrode, which is designed for our future research of
leveraging sEMG with ECG signals for fatigue detection. All
the strips of copper are vertical arranged in each FPC so that
the palms and fingertips are able to maximum contact with the
signal acquisition electrodes.

The data collection board (right side of Figure 1) contains
two mini USB ports and a micro USB port. The former are
connected to two sEMG sensors for left and right hands, and
the latter is connected to the computer for transmitting the
electric signals. The data collection board is able to collect
the sEMG sensor data in real time.

As compared to the state-of-the-art in detecting driving
fatigue, our solution would not disturb the driver’s attention,
while traditional approaches either require sEMG sensors to be
attached on human body [29] or to be placed on the cushions
of the seats with a thickness requirement on clothing [9].
Therefore, our tailored sensor and device are convenient,
practical and suitable for detecting driving fatigue in real
scenarios.
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10 cm

Fig. 1: The sEMG sensor and acquisition board

Fig. 2: Pattern of the sEMG signals before and after filtering

B. Signal Processing and Filtering

sEMG signals have low signal-to-noise ratio and are sensi-
tive to noises. In order to remove these noises, we firstly use a
fourth order band-pass filter to de-noise the sEMG signals with
lower cutoff frequency of 10 Hz and higher cutoff frequency
of 300 Hz. These two parameters are designed based on the
frequency range of sEMG (10 Hz-300 Hz) [32] [28] [33] [9].

Figure 2 presents the pattern of sEMG signals before and
after filtering. Clearly, the signals are still noisy. These noises
are generated due to the challenge C1. In order to further
remove noises and obtain valid sEMG signals, we design a
“Valid sEMG Selection Machine (VsESM)”, which is a semi-
supervised learning based on PU Learning algorithm [34].

In the first stage, we prepare two sample sets: labelled
valid sEMG sample set and unlabelled sample set. All samples
are collected based on a two-layer sliding window technique.

Generally speaking, driving fatigue is gradually developed as
an accumulation process over a period of time, and there
is hence no significant change in a relatively short period.
However, if the sliding window is set too large, the fatigue
detection system may fail to respond timely. In this study, we
record the drivers’ driving conditions every five minutes and
thus we set a 5-minute interval as the window size. 5-minute
window size may be too long to extract the clean feature under
certain scenarios, Due to significant amount of noises inside
sEMG signals deployed on a steering wheel, e.g., mechanical
noise, signal shift, electricity interference [28] and no sEMG
signals at all when drivers’ hands are off the steering wheel
(e.g., a sharp turn of the steering wheel or turning in a round-
about). Therefore, a dual-layer sliding window with a much
smaller sub-window with 50% overlapping is adopted in our
approach. The total amount of points in one sample is sub-
window size ∗ sample frequency data. For example, for a 10
second sub-window, the amount of points in this sub-window
is: 10 second sub-window size ∗ 1000Hz = 10,000 points.

And then, both labelled valid sEMG samples and unlabeled
samples are used to select valid sEMG samples. We believe
that the labelled valid sEMG samples are different to each
other, and they should not be simply classified into one cluster.
The reason is that the different drivers may have different
holding postures, making that the valid sEMG signals are
really diversified. Therefore, we first try to separate them into
different clusters, so that the samples in each cluster are similar
to each other. For unlabelled samples, we try to filter both
potential valid sEMG samples and noise samples from them
according to the isolation score and their similarity score to
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Fig. 3: The overall framework of VsESM

the labelled valid sEMG samples. The intuition is that, on one
hand, the potential valid sEMG signals should be different to
noise samples (i.e., can be easily isolated); on the other hand,
they should be similar to some labelled valid sEMG signals.
In the second stage, we build a weighted multi-class model
(in this study, we use “XGBoost”1 as the weighted multi-
class model) to distinguish different valid sEMG samples from
the noise samples. For the labelled valid sEMG samples, the
weights are set to 1, and for the filtered samples, the weights
are set according to the confidence of their attached labels
(i.e., label “0”: noise, lebel “1”: valid sEMG samples).

C. Dynamic Fatigue Detection Point Selection

In order to address the challenge C2, we propose a dynamic
fatigue detection point selection method to make the detection
intervals reasonable. Since each 5-minute window frame may
contains many valid sEMG samples, and the indices of these
samples in current 5-minute window frame can be significantly
different with the ones in its neighbour frame, we use the
shortest absolute distance of index of the valid sEMG samples
between two consecutive 5-minute window frames to select the
fatigue detection point:

(detection point)n+1 = arg min
indexn+1

|index(i)n+1 − index(j)n |
(1)

where (detection point)n+1 is the detection point of the
(n+1)th 5-minute window frame, index(i)

n+1 and index
(j)
n are

the ith index of the valid sEMG samples in the (n+1)th 5-
minute window frame and the jth index of the valid sEMG
samples in the (n)th 5-minute window frame, respectively.

1https://xgboost.ai/

Here, when calculate (n+1)th fatigue detection point, index(j)
n

is a fixed point which represents the last fatigue detection
point.

An example is shown in Figure 4. There are five consecutive
5-minute window frames in the figure, where each of frame
includes several valid sEMG samples (for example, for the
first 5-minute window frame, the data located in the indies
of sub-window 2, 4, 13, 20 are the valid sEMG samples).
Now, if we set the index ”2” in the first 5-min window frame
as the first fatigue detection point, we can find index ”3” in
the second 5-minute window frame has the shortest absolute
distance with the index ”2” in the first 5-min window frame
using the Equation 1. Therefore, we set index ”3” as the fatigue
detection point for the second 5-minute window frame, by
doing so, the most representative feature could be obtained
from the valid sEMG sample of index ”3” in this 5-minutes
window. We can use the same way to get the rest detection
points, i.e., index ”10” in the third 5-min window frames,
index ”30” in the fourth 5-min window frames, index ”20” in
the fifth 5-min window frames, respectively.

2  4  13  20  ... 3  5  13  20  ... 10  13  23  40  ... 30  39  40  41  ...  1  2  25  40  ...

(1)

(2)

(3)

(4)

：5-minute window frame (2  4  13  20  ...):  Index of valid sEMG sample

Fig. 4: Detection point selection
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D. Feature Generation

Initially, 14 features are generated from the detection point
obtained from the previous section, including the 12 most
commonly used features in previous studies: mean, standard
deviation (std), median, maximum (max), minimum (min),
the difference between maximum and minimum (max min),
the signal magnitude area (sma), skewness, kurtosis, zero
crossing (time over zero), mean frequency, median frequency;
and two particular features: sample entropy and Lempel-
Ziv complexity, which have been used by our most related
study [9].

In [9], a smooth decreasing tendency on the change of
fatigue state is presented using the cushion solution. In order
to evaluate whether our solution has a similar tendency with
theirs, we draw the tendency chart for all the 14 features and
find all of them present different tendency (ups and downs
trend) compared with the physiological features tendency illus-
trated in [9]. One explanation for this difference is that when
using steering wheel based fatigue driving detection method,
drivers tend to make small adjustments of hand holding posture
when they feel fatigue. It is intuitive as a body’s natural
reaction to fatigue. Since a human body movement increases
the amplitude of the sEMG signals [35], for this natural fatigue
recovery behavior, we can find the corresponding unique
sEMG signal patterns, a wave trend (down and up). However,
the frequency of adjustments on body sitting posture is much
less than the frequency of posture adjustments on hand holding
posture, and therefore the feature tendency in [9] is much
smooth than ours. As a result, we cannot directly use the
features introduced in [9].

In our case, we define a term fatigue state transition (FST),
that is, transiting from not feeling fatigue to start feeling
fatigue or feeling more fatigue. FST helps us to analyze the
drivers’ fatigue behaviours. In order to capture those charac-
teristics of sEMG signals corresponding to FST, we design
the second layer sub-features from these wave trends. We first
calculate the slope of every two adjacent data points for a given
feature to obtain such “wave” like patterns. However, in some
real-life cases, the rise part of the “wave” form (the increase of
sEMG feature value) could be caused by changing lane, when
a driver needs to turn the steering wheel, or some unconscious
little finger movements (e.g., some drivers like to rub steering
wheel using fingers unintentionally). It is shown as the red
circle of point 1 in Figure 5. To differentiate those from actual
FST-related “wave” form (points 2 and 3), we use the absolute
distance between every two adjacent data points, because the
bigger the distance, the more likely the FST-related “wave”
form is. That is, slope and absolute distance, on top of those
four features:

slope = (valuen+1 − valuen)/(timen+1 − timen)
absolute distance = |valuen+1 − valuen|

(2)

Finally, 28 features are generated in our study (i.e., 14 initial
features ∗ 2 slop and absolute distance).

V. EMPIRICAL SETTING

In order to evaluate the effectiveness and practicality of
our sensors and proposed methodology, we conducted two

Fig. 5: Examples of FST signal pattern in one sEMG feature
- Sample Entropy

extensive experiments (E1 and E2) in different settings. Both
experiments were done with the sEMG sensors installed on
a driving steering wheel and the signals were collected with
our data acquisition board. The sensor data were stored in a
laptop for driver fatigue detection.

E1 is conducted in a lab environment, as shown in Figure 6.
The ambient temperature was set to 26◦C. We recruited 13
experienced drivers (7 males and 6 females) with an average
of 5 years’ driving experience. All participants were healthy
adults of 20-30 years of age, who did not feel any fatigue
when they started driving. (1) For training sEMG sample set
collection, each participant continuously drove for 1.5 hours.
The experiments were done in four different time slots from
9 am to 8.30 pm. More specifically, three participants were
asked to perform the experiments from 9 am to 10.30 am,
three participants from 1 pm to 2.30 pm, another three from 4
pm to 5.30 pm, and finally four participants from 7 pm to 8.30
pm. All the participants were asked to drive freely without
any extra constraints on speed and steering movement. (2)
For sEMG validation sample set collection, each participant’s
driving was done in a more controlled way than in the
collection of training sEMG sample set. They were asked to
hold the steering wheel tightly and maintained a speed between
60-80 km/hr. The controlled driving involved fewer sudden
movements of the steering wheel. In addition, participants
had a tighter contact with the sensors while driving. All the
other settings are identical to the training sEMG sample set
collection.

We used the car racing game “Need for Speed: Hot Pursuit-
free driving model” [36] as the simulation software, and
collected the signal data with a sampling frequency of 1000
Hz. In the free driving model, the participants drove freely in
a big city map, even though they need to pay more attention to
the driving due to the cars they drove are the high-performing
sport cars. This setting makes the participants much easier to
get fatigue.

For E2, as displayed in Figure 7a, we conducted four on-
road tests in a major city in Australia. The cars used were a
Mercedez GLA200 2016 Model and an Audi Q7 2011 model
with one sEMG sensor attached to the left-hand side of their
steering wheel, respectively. The reason for not deploying the
sensor to the right-hand side is to avoid dangling the cable
connecting our board with the sensor, which may generate
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sEMG Sensors 

Data collection 

board

Data collection 

software 

Fig. 6: Experimental setting for E1

more noises. Four male drivers with an average of 10 years
driving experience were asked to drive in four road tests each.
All participants were healthy adults of 30-40 years of age. In
all real-world tests, the drivers drove freely and reported their
fatigue level every 5 minutes. The first two on-road tests were
conducted in the morning from 9 am to 11 am, as shown in
Figure 7b. A total of 63.9 km driving was done in about 100
minutes. The second two were conducted at night from 6 pm
to 8 pm, as shown in Figure 7c. A total of 54.1 km driving
was done in about 95 minutes.

In this study, the results of subjective questionnaire
“Swedish Occupational Fatigue Inventory” (SOFI) [9] were
used as labels for defining the fatigue state. SOFI intends to
measure work-related fatigue by adopting a multidimensional
perspective questions, where each question will be ranked
from 0 to 10. We asked these questions to participants every 5
minutes and calculated their scores (the higher the score they
obtain, the more fatigue the participants they feel). Moreover,
we recorded participants facial features using the GoPro Hero7
4K Action Cam [37], which features high video stabilisation,
and used a computer vision based fatigue detection system [8]
to get the participants’ fatigue state as a benchmark to improve
the labels reliability.

VI. RESULTS AND DISCUSSION

A. E1 Result

1) Accuracy Analysis with Fixed Sub-window Size: In our
experiment E1, we applied the following 5 different machine
learning algorithms: Support Vector Machine (SVM), Random
Forest (RF), Logistic Regression (LR), K-nearest neighbor
(KNN) and Naive Bayes (NB). The performance comparison
of these models is given in Table I, where a 30 second
sub-window size is used for feature generation, as the same

(a) The driving vehicle

(b) Road-map for driver 1 and driver 2

(c) Road-map for driver 3 and driver 4

Fig. 7: Experimental setting and the studies for E2

configurations with the study [9], and the hyper-parameters of
models were tuned using the grid search approach. Since there
are more NFST (non fatigue state transition) samples than FST
(fatigue state transition) ones in our dataset, “weighted average
F1 score” is used to evaluate our fatigue detection models.
Table I indicates that our random forest based detection
model is capable of distinguishing between NFST and FST
, with the weighted average F1 score of 96%. The confusion
matrix for E1 are given in Table II, in which 32 FSTs are
correctly identified and 6 FST is not. The reason behind false
positives and false negatives is mainly due to noises during the
experiment. The participants in E1 were asked to drive freely
without any speed and steering movement limitations. With
no speed limitation, participants tended to drive fast. In the
simulation game, it was very difficult to control the vehicle in
high speed, so a large number of big wheel adjustments were
performed to control the vehicle. Such significant movements
of steering wheel produced significant amount of noises in
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Fig. 8: Effect of the sub-window size on the fatigue driving
detection model performance (F1-score)

data, thereby causing misclassifications. Also, with no steering
wheel movement limitations, participants did not hold the
steering wheel very tight. The hands often moved away from
the deployed sEMG sensors, producing high motion artefacts
that are part of the transient baseline change caused by the
electrode motions due to a subject’s movement. These motion
artefacts created more noises for the underlying sEMG sensor
data, thus leading to some false negatives. The experimental
results of experiment E1 showed promising potential of iden-
tifying fatigue from our proposed solution. We intended to
check further if the accuracy can be affected by the different
sub-window size.

2) Accuracy Analysis with Various Sub-window Size: We
also analyzed the general effects of the windowing operation
on the fatigue driving detection process. The performance re-
sults for diverse window sizes and each specific methodology
are depicted in Figure 8. The RF, KNN and SVC models show
a trend of first increase and then decrease performance as the
size of the window grows. Except the NB, the maximum per-
formances are all obtained in the sub-window size of 30s. The
performance of LR increases monotonically throughout the
change of diverse window sizes, while the performance of NB
firstly increases (from 10s to 40s) and then remains unchanged
(from 40s to 60). Both of the performance on LR and NB are
not significantly influenced by the change of the sub-window
size, and therefore, we designed a “cut-off” window size at
30s for feature extraction. Based on the experiment result, we
observed that the RF model stands out among all evaluated
models, which provides the highest performance, with an F1-
score of 96%. However, increasing the window size to more
than 30s drags down the detection performance more rapidly
comparing with the other models. The reason is mainly due to
the imbalanced samples between NFST and FST. Imbalanced
training samples produce an important deterioration of the
classification accuracy, in particular with the performances
belonging to the less represented classes [38]. In other words,
the change of the sub-window size has a more significant
impact (sensitivity) on the detection of FST (small class) than
NFST (large class). For the models excluding the RF, they
have a high accuracy on NFST but low accuracy on FST.
Therefore, even changing the sub-window size is sensitive

60

65

70

75

80

85

90

95

100

10 20 30 40 50 60

W
ei

gh
te

d
 A

ve
ra

ge
 F

1
 S

co
re

Sub-window Size (second)

SVC

RF

LR

KNN

NB

20

30

40

50

60

70

80

90

100

30 40 50 60

W
ei

gh
te

d
 A

ve
ra

ge
 F

1
 S

co
re

Sub-window Size (Second)

FST

NFST

Fig. 9: Effect of the sub-window size on the RF model
performance (F1-score)

to the performance of FST, but because there is not much
space to drop the accuracy of FST, the weighted average
F1 score does not present a steeply decrease. Conversely,
as the tree-based machine learning models work by learning
a hierarchy of “if/else” questions and this can force both
classes to be addressed, tree-based models usually perform
well on imbalanced data. RF, as a tree-based model, has a
high accuracy on both FST and NFST, and the change of sub-
window size can easily drop the accuracy of FST a lot (from
90% to 36%), and therefore decrease the weighted average F1
score significantly (Figure 9).

3) Feature Analysis: We are also interested in what are the
important features for the fatigue driving detection and how
these features impact the detection performance.

Feature Importance. In this study, since we used the XG-
Boost to select the valid sEMG samples and Random Forest
to detect the fatigue state transition (FST), in order to avoid
the bias, we used another tree based model “lightGBM”
to determine the feature importance. The importance of the
features we generated is illustrated in Figure 10, by which we
can obtain the highly important features and lesser important
features for FST detection.

Slop of Empel Ziv Complexity, the slop of median, slop of
Skew, slop of kurtosis and absolute distance of sma are the top
5 features which have significant contributions to detect FST,
while slop of max, slop of median frequency, slop of max min,
absolute distance of min, absolute distance of std and slop
of std are less helpful to the FST detection. In Figure 11a,
the cumulative importance versus the number of features is
illustrated.

The vertical line is drawn at threshold of the cumulative
importance, in this case is 90%, which indicates that 23
features contribute 90% effort for FST detection. This result
gives a complement explanation to the fact that low important
features do not contribute a lot in the fatigue state detection.

Feature Correlation. In order to understand the reason why
these features are low important to the FST, we conducted
the correlation analysis using a heatmap. We find most of the
lesser important features (excluding slop of median frequency)
are collinear features which are highly correlated with one
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TABLE I: F1 score of various methods with a sub-window size of 30s

Model F1 score Parameters

SVM 0.71
C=100, cache size=200, class weight=None, coef0=0.0, decision function shape=’ovr’, degree=3, gamma=’auto deprecated’,
kernel=’linear’, max iter=-1, probability=False, random state=None, shrinking=True, tol=0.001, verbose=False

RF 0.96
bootstrap=True, clas weight=None, criterion=’entropy’, max depth=25, max features=’auto’, max leaf nodes=None,
min impurity decrease=0.0, min impurity split=None, min samples leaf=1, min samples split=2, min weight fraction leaf=0.0,
n estimators=5, n jobs=None, oob score=False, random state=None, verbose=0, warm start=False

LR 0.70
C=100, class weight=None, dual=False, fi intercept=True, intercept scaling=1, max iter=100, multi class=’warn’, n jobs=None,
penalty=’l2’, random state=None, solver=’warn’, tol=0.0001, verbose=0, warm start=False

KNN 0.74 algorithm=’auto’, leaf size=30, metric=’minkowski’, metric params=None, n jobs=None, n neighbors=9, p=2, weights=’uniform’

NB 0.73 alpha=1.0, binarize=0.0, class prior=None, fit prior=True

sp: slop
ad: absolute distance 

Fig. 10: The importance of the features generated in our system

TABLE II: RF Confusion Matrix (E1)

Detected NFST Detected FST

Actual NFST 141 1

Actual FST 6 32

another, as shown in Figure 11b. In machine learning, this lead
to decreased generalization performance due to high variance
and less model interpretability. In a tree-based model, such
as“lightGBM”, the collinear features are seldom or not used
to split any nodes, and therefore these features are categorised
as lesser important features eventually.

In order to further investigate the effect of the lesser
important features, we removed those lesser important features
and used the rest features to evaluate the fatigue state detection
performance again. This time, only RF model was used due to
its insensitivity on imbalanced samples. The weighted average
F1 score and confusion matrix after removing the lesser
important features under sub-window size of 30s are illustrated
in Table III and Table IV. The benefits of lesser important
feature removal are reflected by an increase of F1 score from
96% to 98%, and a decrease on false positive (from 1 to 0)
and false negative (from 6 to 3).

B. E2 Result

The data collected from real driving were used to test
against the trained classification model in E1. The weighted
average F1 scores of the four drivers are given in Table V and
Figure 12. From Table V, we can see, except the third driver’s
performance, the weighted average F1 scores generated from
the feature set which is removed the lesser important features
(fs1) are superior to the weighted average F1 scores generated
from the whole feature set (fs2). More specifically, using fs1,
the weighted average F1 scores for the first to third driver are
all above 90%, achieving 92%, 91% and 91%, respectively.
For the third driver, although the weighted average F1 score
of fs1 (91%) is lower than the weighted average F1 score of
fs2 (100%), the result is still acceptable. Moreover, Figure 12
illustrates the NFST and FST detection results of RF using
the feature set which is removed the lesser important features,
where driver 1 has 10 NFST ground truth and 3 FST ground
truth, driver 2 has 11 NFST ground truth and 2 FST ground
truth, driver 3 has 11 NFST ground truth and 2 FST ground
truth, and driver 4 has 12 NFST ground truth and 1 FST ground
truth, respectively. From Figure 12, we can see the F1 socre
regarding the detection of NFSTs and FSTs are 95% and 80%
for the first driver, 96% and 67% for the second driver, 96%
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TABLE III: F1 score of RF after removing the row important features (sub-window size: 30s)

Model F1 score Parameters

RF 0.98
bootstrap=True, class weight=None, criterion=’entropy’, max depth=20, max features=’auto’, max leaf nodes=None,
min impurity decrease=0.0, min impurity split=None, min samples leaf=1, min samples split=2, min weigh fraction leaf=0.0,
n estimators=15, n jobs=None, oob score=False, random state=None, verbose=0, warm start=False
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Fig. 11: Feature analysis

TABLE IV: RF Confusion Matrix after removing the lesser
important features (sub-window size: 30s)

Detected NFST Detected FST

Actual NFST 142 0

Actual FST 3 35

and 67% for the third driver, and 92% and 0% for the fourth
driver, respectively. The result indicates that, except the fourth
driver, most of the NFST and FST points can be detected using
our solution.

The weighted average F1 scores generated from the both
feature sets for the fourth driver are worse than those for
the other three drivers. The reason is mainly due to the addi-
tional/unusual driving behaviors of the fourth driver. During
the experiment, we noted the first three drivers drove safely
and turned smoothly. However, the fourth driver has been a
professional Uber driver for more than 2 years. He was used
to driving for long hours and did not get tired in the first
100 minutes of driving. This observation also reflected on the
camera-based fatigue detection method, by which there was
no highly confident result indicating he was under a fatigue
state. During his driving, he only reported “he felt a little bit
fatigue” at the end of the experiment. We labelled his report
as FST, but the sEMG samples we collected at that FDP may
not represent a real fatigue driving state corresponding to the

Driver 1
(10:3)

Driver 2
(11:2)

Driver 3
(11:2)

Driver 4
(12:1)

NFST 0.95 0.96 0.96 0.96

FST 0.8 0.67 0.67 0

0.95 0.96 0.96 0.96

0.8

0.67 0.67

0
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

NFST

FST

Fig. 12: NFST and FST detection results of RF using the
feature set which is removed the lesser important features for
E2

FST. Furthermore, the fourth driver also had some unconscious
habits to rub fingers with the sEMG sensors deployed on
the driving wheel and sometimes held the bottom part of the
steering wheel (the sEMG sensors were deployed on the upper
part). All of these unusual driving behaviors of the fourth
driver caused noises that led to the fairly low F1 score in
Figure 12. Overall, this real-world driving experiment shows
encouraging results and useful insights to adopt our approach
for real-life usage.

TABLE V: Overall F1 score of RF for E2

F1 Score (feature set with
lesser important features

removed)

F1 Score (whole
feature set)

Driver 1 0.92 0.78
Driver 2 0.91 0.85
Driver 3 0.91 1.00
Driver 4 0.78 0.69

C. Discussion and Insights

Result Validity. As per our study, the “wave” forms from
sEMG signals are observed whenever participants feel fatigue
and intuitively change hand and body postures. The rise and
drop of the corresponding sEMG feature values thus are
crucial for us to detect FST. Yet, such forms may also be
caused by hand movement, diverse noises or other confound-
ing activities similar to the FST-correlated one. However, from
our extensive studies in the two experiments, our approach is
able to filter out the majority of these false “wave” forms.
Since there are much more NFST samples than FST samples
in our experiments, we decided to evaluate both NFST and
FST instead of just FST and introduce weighted average F1
to show more balanced evaluation results.
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Our approach primarily uses “wave-form” to identify FST.
However, it is still challenging to identify the correlation
among FSTs. In our experimental settings, participants self-
reported their fatigue level while driving. But in real life,
drivers may take a break in the middle of driving or some
energy drink in between, so that the FST detected afterwards
might not be necessarily more severe than those detected
before.

In E2, when drivers feel very tired after driving long hours,
they may be too exhausted or even fall asleep without any
reactive hand and body postures (no rise part of the “wave”
form). In such cases, our approach may not be able to detect
FST. However, before drivers feel such a level of fatigue,
they are very likely to have already exhibited multiple “wave”
forms for FST, which should have been successfully captured
by our system. Thus, our system could effectively provide
feedback in the real-life scenario and prevent drivers from
entering into such an exhaustion status.

Insights. The use of two sEMG sensors deployed on the
steering wheel may not be sufficient for all drivers. For
example, the fourth driver in E2 has a personal habit of using
bottom part of the steering wheel occasionally that impacted
sensor data collection, hence, four sEMG sensors may need
to be installed quarterly on the wheel. Also, plenty of noises
are caused by finger rubbing of the sEMG sensors and the
big movement of the wire that connects the data collection
board and the sensors. Therefore, it is desirable to design
a better hardware for noise-resilient sEMG sensors with a
wireless connection to the board. A graphene-based sEMG
sensor design solution is a potential research direction due
to its mechanical flexibility and ultra-thinness high signal-to-
noise ratio (SNR), and efficient signal transmission with the
high electrical conductivity [39].

Noises present in the obtained signals often compromised
the accuracy of our proposed solution. It is challenging to
remove such background noises entirely. This actually points
out a promising research direction to use complementary
sensors. That is, sEMG sensors can be leveraged with night-
vision cameras and other bio-signals sensors, such as ECG
devices, to minimize the noise impacts. In this direction,
multimodal Deep Learning can be investigated further due to
its ability to deal with the differences among complementary
yet heterogeneous sensors with varying sampling rates, data
types, and data format (discrete and continuous data) [40].

VII. CONCLUSION

In this paper, we present a novel approach to detect driving
fatigue by deploying sEMG sensors on steering wheels. We
design and build the sEMG sensors and data collection board,
develop an innovative solution VeSEM to extract valid sEMG
sensors from underlying diverse noises, and use multi-layer
features to identify driver fatigue state transitions. Moreover,
using comprehensive experiments involving 17 participants on
the simulated driving platform and on-road tests, we confirm
and verify that our approach is able to detect driver fatigue
state transition with an acceptable accuracy. Based on our

experimental results, we raise a few important insights to push
forward the state-of-the-art in detecting driving fatigue.

Our future work will focus on further improving the accu-
racy of our approach in the real-life scenarios. We are currently
investigating the use of multi-view learning [41] to leverage
our sEMG sensors with complimentary sensors (e.g., night
vision camera and ECG sensors).
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