
 
Abstract—Long queues of vehicles are often found at signalized 
intersections, which increases the energy consumption of all the 
vehicles involved. This paper proposes an enhanced eco-approach 
control (EEAC) strategy with consideration of the queue ahead for 
connected electric vehicles (EVs) at a signalized intersection. The 
discharge movement of the vehicle queue is predicted by an 
improved queue discharge prediction method (IQDP), which takes 
both vehicle and driver dynamics into account. Based on the 
prediction of the queue, the EEAC strategy is designed with a 
hierarchical framework: the upper-stage uses dynamic 
programming to find the general trend of the energy-efficient 
speed profile, which is followed by the lower-stage model 
predictive controller to computes the explicit solution for a short 
horizon with guaranteed safe inter-vehicular distance. Finally, 
numerical simulations are conducted to demonstrate the energy 
efficiency improvement of the EEAC strategy. Besides, the effects 
of the queue prediction accuracy on the performance of the EEAC 
strategy are also investigated. 

Index Terms—electric vehicles, connected vehicles, eco-driving, 
energy efficiency, velocity planning, dynamic programming,  

I. INTRODUCTION 
he growing transportation activities have been not only 
substantially enhancing the mobility of people and goods, 

but also producing more greenhouse gas (GHG) emissions and 
consuming a large amount of energy [1]. To reduce the vehicles’ 
environmental impacts, tightening vehicle emission standards 
are introduced, which promotes the development of alternative 
vehicle propulsion [2] and energy storage systems [3]. Electric 
vehicles (EVs) is one of the promising approaches to reduce the 
emissions of the transportation sector. However, its limited 
driving range and charging rate are still issues for large-scale 
promotion [4]. Another approach to achieve efficient vehicle 
operation is driving the vehicle at an energy-efficient speed, 
which is called the eco-driving in some literature [5]. Previous 

studies have indicated the energy-saving and emission 
reduction potentials of deploying the eco-driving system [6]. In 
general, researchers optimized the energy-efficient driving 
profile from two cases: highway cruising and urban driving. 

On highways, the eco-driving system is designed to regulate 
the vehicle cruising speed for minimizing energy consumption. 
Some studies indicate that the rule-based strategy, e.g., smooth 
speed or pulse-and-glide operation has great potential in 
improving vehicle energy efficiency [7, 8]. However, the terrain 
and surrounding traffic information have a significant influence 
on vehicle operation, and neglecting them in controller design 
may lead to loss of potential of eco-driving. Thus, Zhuang et al. 
[9] designs a cruising strategy on the highway with varying 
slopes by using dynamic programming (DP) to improve electric 
vehicle energy efficiency and battery life simultaneously. Ding 
et al. [10] investigates the eco-cruising control while driving on 
winding roads. The optimal solution indicates that the vehicle 
should decelerate before entering a corner, sustain the optimal 
constant speed during turning, and accelerate out of the corner. 
In addition, Zhang et al. [11] proposes a model predictive 
control (MPC) based eco-driving strategy for hybrid electric 
vehicles to achieve efficient vehicle control by predicting the 
preceding vehicle velocity. Another study, presented by Xu et 
al. [12] proposes an instantaneous optimization method by 
converting vehicle kinetic energy into energy consumption to 
achieve cruising speed optimization. 

The eco-driving strategy design in urban traffic complex due 
to the complicated conditions, for example, the traffic streams 
can be interrupted by the traffic signals. Recent developments 
in vehicle automation and connectivity technologies provide 
possibilities to obtain or predict the surrounding traffic 
conditions [6, 13]. In particular, the signal phase and timing 
(SPaT) information of traffic signals can be obtained by 
vehicle-to-infrastructure (V2I) communication. Therefore, the 
eco-approach and departure strategy (EAD) at a signalized 
intersection has been designed based on different approaches. 
Katsaros et al. [14] develops a green light optimized speed 
advisory system (GLOSA) using deterministic and known 
SPaT information, to minimize average fuel consumption and 
stop delay at an intersection. Considering the uncertain of the 
traffic signal SPaT, Mahler et al. [15] introduces a signal-phase 
prediction model to determine the probability of green signals, 
then the best velocity trajectory is derived that maximizes the 
chance of going through an intersection. Lin et al. [16] studies 
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energy-efficient control at multiple signalized intersections in a 
free-flow traffic environment, and presents a quasi-optimal rule 
to replace numerical solutions for real-time applications. 
However, EAD studies above generally assume that the vehicle 
is driving in a free-flow environment. The stopping events are 
determined not only by the traffic signal but also by preceding 
vehicles at the incoming intersection [17]. Thus, some studies 
investigated the EAD strategy considering preceding vehicles. 
Li et al. [18] considers the constraints arising from the 
preceding vehicles, a control method combining the safety-
guaranteed and fuel-optimal operation is proposed. Xie et al. 
[19] uses the on-board radar to detect the movement of the 
preceding vehicle and developed an energy-saving control 
strategy. In addition, Ye et al. [20] designs an EAD strategy 
with consideration of predicted preceding vehicle, to ensure that 
the vehicle reaches the intersection stop line safely and energy 
efficiently. Bakibillah et al. [21] presents a learning-based 
method, which estimates the probability that the vehicle 
traveled through the intersection with moderated and no-
congested traffic flow.  

In reality, the movement of a vehicle may be interrupted or 
restricted by a vehicle queue rather than a single preceding 
vehicle while driving through a signalized intersection. By 
utilizing the information of the vehicle queue at the intersection 
through V2I technologies, He et al. [22] investigates the eco-
driving strategy considering vehicle queue length. But the 
traffic information was given in a fully connected environment, 
the connectivity capabilities at all intersections and vehicles can 
only be realized in the distant future [23]. While, the vehicle 
queue ahead of the intersection changes over time, and the 
queue discharge movement is not easy to detect especially in 
partially connected environments [24]. Besides, most previous 
studies focused on the eco-driving control of conventional 
vehicles with an internal combustion engine. The energy-
efficient operation of EVs may be different because it could 
recover energy from regenerative braking. 

Therefore, this paper will focus on the EV’s EAD strategy 
design at the signalized intersection with consideration of 
vehicle queue, where the key is the queue discharge prediction. 
In the respect of vehicle speed optimization, there are a variety 
of queue discharge prediction methods available, including 
deterministic kinematic based method (DKM) [25, 26] and 
traffic flow based method [27, 28]. These methods mostly 
assume that all vehicles in the queue are simplified as a point-
mass, and moving as a whole. Such assumptions ignore the 
dynamics of vehicles and drivers, i.e., acceleration and 
deceleration response time, startup delay and vehicle length, 
which are the main cause of queue oscillation [29]. In addition, 
Sun et al. [30] considers vehicle queue causes greater delay on 
the feasible traveling time window while the vehicle is passing 
through intersections, thus estimates queue delay via traffic data. 
However, a large amount of high-resolution traffic data is not 
easily accessible. Therefore, an accurate vehicle queue 
discharge prediction method is required to design an enhanced 
eco-approach control strategy (EEAC) in terms of energy-
saving and efficient traffic.  

The major contributions of this paper are twofold. First, an 

improved queue discharge prediction method (IQDP) is 
proposed to predict the queue discharge movement for energy-
efficient speed planning, which considers the vehicle dynamics. 
Second, a hierarchical control framework is proposed. In the 
upper-stage, the DP algorithm is used to derive the long-term 
energy-efficient vehicle speed trajectory while considering the 
vehicle queue, followed by MPC deployed in the lower-stage, 
targeting the local adaptation of vehicle operation for safety 
purposes (account for the prediction error). 

The remainder of this paper is organized as follows. Section 
II introduces vehicle dynamics and the problem of EAD at a 
signalized intersection considering vehicle queue. In Section III, 
the IQDP method is presented to predict the queue discharge 
movement. Section IV formulates the energy-efficient control 
problem and solves it by using DP and linear time-varying MPC 
(LTV-MPC). The performance of queue discharge prediction 
and energy efficiency is evaluated by simulation in Section V. 
Section VI concludes this paper.  

II. VEHICLE DYNAMICS AND PROBLEM FORMULATION 

A. Vehicle Dynamics 
For the EAD study, only the vehicle longitudinal dynamics 

is modeled, as expressed in (1), 
𝑥̇𝑥(𝑡𝑡) = 𝑓𝑓�𝑢𝑢(𝑡𝑡), 𝑥𝑥(𝑡𝑡)�= (1) 

�
0 1

0 −
𝑔𝑔𝑔𝑔 cos𝜃𝜃
𝑣𝑣(𝑡𝑡)

−
𝑔𝑔 sin𝜃𝜃
𝑣𝑣(𝑡𝑡)

−
0.5𝐶𝐶𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡)

𝑚𝑚
�𝑥𝑥(𝑡𝑡) + �

0
1
𝑚𝑚
�𝑢𝑢(𝑡𝑡) 

where 𝑥𝑥  is the state variable, 𝑥𝑥 = [𝑑𝑑 𝑣𝑣]𝑇𝑇 . 𝑑𝑑  and 𝑣𝑣  are the 
travel distance and vehicle speed, respectively. 𝑢𝑢 is the control 
variable, which is the vehicle traction force 𝐹𝐹, i.e., positive for 
propulsion and negative for braking. 𝑔𝑔 is the acceleration of 
gravity, 𝑓𝑓 is the rolling resistance coefficient, 𝑚𝑚 is the vehicle 
mass, 𝐶𝐶𝐷𝐷  is the aerodynamic drag coefficient, 𝐴𝐴 is the frontal 
area, 𝜌𝜌 is the air density, and 𝜃𝜃 is the road gradient.  

This paper optimizes the EAD strategy of four-wheel-drive 
(4WD) EVs, which is powered by four identical in-wheel 
motors (IWM). The layout of 4WD EVs is shown in Fig. 1. The 
torques on each wheel can be controlled independently in 4WD 
EVs, which enables advantages in terms of vehicle dynamics 
control [31], energy optimization [32], and vehicle structural 
flexibility [33]. 

 

 

Fig. 1. The layout of 4WD EVs. Here MCU, VCU, and BMS represent the 
motor control unit, vehicle control unit, and battery management system, 
respectively. 
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This paper focuses on eco-driving control in the context of 
daily driving. There is some evidence [34] that everyday drivers 
use accelerations remarkably smaller than adherence limits for 
driving comfort and safety purposes. Hence, we assume the 
wheels do not slip at their contact point with the ground but can 
rotate freely about their axes of rotation. Such assumption is 
usually invoked in eco-driving and energy management studies 
in the literature [6, 28]. Under the non-slip assumption, the 
vehicle force during the traction process is only supplied by 
IWM. Otherwise, the EVs have the function of regenerative 
braking, then the vehicle barking force including motor and 
friction braking force. The relationship of the vehicle force, 
motor force, and friction braking force is shown in (2), 

𝐹𝐹 = �
�𝐹𝐹𝑚𝑚 if 𝐹𝐹 ≥ 0

𝐹𝐹𝑏𝑏𝑏𝑏 + �𝐹𝐹𝑚𝑚 if 𝐹𝐹 < 0
 (2) 

where 𝐹𝐹𝑚𝑚 the motor force, positive for propulsion and negative 
for generating. 𝐹𝐹𝑏𝑏𝑏𝑏 is the friction braking force. 

The power of the IWM is calculated by (3),  

𝑃𝑃𝑚𝑚 = 𝐹𝐹𝑚𝑚
2𝜋𝜋𝑟𝑟𝑤𝑤𝑛𝑛

60
 (3) 

where 𝑃𝑃𝑚𝑚  is the motor power for each wheel, 𝑛𝑛 is the wheel 
rotational speed, and  𝑟𝑟𝑤𝑤  is the radius of wheels. Then, the 
required battery power 𝑃𝑃𝑏𝑏  is the sum of four IWMs and 
auxiliary power 𝑃𝑃𝑎𝑎, i.e., 

𝑃𝑃𝑏𝑏 = 𝑃𝑃𝑎𝑎𝜂𝜂𝑏𝑏−1 + �𝑃𝑃𝑚𝑚𝜂𝜂𝑚𝑚
−sign(𝑃𝑃𝑚𝑚)𝜂𝜂𝑏𝑏

−sign(𝑃𝑃𝑚𝑚) (4) 

where 𝜂𝜂𝑚𝑚 is the motor efficiency which is determined by the 
motor torque and speed as shown in Fig. 2. 𝜂𝜂𝑏𝑏  is the battery 
efficiency, and sign(∙) is the signum function. 

In addition, the energy consumption of 4WD EVs is affected 
by the driving and braking torque allocation strategy. In this 
paper, the driving torque of each wheel is allocated based on the 
axle load, which is expressed in detail in [35], and the ideal 
regenerative braking strategy proposed in [36] is used in the 
braking control. 

B. Problem Formulation 
The EAD strategy at the signalized intersection is recognized 

as a promising technique to reduce vehicle energy consumption 
in urban traffic. The simplest EAD strategy (known as GLOSA 
in some literature [14]) targets the vehicle speed range that 
enables the vehicle to drive into the intersection on green signal. 

As shown in Fig. 3(a), zone A is the derived vehicle speed 
range without stop-and-go maneuver by using the SPaT 
information of the traffic signal. By eliminating the stop-and-
go maneuvers at a signalized intersection, significant vehicle 
energy consumption reduction can be achieved. In addition, 
many studies focused on the optimization of vehicle speed 
trajectory to achieve the energy-efficient driving operation, as 
the blue solid line in Fig. 3(a). The strategy which calculates the 
vehicle speed is referred to as the regular EAD in the following. 

However, the signalized intersection typically introduces 
vehicle stops along a trip thus form the vehicle queue, as shown 
in Fig. 3(b), the energy-efficient speed trajectory maybe not 

feasible due to the vehicle queue ahead. In this context, to 
realize a more practical control system, this paper proposes an 
enhanced EAD strategy of connected EVs for safely and 
efficiently driving through a signalized intersection with the 
consideration of the vehicle queue.  

Fig. 4 shows the schematic of the problem, which is single-
lane driving, thus the lane-change and overtaking maneuvers 
are not considered. The ego vehicle is equipped with V2I device 

 

Fig. 2. The efficiency map and maximum torque of IWM.  

 

(a) 

 

(b) 
Fig. 3. The EAD at the signalized intersection. (a) EAD in free-flow traffic. (b) 
EAD with vehicle queue. 

 

Fig. 4. The schematic of vehicles traveling towards a signalized intersection. 
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(Dedicated Short Range Communication or LTE-V) and able to 
access the traffic information by communicating with the Road 
Side Unit (RSU) of the intersection within the communication 
range D. Since this paper focuses on the EAD strategy design 
with the presence of vehicle queue at the intersection, we 
assume that the traffic signal is a red indication when ego 
vehicle enters the communication range. The moment that the 
ego vehicle entering is defined as the initialization of the system 
(𝑡𝑡 = 0). 𝑑𝑑(𝑡𝑡) is the travel distance of the ego vehicle, and 𝑑𝑑𝑞𝑞(𝑡𝑡) 
is the distance from the last vehicle of the queue to the stop line. 
𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is a pre-defined minimum inter-vehicle distance, which is 
used to prevent possible rear-end collision between the ego 
vehicle and the vehicle in front.  

The energy-efficient control problem of the EEAC strategy 
is formulated as shown in (5) and (6), whose objective is to 
minimize the total vehicle energy consumption for driving 
through a signalized intersection.  

Minimize
𝒖𝒖∈𝑼𝑼

    𝐽𝐽(𝑢𝑢(𝑡𝑡), 𝑥𝑥(𝑡𝑡)) = � 𝑃𝑃𝑏𝑏𝑑𝑑𝑑𝑑
𝑇𝑇𝑝𝑝

0
 (5) 

s.t  
𝑑𝑑(0) = 0, 𝑣𝑣(0) = 𝑣𝑣𝑠𝑠 

𝑑𝑑�𝑇𝑇𝑝𝑝� = 𝐷𝐷, 𝑣𝑣�𝑇𝑇𝑝𝑝� = 𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑 
[𝐷𝐷 − 𝑑𝑑(𝑡𝑡)] − 𝑑𝑑𝑞𝑞(𝑡𝑡) ≥ 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑢𝑢(𝑡𝑡) ≤ 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑣𝑣(𝑡𝑡) ≤ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚  
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑎𝑎(𝑡𝑡) ≤ 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚  

𝑎̇𝑎(𝑡𝑡) ≤ 𝑎𝑎𝐽𝐽 
𝑥̇𝑥(𝑡𝑡) = 𝑓𝑓(𝑢𝑢(𝑡𝑡),𝑥𝑥(𝑡𝑡)) 

(6) 

where 𝑇𝑇𝑝𝑝 is the moment when the ego vehicle drives through 

the stop line, which is determined by the predicted vehicle 
queue discharged time 𝑇𝑇𝑞𝑞 , i.e.,  𝑇𝑇𝑝𝑝 = 𝑇𝑇𝑞𝑞 . This constraint is 
intended to improve traffic throughput. Operational constraints 
are introduced in (6) to ensure overall safe and efficient traffic 
flow. First, the ego vehicle is expected to catch up with the lead 
vehicle at the end when 𝑡𝑡 = 𝑇𝑇𝑝𝑝. That is, the vehicle needs to 
drive to the desired distance 𝐷𝐷 at the moment 𝑇𝑇𝑝𝑝 with desired 
speed 𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑. Second, the ego vehicle also needs to keep a safe 
distance 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  to its preceding vehicle, i.e., the last vehicle of 
the queue. Third, the vehicle should meet the road lowest and 
highest speed limits, i.e., 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 . Fourth, the ego 
vehicle acceleration is constrained to meet the driving comfort 
requirement. On one hand, the acceleration 𝑎𝑎  is subject to 
driving comfort constraints, i.e., the maximum braking 
deceleration 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 < 0 and driving acceleration 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 0. On 
the other hand, the jerk is also limited for ride comfort jerk 𝑎𝑎𝐽𝐽. 
Finally, the control force is subject to physical limits 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 < 0 
and 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 0, which are the maximum propulsion and braking 
force, respectively. 

C. Control Framework 
The whole control framework for solving the optimal control 

problem in (5) and (6) is shown in Fig. 5, which is composed of 
queue discharge prediction, long-term optimization, and local 
adaptation. The queue discharge prediction part predicts the 
discharge time of the vehicle queue after the traffic signal turns 
to green indication, which is treated as the first constraint in (6) 
as mentioned in the last subsection. DP is used in the upper-
stage to solve the energy-efficient control problem and derive 
the globally optimized control trajectories.  

 

Fig. 5.  The framework of the EEAC strategy.
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However, the DP cannot account for unforeseen disturbances, 
for example, the prediction errors. Rear-end collision may 
occur if we just follow the derived optimal control rules. Thus, 
in the lower-stage, an online LTV-MPC is proposed to follow 
the optimal speed derived from the upper-stage over a smaller 
time step while accounting for unforeseen disturbances.  

III. QUEUE DISCHARGE PREDICTION AT INTERSECTION 
This section will formulate a vehicle queue discharge 

prediction method which is used for predicting the time of 
queue dispersion at the intersection. The ego vehicle will 
communicate with the RSU to access the SPaT and speed limits 
of the road. It is assumed that all vehicles can pass through the 
intersection within a green signal, thus, only the traffic signal 
transition time 𝑡𝑡𝑠𝑠  (from red to green) is required. Since not 
every vehicle is equipped with a V2I device, the ego vehicle 
cannot get access to the locations and speeds of the vehicles in 
the queue. However, the RSU will provide the number of 
vehicles for the queue (𝑛𝑛𝑣𝑣) by using in-ground loop detectors 
[37]. To achieve accurate detection at the intersection segment, 
the in-ground loop detectors are deployed at both the entrance 
and stop line of the intersection segment. 

As shown in Fig. 4, supposing that the vehicle queue at the 
intersection is composed of 𝑛𝑛𝑣𝑣 heterogeneous vehicles, which 
are indexed from 1 to 𝑛𝑛𝑣𝑣. Then, the initial distance from the rear 
end of the 𝑛𝑛𝑣𝑣th vehicle to the stop line is defined as 𝑑𝑑𝑛𝑛𝑣𝑣(0) and 
calculated by (7), 

𝑑𝑑𝑛𝑛𝑣𝑣(0) = ��𝐿𝐿𝑗𝑗 + 𝐻𝐻𝑗𝑗�
𝑛𝑛𝑣𝑣

𝑗𝑗=1

 (7) 

where 𝐻𝐻𝑗𝑗  is the standstill spacing of the 𝑗𝑗 th vehicle, and 𝐻𝐻1 
represents the space between the first vehicle and the stop line. 
𝐿𝐿𝑗𝑗 is the length of the 𝑗𝑗th vehicle. Thus, the maximum queue 
length occurs at the moment 𝑡𝑡 = 0 , which is equal to the 
distance of the 𝑛𝑛𝑣𝑣th vehicle to stop line, i.e., 𝑑𝑑𝑞𝑞(0) = 𝑑𝑑𝑛𝑛𝑣𝑣(0). 
The movement of the preceding vehicles is predicted through  

𝑣𝑣𝚥̇𝚥(𝑡𝑡) = 𝑎𝑎𝑗𝑗(𝑡𝑡) (8) 

For computational efficiency of the prediction, we simply 
assume that all the vehicles in the queue follow an identical 
constant acceleration (until 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 is reached), when the traffic 
signal turns to green indication. A first-order lag relation is 
introduced to represent the dynamic response performance, i.e., 

𝜏𝜏𝑗𝑗𝑎𝑎𝚥̇𝚥(𝑡𝑡) + 𝑎𝑎𝑗𝑗(𝑡𝑡) = 𝑎𝑎𝑑𝑑 (9) 

where 𝑎𝑎𝑑𝑑 is the desired acceleration, which equates to half of 
the maximum comfort acceleration. 𝜏𝜏𝑗𝑗 is the time constant of 
the response. In addition, a delay coefficient 𝜅𝜅𝑗𝑗 is introduced to 
represent the delay caused by the response of the driver when 
the vehicle is starting.  

Thus, the position of each vehicle in the queue is calculated 
from two cases. When the traffic signal is red or its preceding 
vehicle have not started (i.e., 𝑡𝑡 < 𝑡𝑡𝑠𝑠 + ∑ 𝜅𝜅𝑗𝑗

𝑛𝑛𝑣𝑣
𝑗𝑗=1 ), the 𝑛𝑛𝑣𝑣 th 

vehicle is keeping standing, i.e., 

𝑑𝑑𝑛𝑛𝑣𝑣(𝑡𝑡) = 𝑑𝑑𝑛𝑛𝑣𝑣(0) (10) 

Otherwise, the distance of the 𝑛𝑛𝑣𝑣th vehicle to the stop line is 
calculated by (11), 

𝑑𝑑𝑛𝑛𝑣𝑣(𝑡𝑡) = 𝑑𝑑𝑛𝑛𝑣𝑣(0) −�𝑣𝑣𝑛𝑛𝑣𝑣(𝑡𝑡)𝑑𝑑𝑑𝑑  (11) 

Thus, the vehicle queue length 𝑑𝑑𝑞𝑞(𝑡𝑡)  is determined by the 
movement of the final 𝑛𝑛𝑣𝑣 th vehicle, that is 𝑑𝑑𝑞𝑞(𝑡𝑡) = 𝑑𝑑𝑛𝑛𝑣𝑣(𝑡𝑡) . 
Besides, when the ego vehicle has not passed through the 
intersection (i.e., 𝑑𝑑𝑛𝑛𝑣𝑣(𝑡𝑡) ≤ 𝑑𝑑𝑛𝑛𝑣𝑣(0)), the duration  of the 𝑛𝑛𝑣𝑣 th 
vehicle 𝑇𝑇𝑛𝑛𝑣𝑣 approaching the stop line can be evaluated by (12), 
𝑇𝑇𝑛𝑛𝑣𝑣 = (12) 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑡𝑡𝑠𝑠 + � 𝜅𝜅𝑗𝑗
𝑛𝑛𝑣𝑣

𝑗𝑗=1
+
�2𝑎𝑎𝑑𝑑𝑑𝑑𝑛𝑛𝑣𝑣(0)

𝑎𝑎𝑑𝑑
𝑖𝑖𝑖𝑖 𝑑𝑑𝑛𝑛𝑣𝑣(0) ≤

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚2

2𝑎𝑎𝑑𝑑

𝑡𝑡𝑠𝑠 + � 𝜅𝜅𝑗𝑗
𝑛𝑛𝑣𝑣

𝑗𝑗=1
+
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑑𝑑

+
𝑑𝑑𝑛𝑛𝑣𝑣(0) − 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚2

2𝑎𝑎𝑑𝑑
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

Finally, the anticipated duration of the vehicle queue 
approaching the stop line 𝑇𝑇𝑞𝑞  is determined by the last 𝑛𝑛𝑣𝑣 th 
vehicle, i.e., 𝑇𝑇𝑞𝑞 = 𝑇𝑇𝑛𝑛𝑣𝑣 . The predicted vehicle queue discharge 
time 𝑇𝑇𝑞𝑞 is a fixed value, which will be utilized to determine the 
total number of time steps in the upper-stage of EEAC strategy. 
The predicted pass through speed of the last vehicle in the queue 
is also used as the desired speed 𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑  in the upper-stage 
optimization. 

IV. THE HIERARCHICAL EEAC STRATEGY 
To generate the energy-efficient speed trajectory, a temporal-

domain optimal control problem is formulated in Section II. 
This section will present the hierarchical EEAC strategy, where 
the upper-stage uses DP to calculate the global optimal control 
for long-term energy-efficient driving and the lower-stage 
deploys LTV-MPC to derive the feasible actions for safe local 
adaptation. 

A. Long-Term Optimization 
The upper-stage of the EEAC strategy uses DP to optimize 

the trajectory of vehicle traction force. Since DP calculates the 
optimal solutions by breaking the problem into simpler sub-
problems, the whole optimization problem in (5) is discretized 
in the time-domain and rewritten in a discrete form with the 
time step ∆𝑡𝑡𝐷𝐷. Since the time step is small, the vehicle traction 
force of each sub-problem is assumed to be constant. 

The states and control variables of the optimal problem 
should be determined first. As modeled in Section II, the 
vehicle travel distance and speed are selected as the state 𝑥𝑥. The 
vehicle control force is selected as the control variable, and 
denoted by 𝑢𝑢 = [𝑢𝑢(0)  ⋯𝑢𝑢(𝑁𝑁𝐷𝐷 − 1)]𝑇𝑇. 𝑁𝑁𝐷𝐷 is the total number 
of time steps, which is determined by the queue discharge time 
𝑇𝑇𝑞𝑞, i.e., 𝑁𝑁𝐷𝐷 = 𝑇𝑇𝑞𝑞

∆𝑡𝑡𝐷𝐷
+ 1. Besides, the state and control variables 

are quantized for DP calculation as shown in Table I. 
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TABLE I 
GRIDS OF STATE AND CONTROL VARIABLES 

 Variable Grid 

State 
Speed 𝑣𝑣 (𝑚𝑚 ⋅ 𝑠𝑠−1) [𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚: 0.1:𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚] 

Travel distance 𝑑𝑑 (𝑚𝑚) [0: 0.2:𝐷𝐷] 

Control Traction force 𝑢𝑢 (𝑁𝑁) [𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚: 15:𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚] 

 
Thus, the global optimal problem is indexed by 𝑘𝑘 as shown 

in (13),  

Minimize
𝑢𝑢𝐷𝐷∈𝑼𝑼

    𝐽𝐽𝐷𝐷(𝑢𝑢𝐷𝐷 , 𝑥𝑥) = (13) 

�𝑃𝑃𝑏𝑏(𝑘𝑘)
𝑁𝑁𝐷𝐷

𝑘𝑘=1

∆𝑡𝑡𝐷𝐷 + 𝛼𝛼1(𝑣𝑣(𝑁𝑁𝐷𝐷) − 𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑)2 + 𝛼𝛼2(𝑑𝑑(𝑁𝑁𝐷𝐷) − 𝐷𝐷)2 

s. t.      
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘) ≤ 𝑢𝑢𝐷𝐷(𝑘𝑘) ≤ 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘) 
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘) ≤ 𝑣𝑣(𝑘𝑘) ≤ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘) 
𝑥̇𝑥(𝑘𝑘) = 𝑓𝑓�𝑢𝑢(𝑘𝑘), 𝑥𝑥(𝑘𝑘)� 

Even we made the constraints of the terminal state in (6) for 
improving traffic throughput, the terminal conditions of the 
distance and velocity have been relaxed by converting them to 
soft constraints and merged into the objective function as (13), 
with 𝛼𝛼1 and 𝛼𝛼2 two weighting factors for the latter two terms. 
In addition, denote the transitional cost-to-go function from 𝑘𝑘 
step to 𝑘𝑘 + 1 step 𝐿𝐿�𝑢𝑢𝐷𝐷(𝑘𝑘), 𝑥𝑥(𝑘𝑘)� and the penalty function for 
the terminal states 𝐺𝐺𝑁𝑁(𝑥𝑥(𝑁𝑁𝐷𝐷)), i.e., 

𝐿𝐿�𝑢𝑢𝐷𝐷(𝑘𝑘), 𝑥𝑥(𝑘𝑘)� = 𝑃𝑃𝑏𝑏(𝑘𝑘)∆𝑡𝑡𝐷𝐷 (14) 

𝐺𝐺𝑁𝑁�𝑥𝑥(𝑁𝑁𝐷𝐷)� = 𝛼𝛼1(𝑣𝑣(𝑁𝑁𝐷𝐷) − 𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑)2 + 𝛼𝛼2(𝑑𝑑(𝑁𝑁𝐷𝐷) − 𝐷𝐷)2 (15) 

The formulated global optimal problem is solved recursively 
by following the Bellman Principle [38]. 
𝑁𝑁𝐷𝐷 − 1 step: 
 𝐽𝐽𝑁𝑁𝐷𝐷−1
∗ �𝑥𝑥(𝑁𝑁𝐷𝐷 − 1)� = (16) 

min
𝑢𝑢𝐷𝐷∈𝑼𝑼

[𝐿𝐿�𝑢𝑢𝐷𝐷(𝑁𝑁𝐷𝐷 − 1), 𝑥𝑥(𝑁𝑁𝐷𝐷 − 1)� + 𝐺𝐺𝑁𝑁(𝑥𝑥(𝑁𝑁𝐷𝐷))] 

𝑘𝑘 step: 

𝐽𝐽𝑘𝑘∗�𝑥𝑥(𝑘𝑘)� = min
𝑢𝑢𝐷𝐷∈𝑼𝑼

[𝐿𝐿�𝑢𝑢𝐷𝐷(𝑘𝑘), 𝑥𝑥(𝑘𝑘)� + 𝐽𝐽𝑘𝑘+1∗ (𝑥𝑥(𝑘𝑘 + 1))] (17) 

where 𝐽𝐽𝑘𝑘∗�𝑥𝑥(𝑘𝑘)� is the minimum cost-to-go value at the moment 
𝑘𝑘. Through the backward calculation, the optimal control law 
can be obtained. 

B. Local Adaptation 
If no disturbances emerge, the ego vehicle could achieve 

efficient and safe driving by following the optimal solution 
derived in the upper-stage. However, the reference speed 
cannot be perfectly tracked, and the prediction error for the 
queue discharge time is inevitable. The rear-end collision may 
occur if implementing the optimal control solution directly. 
Thus, the lower-stage controller aims to develop an MPC-based 
controller for the ego vehicle to track the optimal vehicle speed 
trajectory while keeping a safe distance to its preceding vehicle.  

Equation (18) shows the control problem formulation of 
MPC for the local adaptation. The first term is to minimize the 
vehicle speed and position tracking errors, and the second term 
considers the vehicle driving comfort by minimizing the 
increment of the traction forces. 
Minimize

𝑢𝑢𝑀𝑀∈𝑼𝑼
    𝐽𝐽𝑀𝑀(𝑢𝑢𝑀𝑀 | 𝑘𝑘) = (18) 

�‖𝑥𝑥�(𝑘𝑘 + 𝑖𝑖|𝑘𝑘)‖𝑄𝑄2
𝑁𝑁𝑃𝑃

𝑖𝑖=1

+ �‖∆𝑢𝑢(𝑘𝑘 + 𝑗𝑗|𝑘𝑘)‖𝑅𝑅2
𝑁𝑁𝑐𝑐−1

𝑗𝑗=1

 

s.t. 
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘 + 𝑗𝑗) ≤ 𝑢𝑢𝑀𝑀(𝑘𝑘 + 𝑗𝑗) ≤ 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘 + 𝑗𝑗) 

[𝐷𝐷 − 𝑑𝑑(𝑘𝑘 + 𝑗𝑗)] − 𝑑𝑑𝑞𝑞𝑟𝑟(𝑘𝑘 + 𝑗𝑗) ≥ 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘 + 𝑗𝑗) 
𝑥̇𝑥(𝑘𝑘 + 𝑗𝑗) = 𝑓𝑓�𝑢𝑢(𝑘𝑘 + 𝑗𝑗), 𝑥𝑥(𝑘𝑘 + 𝑗𝑗)� 

where 𝑥𝑥�  is the tracking error for ego vehicle, i.e., 𝑥𝑥� =
[𝑑𝑑 − 𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟   𝑣𝑣 − 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟]𝑇𝑇. 𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟  and 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟  are the reference vehicle 
position and speed trajectory, respectively, which are derived 
from the upper-stage long-term optimization. 𝑁𝑁𝑝𝑝 and 𝑁𝑁𝑐𝑐 are the 
prediction and control horizon for the MPC, respectively. 𝑑𝑑𝑞𝑞𝑟𝑟  is 
the actual vehicle queue length, (𝑢𝑢𝑀𝑀|𝑘𝑘) represents the derived 
control variable of MPC at k moment, Q and R are the weighting 
factor matrix. 

In addition, a proper inter-vehicle distance between the ego 
vehicle and its preceding is designed to avoid the possible rear-
end collision [39] and defined in (19),  

𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘 + 𝑗𝑗) = 𝐻𝐻0 + 𝜆𝜆 �𝑣𝑣(𝑘𝑘 + 𝑗𝑗)𝛥𝛥𝛥𝛥𝑀𝑀 +
𝑣𝑣2(𝑘𝑘 + 𝑗𝑗)
2|𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏|

� (19) 

where the first term 𝐻𝐻0  is a “static gap” and determines the 
minimum gap when the vehicle is stopped, and the second term 
is a “dynamic gap” providing an extra safe gap with increased 
speed. 𝜆𝜆 ≥ 1 is a margin for driving safety concerns.  𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  is 
the vehicle maximum braking deceleration, ∆𝑡𝑡𝑀𝑀 is the time step 
of MPC controller, and 𝑣𝑣𝑝𝑝(𝑘𝑘)  is the speed of the preceding 
vehicle, which is measured by the equipped radar in the ego 
vehicle. It should be noted that the safety distance is generally 
less than the detectable distance of the vehicle radar, thus the 
rear-end collision avoidance control is enabled when the 
preceding vehicle is detected.  

The MPC problem in (18) is solved in three steps:  
1) State Prediction 

To reduce the computational burden, we employ the 
approximate linearization method to transform the nonlinear 
time-varying vehicle longitudinal dynamics to a linear time-
varying (LTV) system [40]. Then, the vehicle state error model 
is obtained, 

𝑥𝑥�̇(𝑡𝑡) = �
0 1

0 −
𝐶𝐶𝐷𝐷𝐴𝐴𝐴𝐴𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)

𝑚𝑚
�𝑥𝑥�(𝑡𝑡) + �

0
1
𝑚𝑚
�𝑢𝑢�(𝑡𝑡) (20) 

where 𝑢𝑢�(𝑡𝑡) = 𝐹𝐹(𝑡𝑡) − 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) , 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟  is the reference vehicle 
control force which is derived from the upper-stage 
optimization. The LTV system (20) is discretized by the Euler 
method, yielding  

javascript:;
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𝑥𝑥�(𝑘𝑘 + 1) = (21) 

�
1 Δ𝑡𝑡𝑀𝑀

0 1 −
𝐶𝐶𝐷𝐷𝐴𝐴𝐴𝐴𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟(𝑘𝑘)Δ𝑡𝑡𝑀𝑀

𝑚𝑚
� 𝑥𝑥�(𝑘𝑘) + �

0
Δ𝑡𝑡𝑀𝑀
𝑚𝑚

�𝑢𝑢�(𝑘𝑘) 

where Δ𝑡𝑡𝑀𝑀  is the time step. In addition, the system output is 
defined as the system states, i.e., 𝑦𝑦�(𝑘𝑘 + 1) = 𝐶𝐶𝑥𝑥�(𝑘𝑘 + 1), where 
𝐶𝐶 is the coefficient matrix. 

Denote a state prediction matrix 

𝜍𝜍(𝑖𝑖|𝑘𝑘) = � 𝑥𝑥�(𝑖𝑖|𝑘𝑘)
𝑢𝑢�(𝑖𝑖 − 1|𝑘𝑘)� (22) 

where 𝑥𝑥�(𝑖𝑖|𝑘𝑘) represents the system i-step-ahead predicted error 
at the kth step. Substituting (21) into (22), the state-space model 
for state prediction is obtained 

𝑌𝑌�(𝑘𝑘) = 𝛤𝛤𝑘𝑘𝜍𝜍(𝑘𝑘) + 𝛯𝛯𝑘𝑘Δ𝑈𝑈�(𝑘𝑘) (23) 
with 

𝑌𝑌�(𝑘𝑘) = �𝐶𝐶�𝑘𝑘,1𝜍𝜍(1|𝑘𝑘) ⋯ 𝐶𝐶�𝑘𝑘,𝑁𝑁𝑐𝑐𝜍𝜍(𝑁𝑁𝑐𝑐|𝑘𝑘) ⋯ 𝐶𝐶�𝑘𝑘,𝑁𝑁𝑝𝑝𝜍𝜍�𝑁𝑁𝑝𝑝|𝑘𝑘��
1×𝑁𝑁𝑝𝑝

𝑇𝑇
 

𝛤𝛤𝑘𝑘 = �𝐶̃𝐶𝑘𝑘,𝑖𝑖𝐴̃𝐴𝑘𝑘,𝑖𝑖 ⋯ 𝐶̃𝐶𝑘𝑘,𝑖𝑖𝐴̃𝐴𝑘𝑘,𝑖𝑖
𝑁𝑁𝑐𝑐 ⋯ 𝐶̃𝐶𝑘𝑘,𝑖𝑖𝐴̃𝐴𝑘𝑘,𝑖𝑖

𝑁𝑁𝑝𝑝�
1×𝑁𝑁𝑝𝑝

𝑇𝑇
 

𝛯𝛯𝑘𝑘 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝐶̃𝐶𝑘𝑘,𝑖𝑖𝐵𝐵�𝑘𝑘,𝑖𝑖

𝐶̃𝐶𝑘𝑘,𝑖𝑖𝐴̃𝐴𝑘𝑘,𝑖𝑖𝐵𝐵�𝑘𝑘,𝑖𝑖
⋮

𝐶̃𝐶𝑘𝑘,𝑖𝑖𝐴̃𝐴𝑘𝑘,𝑖𝑖
𝑁𝑁𝑐𝑐𝐵𝐵�𝑘𝑘,𝑖𝑖
⋮

𝐶̃𝐶𝑘𝑘,𝑖𝑖𝐴̃𝐴𝑘𝑘,𝑖𝑖
𝑁𝑁𝑝𝑝−1𝐵𝐵�𝑘𝑘,𝑖𝑖

0
𝐶̃𝐶𝑘𝑘,𝑖𝑖𝐵𝐵�𝑘𝑘,𝑖𝑖

⋮
𝐶̃𝐶𝑘𝑘,𝑖𝑖𝐴̃𝐴𝑘𝑘,𝑖𝑖

𝑁𝑁𝑐𝑐−1𝐵𝐵�𝑘𝑘,𝑖𝑖
⋮

𝐶̃𝐶𝑘𝑘,𝑖𝑖𝐴̃𝐴𝑘𝑘,𝑖𝑖
𝑁𝑁𝑝𝑝−2𝐵𝐵�𝑘𝑘,𝑖𝑖

⋯⋯
⋱
⋯
⋱
⋯

0
0
⋮

𝐶̃𝐶𝑘𝑘,𝑖𝑖𝐴̃𝐴𝑘𝑘,𝑖𝑖𝐵𝐵�𝑘𝑘,𝑖𝑖
⋮

𝐶̃𝐶𝑘𝑘,𝑖𝑖𝐴̃𝐴𝑘𝑘,𝑖𝑖
𝑁𝑁𝑝𝑝−𝑁𝑁𝑐𝑐−1𝐵𝐵�𝑘𝑘,𝑖𝑖⎦

⎥
⎥
⎥
⎥
⎥
⎤

𝑁𝑁𝑝𝑝×𝑁𝑁𝑐𝑐

 

Δ𝑈𝑈�(𝑘𝑘) = [Δ𝑢𝑢�(𝑘𝑘|𝑘𝑘) Δ𝑢𝑢�(𝑘𝑘 + 1|𝑘𝑘) ⋯ Δ𝑢𝑢�(𝑘𝑘 + 𝑁𝑁𝑐𝑐|𝑘𝑘)]1×𝑁𝑁𝑐𝑐
𝑇𝑇  

𝐴̃𝐴𝑘𝑘,𝑖𝑖 = �

1 Δ𝑡𝑡𝑀𝑀 0

0 1 −
𝐶𝐶𝐷𝐷𝐴𝐴𝐴𝐴𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟(𝑖𝑖|𝑘𝑘)Δ𝑡𝑡𝑀𝑀

𝑚𝑚
Δ𝑡𝑡𝑀𝑀
𝑚𝑚

0 0 1

� 

𝐵𝐵�𝑘𝑘,𝑖𝑖 = �0 Δ𝑡𝑡𝑀𝑀
𝑚𝑚

1�
𝑇𝑇

, 𝐶̃𝐶𝑘𝑘,𝑖𝑖 = �1 0 0
0 1 0� 

where 𝑌𝑌�(𝑘𝑘) and Δ𝑈𝑈�(𝑘𝑘) are output and control increments of 
the prediction model, respectively. 𝜍𝜍(𝑘𝑘) is the state variable at 
the 𝑘𝑘th  step. Besides, since 𝑁𝑁𝑝𝑝 ≥ 𝑁𝑁𝑐𝑐 , the control variable 
beyond 𝑁𝑁𝑐𝑐 is always the last control variable of 𝑁𝑁𝑝𝑝.  
2) Constraints Conversion 

The solution of the proposed LTV-MPC is the control 
increment. Thus, the subsection will convert the constraints to 
the form of control increment.  

For the first constraint in (18) is converted to  
𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑈𝑈𝑀𝑀(𝑘𝑘) ≤ 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 (24) 

with 

𝑈𝑈𝑀𝑀(𝑘𝑘) = �
1 ⋯ 0
⋯ ⋱ ⋯
1 ⋯ 1

�
𝑁𝑁𝑐𝑐×𝑁𝑁𝑐𝑐

Δ𝑈𝑈�(𝑘𝑘) + 1𝑁𝑁𝑐𝑐𝑢𝑢𝑀𝑀(𝑘𝑘 − 1) 

𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 = [𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘) 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘 + 1) ⋯ 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘 + 𝑁𝑁𝑐𝑐 − 1)]1×𝑁𝑁𝑐𝑐
𝑇𝑇  

𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 = [𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘) 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘 + 1) ⋯ 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘 + 𝑁𝑁𝑐𝑐 − 1)]1×𝑁𝑁𝑐𝑐
𝑇𝑇  

where 1𝑁𝑁𝑐𝑐 is a column vector with 𝑁𝑁𝑐𝑐  rows. 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑈𝑈𝑚𝑚𝑎𝑎𝑎𝑎  are 
the minimum and maximum value set of control variable in 𝑁𝑁𝑐𝑐. 
Moreover, in the prediction horizon, the relation between the 
control variable and travel distance is 
𝑑𝑑(𝑘𝑘 + 𝑖𝑖) = (25) 

𝑑𝑑(𝑘𝑘 + 𝑖𝑖 − 1) + 𝑣𝑣(𝑘𝑘 + 𝑖𝑖 − 1)Δ𝑡𝑡𝑀𝑀 + 0.5𝑎𝑎(𝑘𝑘 + 𝑖𝑖)Δ𝑡𝑡𝑀𝑀2  

where 𝑎𝑎 is the vehicle acceleration, which is calculated by (26) 

𝑎𝑎(𝑘𝑘 + 𝑖𝑖) =
𝑢𝑢𝑀𝑀(𝑘𝑘 + 𝑖𝑖) − 𝐶𝐶𝑟𝑟(𝑘𝑘 + 𝑖𝑖 − 1)

𝑚𝑚
 (26) 

where 𝐶𝐶𝑟𝑟 is the sum of resistance, i.e., rolling resistance, gravity 
resistance, and aerodynamic drag, 𝐶𝐶𝑟𝑟(𝑘𝑘) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 +
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 0.5𝐶𝐶𝐷𝐷𝐴𝐴𝐴𝐴𝑣𝑣2(𝑘𝑘).  

Combining the (19), (25), and (26), the collision avoidance 
constraint is converted to  

𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≥

⎣
⎢
⎢
⎢
⎡(Δ𝑡𝑡𝑀𝑀)2

𝑚𝑚 ⋯ 0
⋮ ⋱ ⋮

0 ⋯
(𝑁𝑁𝑐𝑐Δ𝑡𝑡𝑀𝑀)2

𝑚𝑚 ⎦
⎥
⎥
⎥
⎤

𝑁𝑁𝑐𝑐×𝑁𝑁𝑐𝑐

𝑈𝑈𝑀𝑀(𝑘𝑘) + 

 
(27) 

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑑𝑑(𝑘𝑘 − 1) − 𝑣𝑣(𝑘𝑘 − 1)Δ𝑡𝑡𝑀𝑀 −

𝐶𝐶𝑟𝑟(𝑘𝑘 − 1)
𝑚𝑚 Δ𝑡𝑡𝑀𝑀2

𝑑𝑑(𝑘𝑘 − 1) − 𝑣𝑣(𝑘𝑘 − 1)2Δ𝑡𝑡𝑀𝑀 −
𝐶𝐶𝑟𝑟(𝑘𝑘 − 1)

𝑚𝑚
(2Δ𝑡𝑡𝑀𝑀)2

⋮

𝑑𝑑(𝑘𝑘 − 1) − 𝑣𝑣(𝑘𝑘 − 1)𝑁𝑁𝑐𝑐Δ𝑡𝑡𝑀𝑀 −
𝐶𝐶𝑟𝑟(𝑘𝑘 − 1)

𝑚𝑚
(𝑁𝑁𝑐𝑐Δ𝑡𝑡𝑀𝑀)2⎦

⎥
⎥
⎥
⎥
⎥
⎤

𝑁𝑁𝑐𝑐×1

 

with  
𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐷𝐷 + 𝑑𝑑𝑞𝑞(𝑘𝑘) − [𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘) ⋯ 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘 + 𝑁𝑁𝑐𝑐 − 1)]1×𝑁𝑁𝑐𝑐

𝑇𝑇  

3) LTV-MPC Solving 
In this paper, the local adaptation control problem in (18) is 

solved using quadratic programming (QP), and the objective 
function and constraints are both converted to the standard QP 
form [41]. Then, the control problem is converted to  
 𝐽𝐽𝑀𝑀�𝛥𝛥𝑈𝑈�|𝑘𝑘� = (28) 

1
2 �
𝛥𝛥𝑈𝑈�(𝑘𝑘)𝑇𝑇

0
� �2(𝛯𝛯𝑘𝑘𝑇𝑇𝑄𝑄𝛯𝛯𝑘𝑘 + 𝑅𝑅) 0

0 0
� �∆𝑈𝑈�(𝑘𝑘)𝑇𝑇

0
�
𝑇𝑇
�2𝐸𝐸𝑘𝑘

𝑇𝑇𝑄𝑄𝛯𝛯𝑘𝑘
0

�
𝑇𝑇
�∆𝑈𝑈�(𝑘𝑘)𝑇𝑇

0
�
𝑇𝑇
 

s.t 
𝑥𝑥(0) = [0 𝑣𝑣𝑠𝑠]𝑇𝑇  

𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 ≤ �
1 ⋯ 0
⋯ ⋱ ⋯
1 ⋯ 1

�
𝑁𝑁𝑐𝑐×𝑁𝑁𝑐𝑐

Δ𝑈𝑈�(𝑘𝑘) + 1𝑁𝑁𝑐𝑐𝑢𝑢𝑀𝑀(𝑘𝑘 − 1) ≤ 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 

𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≥

⎣
⎢
⎢
⎢
⎡(Δ𝑡𝑡𝑀𝑀)2

𝑚𝑚 ⋯ 0
⋮ ⋱ ⋮

0 ⋯
(𝑁𝑁𝑐𝑐Δ𝑡𝑡𝑀𝑀)2

𝑚𝑚 ⎦
⎥
⎥
⎥
⎤

𝑁𝑁𝑐𝑐×𝑁𝑁𝑐𝑐

𝑈𝑈𝑀𝑀(𝑘𝑘) + 

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑑𝑑(𝑘𝑘 − 1) − 𝑣𝑣(𝑘𝑘 − 1)Δ𝑡𝑡𝑀𝑀 −

𝐶𝐶𝑟𝑟(𝑘𝑘 − 1)
2𝑚𝑚 Δ𝑡𝑡𝑀𝑀2

𝑑𝑑(𝑘𝑘 − 1) − 𝑣𝑣(𝑘𝑘 − 1)2Δ𝑡𝑡𝑀𝑀 −
𝐶𝐶𝑟𝑟(𝑘𝑘 − 1)

2𝑚𝑚
(2Δ𝑡𝑡𝑀𝑀)2

⋮

𝑑𝑑(𝑘𝑘 − 1) − 𝑣𝑣(𝑘𝑘 − 1)𝑁𝑁𝑐𝑐Δ𝑡𝑡𝑀𝑀 −
𝐶𝐶𝑟𝑟(𝑘𝑘 − 1)

2𝑚𝑚
(𝑁𝑁𝑐𝑐Δ𝑡𝑡𝑀𝑀)2⎦

⎥
⎥
⎥
⎥
⎥
⎤

𝑁𝑁𝑐𝑐×1

 

A series of control variable increments Δ𝑈𝑈�𝑘𝑘∗  within the 
control horizon 𝑁𝑁𝑐𝑐 can be obtained by solving the QP problem 
in every control period. Then, the resulted optimal control 
variable for the first step of the prediction horizon 𝑁𝑁𝑃𝑃 is 

𝑢𝑢�∗(𝑘𝑘) = 𝑢𝑢�(𝑘𝑘 − 1) + [𝐼𝐼𝑁𝑁𝑐𝑐 0 ⋯ 0]1×𝑁𝑁𝑐𝑐Δ𝑈𝑈�𝑘𝑘
∗ (29) 

Finally, the vehicle traction force is 
𝑢𝑢∗(𝑘𝑘) = 𝑢𝑢�∗(𝑘𝑘) + 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟(𝑘𝑘) (30) 

where 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟  are the reference vehicle control force which is 
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derived from the upper-stage optimization. 

V. SIMULATION AND RESULTS 
To evaluate the performance of the proposed EEAC strategy, 

we conduct several simulations by using an open-source 
microscopic multi-modal traffic simulation, SUMO, on a PC 
with Intel Core i7-8700 @ 3.20GHz CPU and 16GB RAM.  

A. Simulation Setup 
In SUMO, we built the road section map using 

OpenStreetMap, and the Intelligent Diver Model (IDM) is 
employed as the car-following model to simulate the queue 
movement dynamics at an intersection. The IDM is a well-
accepted model for single-lane traffic flow, it can be used to 
describe the dynamic behavior of human-driven or autonomous 
vehicles [42]. It can be described by  

�
𝑑̇𝑑𝑗𝑗 = 𝑣𝑣𝑗𝑗

𝑣̇𝑣𝑗𝑗 = 𝑎𝑎max �1 − �
𝑣𝑣𝑗𝑗
𝑣𝑣∗
�
𝜛𝜛
− �

𝑑𝑑∗

𝑑𝑑𝑗𝑗�
�
2

�
 (31) 

with 

𝑑𝑑∗=𝐻𝐻𝑗𝑗+𝑇𝑇ℎ,𝑗𝑗𝑣𝑣𝑗𝑗 +
𝑣𝑣𝑗𝑗𝑣𝑣𝚥𝚥�

2�𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
} 

where 𝑑𝑑𝚥𝚥�  is the bumper-to-bumper inter-vehicle clearance of 
the 𝑗𝑗th vehicle and preceding one, 𝑣𝑣𝚥𝚥�  is the velocity difference 
of the 𝑗𝑗th vehicle and preceding one. 𝑑𝑑∗ and 𝑣𝑣∗ are the desired 
inter-vehicle clearance and road speed limit, respectively. 𝑇𝑇ℎ,𝑗𝑗 
is the 𝑗𝑗th vehicle safe headway, 𝜛𝜛 is acceleration exponent. In 
this paper, we evaluate the proposed EEAC strategy in a 
stochastic traffic environment, thus the parameters 𝐻𝐻𝑗𝑗 , 𝑇𝑇ℎ,𝑗𝑗 , 
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 , and 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚  are initialized randomly. Table II shows the 
parameter bounds used for the IDM model implemented in the 
stochastic traffic environment [43, 44].  
 

TABLE II 
PARAMETER BOUNDS 

Parameter Bounds 
Standstill spacing 𝐻𝐻𝑗𝑗 [1 m, 3 m] 

Safe time headway 𝑇𝑇ℎ,𝑗𝑗 [0.5 s, 2 s] 

Maximum comfort acceleration 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 [2 m·s-2, 4 m·s-2] 

Maximum comfort deceleration 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 [-2 m·s-2, -4 m·s-2] 

Acceleration exponent 𝜛𝜛 4 

 
Table III lists the main parameters of the ego vehicle in this 

paper. The time step Δ𝑡𝑡 is 0.1 s for DP algorithm in long-term 
optimization. The weighting factors 𝛼𝛼1 and 𝛼𝛼2 in upper-stage 
optimization are both 800, and weighting matrices in (18) are Q 
= 100𝐼𝐼2𝑁𝑁𝑝𝑝×2𝑁𝑁𝑝𝑝and R = 0.1𝐼𝐼𝑁𝑁𝑐𝑐. In addition, the prediction and 
control horizon and the step size of the MPC are set to 𝑁𝑁𝑝𝑝 = 100 
and ∆𝑡𝑡𝑀𝑀  = 0.01, which finds a good compromise between 
optimality and computational efficiency, as verified by a 
systematic simulative analysis for various step sizes and 
horizon lengths. Two simulations with various traffic 
parameters were conducted, which are referred to as Scenarios 
A and B as listed in Table IV.  

TABLE III 
VEHICLE PARAMETERS 

Component Parameter Value 

Motor 

Maximum power 20.75 kW / -20.53 kW 

Maximum torque 312.50 Nm / -311.50 Nm 

Maximum speed 1600 rpm 

Li-ion Battery 

Capacity 140 Ah 

Open circuit voltage 360 V 

Efficiency 𝜂𝜂𝑏𝑏 0.9 

Vehicle 

Mass 𝑚𝑚 1421 kg 

Front area 𝐴𝐴 2.22 m2 

Aerodynamic drag coefficient 𝐶𝐶𝐷𝐷 0.3 

Air density 𝜌𝜌 1.206 kg·m-3 

Rotational inertia coefficient 𝛿𝛿 1.022 

Rolling resistance coefficient 𝑓𝑓 0.015 

Tire radius 𝑟𝑟𝑤𝑤 0.325 m 

Road gradient 𝜃𝜃 0 

Auxiliary power 𝑃𝑃𝑎𝑎 300 W 

Acceleration of gravity 𝑔𝑔 9.8 m·s-2 

 
TABLE  IV 

SIMULATION SCENARIOS 
Parameter Scenario A Scenario B 

Vehicles of queue nv  10 5 

Switching time ts 28 s 23 s 

Communication range D 350 m 

Initial speed vs 54 km·h-1 

Minimum speed vmin 20 km·h-1
  

Maximum speed vmax 60 km·h-1
  

Fixed signal timing  60 s 

B. Results and Discussion 
Three control strategies are compared in this subsection, i.e., 

constant speed (CS) [45], regular EAD, and proposed EEAC. 
For CS strategy, the ego vehicle will approach the intersection 
at a fixed speed and stop to join the vehicle queue if the traffic 
signal is a red indication. The braking deceleration is -3 m·s-2, 
and the standstill spacing between the preceding vehicle is 2 m. 
The regular EAD uses the SPaT information to calculate the 
eco-friendly speed trajectory to control the vehicle driving 
through the signalized intersection without stopping as 
introduced in Section II. In this paper, the regular EAD 
trajectory is also composed of two stages, where the upper-
stage calculates the optimal speed trajectory by using DP 
without considering the vehicle queue, and the lower-stage uses 
the same LTV-MPC controller as the proposed EEAC to track 
the derived optimal trajectory.  

In the simulation, the time consumption of DP in the upper-
stage for EEAC strategy is 836.2 seconds and 657.9 seconds of 
Scenario A and Scenario B, respectively. The average 
calculation speed of LTV-MPC in each step is 39.2 
milliseconds and 38.9 milliseconds of Scenario A and Scenario 
B, respectively. The local adaption controller (i.e., LTV-MPC) 
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has better convergence performance, only requires 0.66 seconds 
and 0.49 seconds respectively in scenarios A and B to reach the 
steady-state, where the velocity tracking error converges to zero. 
1) Energy Efficiency  

Figs. 6, 7, and 8 show the travel distance, vehicle speed, and 
battery power for the CS, regular EAD, and EEAC strategy. 
Tables V and VI list their average motor efficiency and energy 
consumption, respectively. The average motor efficiencies of 
the front and rear axles of different strategies and scenarios are 
reported in Table V, provided the motor efficiencies are 
uniform along an axle. In Table VI, the results of the upper-
stage for regular EAD and EEAC are derived from the long-
term optimization controller of both strategies, and the lower-
stage results are referred to as the results of the local adaption 
controller. The sum of battery energy consumption and vehicle 
kinetic energy changes are combined to calculate the overall 
energy efficiency improvement to ensure a fair comparison 
among different strategies.  

As observed in Fig. 6, in both Scenarios A and B, the ego 
vehicle with CS and regular EAD has to stop and join the queue 
before driving through the intersection, while the ego vehicle 
with EEAC can pass through the intersection without stops due 
to the availability of the vehicle queue discharge prediction. Fig. 
7 shows that the ego vehicle with EEAC strategy decelerates to 
a lower speed at the beginning, and keeps cruising at this speed 
for a while in both Scenarios A and B. The reason is that the 
vehicle tends to consume more energy at high speeds due to the 
aerodynamic losses. Thus, as shown in Fig. 8, the battery output 
power is reduced in lower cruising speed than high-speed range. 
Note that the battery power profiles of the regular EAD and the 
proposed EEAC involve high-frequency oscillations, which are 
incurred by the direct implementation of the nonlinear motor 
efficiency map (see Fig. 2). The results can be smoothened by 
introducing further approximations (to the motor map or the 
reference speed generated in the upper-stage), which, however, 
degrade the optimality of the solution. 

In Table V, the EEAC achieves motor efficiency 
improvement over 20 % and 15 % compared with CS and 
regular EAD in Scenario A and Scenario B, respectively. It can 
be concluded that the EEAC strategy can reduce vehicle 
resistance losses and ensure motor working in a high-efficiency 
zone. Hence, as shown in Table VI, the energy efficiency is 
improved. Compared with CS and regular EAD, the EEAC 

achieves energy consumption reduction by 12.48% and 12.01% 
in Scenario A, and 8.51 % and 11.22 % in Scenario B.  

The importance of the queue discharge prediction is also 
reflected by further comparing the energy consumption of the 
CS and regular EAD. Although the anticipated energy saving 
of the upper-stage of the regular EAD is significantly achieved 
19.50 %, the actual saving (obtained from the lower-stage) is 
limited to 0.54 % in Scenario A, and in Scenario B even more 
energy is consumed than the CS strategy as the upper-stage 
solution for the regular EAD. The upper-stage optimized 
trajectory cannot be followed by the lower-stage due to the 
vehicle queue ahead, which is not modeled and predicted. 

In addition, Fig. 9 shows the distance and speed tracking 
errors for the proposed EEAC. As observed, the velocity 
trajectory exists dips in the lower-stage at 46.75 seconds and 
30.14 seconds in Scenario A and Scenario B, respectively. The 
reason for this phenomenon is the inevitable prediction error of 
the upper-stage. As the ego vehicle approaches the preceding 
vehicle, proper braking is applied to maintain the safe inter-
vehicle distance between the ego and lead vehicles. Even both 
distance and speed tracking errors are observed, they are small 
and have a limited impact on energy efficiency as shown in 
Table VI (with 6.17 % and 4.55 % energy consumption 
increased). To illuminate the effects of the prediction accuracy, 
we will conduct more simulations in the next subsection. 
2) Influence of Vehicle Queue Discharge Prediction Accuracy 
on Energy-saving 

In this subsection, Scenario A is run 10,000 times in a Monte 
Carlo type experiment in which the parameters of the vehicle 
queue were randomized in SUMO, including the acceleration 
exponent 𝜛𝜛 , standstill spacing 𝐻𝐻 j , safe time headway 𝑇𝑇h,j , 
maximum comfort acceleration 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 , and maximum comfort 
deceleration 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 for each vehicle. The feasible set of each 
parameter is listed in Table II. 

To evaluate the prediction accuracy, the vehicle queue 
discharge time prediction error 𝑇𝑇�𝑞𝑞 is defined in (32), 

𝑇𝑇�𝑞𝑞 =
𝑇𝑇𝑞𝑞𝑟𝑟 − 𝑇𝑇𝑞𝑞
𝑇𝑇𝑞𝑞

× 100% (32) 

where 𝑇𝑇𝑞𝑞 is the predicted queue discharge time, and 𝑇𝑇𝑞𝑞𝑟𝑟 is the 
actual queue discharge time in the simulations. The prediction 
error of discharge time is illustrated in Fig. 10. 

 

    

(a)                                                                                                                              (b)                
Fig. 6.  The distance trajectory of vehicle queue and ego vehicle. (a) Scenario A. (b) Scenario B.  
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     (a)                                                                                                                              (b)                     

Fig. 7.  The ego vehicle speed trajectory of CS strategy, regular EAD strategy, and EEAC strategy. (a) Scenario A. (b) Scenario B. 
 

   
     (a)                                                                                                                             (b)                     

Fig. 8.  The ego vehicle battery power of CS strategy, regular EAD strategy, and EEAC strategy. (a) Scenario A. (b) Scenario B. 
 

   
                                                                    (a)                                                                                                                          (b)  
Fig. 9.  The distance and speed trajectory of long-term optimization and local adaption.   (a) Distance and the tracking error. (b) Speed and the tracking error.  

TABLE V 
AVERAGE MOTOR EFFICIENCY OF CS STRATEGY, REGULAR EAD STRATEGY, AND EEAC STRATEGY 

 
Scenario A Scenario B 

Front axle Rear axle Front axle Rear axle 

CS strategy 59.63 % 55.62 % 57.98 % 51.35 % 

Regular EAD strategy (Upper-stage) 72.36 % 70.35 % 70.33 % 68.97 % 

Regular EAD strategy (Lower-stage) 61.10 % 58.95 % 60.55 % 60.01 % 

EEAC strategy (Upper-stage) 74.25 % 73.21 % 71.89 % 70.52 % 
EEAC strategy (Lower-stage) 73.69 % 72.66 % 70.03 % 69.91 % 

 
In Fig. 10, the prediction error of discharge time is within the 

range -13.02 % ~ 7.41 %. Although the maximum error is -
13.02 %, the mean error is only 3.83 %. Besides, Table VII lists 
the results of several simulations, i.e., the cases result in 
maximum and minimum vehicle queue discharge time 
prediction errors. To further investigate the advantages of the 
proposed IQDP method, the EEAC using the traditional DKM 
[25] for queue discharge prediction is used as the baseline. The 
terminal velocity is made identical for all simulated cases so 

that the comparison can be carried out based only on the battery 
energy consumption in Table VII. 
  As observed, the queue discharge prediction accuracy has a 
significant influence on energy efficiency of the EEAC strategy. 
The battery energy consumption for cases with maximum 
queue discharge time prediction error increased by around 20% 
compared with that from the long-term global optimization. 
Besides, the EEAC with DKM shows the worst performance, 
with the battery energy consumption increased by 33.52 %.  
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TABLE VI 
ENERGY CONSUMPTION OF CS STRATEGY, REGULAR EAD STRATEGY, AND EEAC STRATEGY 

 
Scenario A Scenario B 

Battery energy 
consumption 

Vehicle kinetic  
energy changes 

Energy efficiency 
improvement 

Battery energy 
consumption 

Vehicle kinetic  
energy changes 

Energy efficiency 
improvement 

CS strategy 249.38 kJ 58.20 kJ N/A  194.15 kJ 99.48 kJ N/A 
Regular EAD strategy 

(Upper-stage) 175.88 kJ 71.71 kJ 19.50 % (vs. CS) 138.67 kJ 112.30 kJ 14.53 % (vs.  CS) 

Regular EAD strategy 
(Lower-stage) 248.39 kJ 57.52 kJ 0.54 % (vs. CS) 203.11 kJ 99.48 kJ -3.05 % (vs. CS) 

EEAC strategy 
(Upper-stage) 182.97 kJ 70.56 kJ 17.57 % (vs. CS) 121.42 kJ 135.55 kJ 12.49 % (vs. CS) 

EEAC strategy 
(Lower-stage) 197.32 kJ 71.86 kJ 12.48 % (vs. CS) 

12.01 % (vs. regular EAD) 134.04 kJ 134.61 kJ 8.51 % (vs. CS) 
11.22 % (vs.  regular EAD) 

 

Fig. 10.  The prediction error of vehicle queue discharge time. 

Table VII 
 ENERGY CONSUMPTION OF 10,000 SIMULATIONS 

 
Battery energy consumption Compared with  

upper-stage result Upper-stage Lower-stage 

DKM  179.04 kJ 239.05 kJ 33.52 % 
Minimum discharge 
time prediction error 182.97 kJ 

183.74 kJ 0.42 % 

Maximum discharge 
time prediction error 220.36 kJ 20.41 % 

In summary, the above results demonstrate the vehicle queue 
discharge prediction accuracy is important to achieve reliable 
eco-approach control at the signalized intersection. It deserves 
more investigation in the future.  

VI. CONCLUSION 
This paper presents the EEAC strategy to achieve vehicle 

energy-efficient operation at the signalized intersection with 
consideration of vehicle queue. First, the vehicle queue 
discharge movement is predicted by using the proposed IQDP 
method which considers the vehicle and driver dynamics. 
Second, a hierarchical control framework is presented, which 
includes two stages: the upper-stage for long-term global 
optimization and the lower-stage for short-term adaptation. In 
the upper-stage, the vehicle energy-efficient speed is calculated 
by using the temporal-domain DP, which enables efficient and 
safe vehicle operation while driving through the intersection. In 
the lower-stage, an online LTV-MPC controller is proposed to 
follow the optimal speed profile derived from the upper-stage 
to prevent possible rear-end collision caused by the queue 
discharge time prediction error.  

Simulation results indicated that the EEAC can achieve 
significant energy efficiency improvement as compared with 

CS and regular EAD since the EEAC can reduce vehicle 
resistance losses and is able to operate the motor working in a 
high-efficiency zone by manipulating the driving speed. In 
addition, the vehicle queue discharge prediction accuracy has a 
considerable influence on the energy-saving of the EEAC. Thus, 
it can improve the robustness of EEAC if a more accurate real-
time queue discharge prediction method is employed. 

There are some directions for future work. One is to relax the 
study of dynamic traffic influences, such as actuated traffic 
signal control logic and nonstationary traffic flow at the 
intersection. It is also promising to integrate data-driven 
prediction approaches with real-world traffic data. 
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