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Abstract—To support the massive machine-type communica-
tions (mMTC) scenario for Internet of Things (IoTs) applica-
tions featured by large-scale device connectivity and low device
activity, grant-free non-orthogonal multiple access (GF-NOMA)
and compressive sensing (CS)-based multi-user detection methods
(MUD) are developed. In this paper, we develop two Bayesian
CS-based methods, i.e., sparse Bayesian Learning (SBL) and fast
inverse-free sparse Bayesian Learning (FI-SBL), for joint MUD
and channel estimation (CE) in GF-NOMA with Low-Activity
Code Division Multiple Access (LA-CDMA) as the multiple access
technology. SBL is investigated for robust MUD and CE by
utilizing the parameterized Gaussian prior information. Then
to resolve the high computational complexity of SBL, FI-SBL
is proposed, which replaces matrix reversion operations with
relaxed evidence lower bound. Simulation results show that the
two proposed algorithms outperform the traditional methods,
and FI-SBL reduces the computational complexity significantly.

Index Terms—Machine-Type Communications, Spares Chan-
nel Estimation, Sparse Bayesian Learning, Fast Inverse-free
Sparse Bayesian Learning.

I. INTRODUCTION

Massive machine-type communications (mMTC) is an im-
portant scenario to support the proliferation of Internet of
things (IoT) applications [1]. In mMTC, although a huge
number of devices connect to a base station (BS), very few of
them are active with uplink short package transmission at a
time. If mMTC directly adopts the uplink procedure of the
long time evolution (LTE) system, where orthogonal radio
resource multiplexing schemes as well as handshaking be-
tween BS and user devices are adopted to avoid collision, then
the large signaling overhead and high end-to-end latency are
unacceptable. In this regard, non-orthogonal multiple access
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with grant-free transmission (GF-NOMA) is considered as is
a promising technology to meet the requirements [2].

GF-NOMA uses non-orthogonal preamble sequences for
user identification and channel estimation (CE), which enables
the overload use of preamble sequences, i.e. the number of
supported connections is larger than the preamble length,
and eliminates preamble contention by preassigning a unique
preamble sequence to each user device. Inspired by the fact
of massive connectivity and sporadic activity in mMTC, many
efficient compressive sensing (CS)-based sparse reconstruction
methods have been adopted for multi-user detection (MUD)
and CE [3]. Greedy sparse reconstruction algorithms, such as
compressive sampling matching pursuit (CoSaMP) [4], orthog-
onal matching pursuit (OMP) [5], and subspace pursuit (SP)
[6], have been adopted for joint MUD and CE in GF-NOMA
systems. As IoT applications highly require for reliability,
Zhang et al. [7] developed a sparse Bayesian learning (SBL)-
based method to improve the robustness and accuracy of MUD
and CE by exploiting the prior information on the statistic
distribution of noise and sparsity [8]. However, a key challenge
of SBL is its high computational complexity.

In this paper, we realize that the computational complexity
of SBL mainly comes from the matrix inversion operation.
Then we propose the FI-SBL method, which significantly
reduces the computational complexity of SBL by replacing
the matrix inversion operation with a relaxed evidence lower
bound (relaxed-ELBO) operation [9], [10]. The novelty and
contributions of this paper are summarized as follows:

• Two Bayesian learning strategies, i.e., SBL and fast
inverse-free SBL (FI-SBL), are developed for joint MUD
and CE in mMTC;

• SBL utilizes the prior information of the channel vector
and estimates the hyperparameters via expectation maxi-
mization (EM) iterative method [8];

• FI-SBL is proposed to reduce the computational com-
plexity of SBL;

• Simulation results show that both SBL and FI-SBL
outperform the traditional methods and that FI-SBL has
significantly reduced computational complexity.

This paper is organized as follows. The system model of
uplink GF-NOMA with low-activity code division multiple
access (LA-CDMA) is presented in Section II. The proposed
SBL and FI-SBL algorithms are respectively derived in Sec-
tion III and Section IV. The simulations results are presented
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in Section V and the conclusions are drawn in Section VI.

II. PROBLEM FORMULATION

We consider an uplink grant-free NOMA system with low
activity code domain multiple access (LA-CDMA) [3] as
the multiple access technology, in which N devices transmit
signals to a base station. When a device is active, it transmits
a signal in a certain frame; otherwise, it does not transmit. The
spreading factor is M . Here we consider a flat fading channel.
In the uplink LA-CDMA systems, we assume pilot symbol
bp,n for device n and Binary Phase Shift Keying (BPSK) mod-
ulation with symbol alphabet (B = {−1,+1}). The spreading
sequence for device n is sn ∈ {−1/

√
M,+1/

√
M}M . Thus

the transmitted pilot signal for device n should be bp,nsn.
Due to the sporadic nature of the transmissions, only a small
subset D ⊂ {1, 2, ..., N} of users is active, and the cardinality
is K = |D| = pa ·N on average, in which pa is the percentage
of active devices. In other words, when device n corresponding
to channel coefficient hn is active, n ∈ D; otherwise, n /∈ D.

Without loss of generality, during pilot training, the received
signal y at the base station can be formulated as

y = s · diag(bp) · h+w

= (s1, ..., sN )

 bp,1
. . .

bp,N


 h1

...
hN

+w

= Ah+w, (1)

in which A = s·diag(bp) is containing the spreading sequence
and pilot signal information, w is a complex Gaussian noise
and obeys w ∼ CN (0, σ2I). Note that in such transmission,
if most devices are inactive, namely, most of the elements in
h are zero, then the channel vector is considered as sparse. In
the following, our goal for the base station is to do channel
estimation based on the system model (1).

III. SBL FOR CHANNEL ESTIMATION

SBL was originally proposed as a machine learning algo-
rithm by Tipping, and subsequently introduced into the field
of CS. As a Bayesian algorithm, the SBL algorithm uses a
parameterized Gaussian distribution as the prior distribution
of the solution. The introduced hyperparameters are iteratively
estimated via the EM strategy. In this section, we address
the sparse channel estimation problem via SBL based on the
EM iterative method [8]. The SBL method mainly exploits
the sparsity of the channel vector h, and has better recovery
performance than traditional methods.

During pilot training, the coefficients hn of the channel
vector are independent of each other. When the activity factor
is very small, most coefficients in the channel vector are zero.
In order to encourage the sparsity of channel vector, assume
that h follows zero-mean Gaussian prior distribution

p(h;α) =
N∏

n=1

CN (hn|0, α−1
n )

= (2π)−N |Λ| exp(−hHΛh), (2)
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Fig. 1. The hyperparameter α governs the estimated channel vector h in
SBL algorithm.
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Fig. 2. The graphical model for SBL.

in which Λ = diag{α1, α2, . . . , αN} is a diagonal matrix,
and α = (α1, α2, ..., αN )T is non-negative hyperparameter
governing the estimated channel vector h = (h1, h2, ..., hN )T ,
, as shown in Fig. 1. Each element in the estimated channel
vector h is governed by the corresponding element in hyper-
parameter α. Suppose αn approaches positive infinity, then
the corresponding channel coefficient hn becomes zero.

In SBL framework, we set γ as the inverse of the noise
variance, i.e., γ

∆
= 1/σ2, then the Gaussian noise vector is

assumed to be zero-mean, and obeys p(w) = CN (w|0, γ−1I).
Thus the likelihood of received signal y is

p(y;h, γ) = CN (y|Ah, γ−1I). (3)

To show inner relationships of the parameters, we introduce
the graphical model for SBL, as shown in Fig. 2. The SBL
method considers α and γ as hyperparameters of the system,
h as hidden random variables. Here observed variable y is
controlled by hidden variable h and hyperparameter γ, and
the hidden variable h is controlled by hyperparameter α.

Based on the above assumptions, we calculate the posterior
distribution of the channel vector h, which is

p(h|y;α, γ) =
p(y|h; γ)p(h;α)∫
p(y|h; γ)p(h;α)dh

= CN (h|µ,Σ), (4)

with

hSBL = µ = γΣAHy
Σ = (γAHA+Λ)−1.

(5)
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The estimate of channel vector h is the posterior mean
value, our problem therefore becomes to updating the hy-
perparameters α and γ. The EM and variational expectation
maximization (V-EM) algorithms are iterative optimization
strategies for maximum likelihood estimation, which are ap-
plicable for addressing statistic problems [8]. Each iteration
of the calculation methods is divided into two steps: the
expectation step and the maximization step. Here we use
the EM strategy. EM treats the channel vector h as hidden
variable, and maximizes the evidence lower bound (ELBO)
of posterior probability. Due to the space limit, we give the
results directly:

αi
(t+1) = 1

µ2
i+Σii

γ(t+1) = M

∥y−Aµ(t)∥2
+tr[AΣ(t)AH ]

, (6)

where µi and Σii respectively stand for the ith entry of µ(t)

and the ith diagonal element of convariance matrix Σ(t). As
a whole, the SBL approach involves updating the mean and
covariance values of the channel vector h using (5) and (6)
until convergence, the detail steps are given in Algorithm 1.

Algorithm 1 Sparse Bayesian Learning
Input: y, A, N and M
1. Calculate the posterior distribution over h according to (5);
2. Update the hyperparameters according to (6);
3. Continue the iterations until

∥∥∥µ(t) − µ(t−1)
∥∥∥
2
≤ 10−6.

Output: h, α and γ

Using such a SBL method could be encourage sparsity and
more accurate than many other compressive sensing methods.
It’s worth mentioning that the Bayesian method obtains a
better recovery performance when the the sparsity of channel
is improved, and the Bayesian compressed sensing method is
an important issue worth studying.

IV. FI-SBL FOR CHANNEL ESTIMATION

SBL is one of the most popular methods in compressive
sensing, and has better recovery performance than many other
algorithms. Nevertheless, the main drawback is that we require
computing the inverse operation of N ×N covariance matrix
when updating the channel vector h. Then computational com-
plexity is O(MN2), which makes the SBL method difficult
to implement in practice. To address the issue, in this section,
we introduce an efficient algorithm called FI-SBL to reduce to
computational complexity [10]. In a nutshell, the method tries
to maximize a relaxed evidence lower bound (relaxed-ELBO),
then uses V-EM to update the corresponding parameters.

The assumptions for noise variance and the channel coef-
ficients prior are same as the SBL part. The graphical model
for FI-SBL is shown in Fig. 3. In detail, the FI-SBL method
considers y as the observed variable, h as the hidden ran-
dom variable, {α, γ} as the hyperparameters. The introduced
hierarchical graphic model shows that all the parameters are
statistically dependent.
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Fig. 3. The graphical model for FI-SBL.

Motivated by [8], we place Gamma distributions over α,
and the hyperpriors can be expressed as

p(α) =
N∏

n=1

Gamma(αn|a, b) =
N∏

n=1

Γ(a)
−1

baαa−1
n e−bαn ,

(7)

where Γ(a) =
∫∞
0

ta−1e−tdt is called Gamma function.
Furthermore, we assume that the prior of the noise follows
a Gamma function

p(γ; c, d) = Gamma(γ|c, d). (8)

Traditionally, in order to make the gamma prior without
information, we always assign very small values to the pa-
rameters, i.e., a = b = c = d = 10−6.

1. Relaxed-ELBO:
As we mentioned above, the method tries to maximize

relaxed-ELBO. Here the ELBO for this model can be ex-
pressed as

L(q) =

∫
q(Θ) ln

(
p(y,Θ)

q(Θ)

)
dΘ

=

∫
q(Θ) ln

(
p(y|h, γ)p(h|α)p(α)p(γ)

q(Θ)

)
dΘ, (9)

in which q(Θ) is a probability density function, and one lower
bound of p(y|h, γ) can be obtained by

p(y|h; γ) = CN (Ah, γ−1I)

= (2π)−MγM exp(−γ ∥y −Ah∥22)
≥ (2π)−MγM exp(−γg(h, z))
∆
= F (y,h, z, γ), (10)

where g(h, z) is defined as

g(h, z)
∆
= ∥y −Az∥22 + 2(h− z)HAH(Az− y)

+
T

2
∥h− z∥22 , (11)
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in which T is a constant. The relaxed operation in (10) is based
on an operation for smooth function [9], which is widely used
in fast first-order algorithm.

Based on (9) and (11), we have

L(q) ≥ L̃(q, z) =

∫
q(Θ) ln(

G(y,Θ, z)

q(Θ)
)dΘ, (12)

where G(y,Θ, z) is defined as

G(y,Θ, z)
∆
= F (y,h, z, γ)p(h|α)p(α)p(γ). (13)

Eventually, we get the relaxed-ELBO

L̃(q,Θ) =

∫
q(Θ) ln(

G(y,Θ, z)

q(Θ)
)dΘ

=

∫
q(Θ) ln(

G(y,Θ, z)h(z)

q(Θ)h(z)
)dΘ

=

∫
q(Θ) ln(

G(y,Θ, z)h(z)

q(Θ)
)dΘ− lnh(z), (14)

in which we define G̃(y,Θ, z)
∆
= G(y,Θ, z)h(z), and h(z)

is a normalizing term to ensure G̃(y,Θ, z) to be a rigorous
distribution.

2. Parameters updating:
In the following, we update the hidden variables Θ =

{h,α, γ} and z based on the V-EM method. Due to the space
limit, we give the results directly:
1) Update of q(h):

q(h) = CN (h|µ,Σ), (15)

with
hFI-SBL = µ = ⟨γ⟩Σ(AHAz−AHy − T

2 z)

Σ = (Λ+ T ⟨γ⟩
2 I)−1.

(16)

2) Update of q(α):

q(α) =

N∏
n=1

Gamma(αn; ã, b̃n), (17)

with
ã = a+ 1

b̃n = b+
⟨
b2n
⟩
.

(18)

3) Update of q(γ):

q(γ) = Gamma(γ; c̃, d̃), (19)

with
c̃ = c+N

d̃ = d+ ⟨g(h, z)⟩ . (20)

4) Update of z:

z = µ. (21)

In summary, the FI-SBL method involves updating the mean
and covariance values of the channel vector h using (15), (17),
(19) and (21) until convergence, the detail steps are given
in Algorithm 2. Referring to (16), we need to compute the
inverse operation of N ×N covariance matrix when updating
q(h). However, the covariance matrix is a diagonal matrix,
the proposed FI-SBL method does not need to calculate any
inverse operation, thus the computational complexity is largely
reduced.

Algorithm 2 Fast Inverse-free Sparse Bayesian Learning
Input: y, A, N and M

1. Calculate the posterior distribution over h according to (15);
2. Update the hyperparameter α according to (17);
3. Update the hyperparameter γ according to (19);
4. Update the hyperparameter z according to (21);
5. Continue the iterations until

∥∥∥µ(t) − µ(t−1)
∥∥∥
2
≤ 10−6.

Output: h, α, γ and z

V. SIMULATIONS

In this section, we verify the MUD performance of LS,
MMSE, OMP [11], BP [12], SBL, and FI-SBL for grant-free
NOMA systems with LA-CDMA. The computer simulation
uses BPSK constellations in MTC communications. We con-
sider flat fading channels. For FI-SBL, we set a = b = c =
d = 10−6 throughout our experiments. Once the normalize
square error value is smaller than 10−6, the iterative loop will
stop. The metric to evaluate the reconstruction ability is mean
square error (MSE), which is defined as

MSE =

∥∥∥h− ĥ
∥∥∥2
2

N
, (22)

where h and ĥ are the true and estimated channels, a is an
average value over 1000 Monte Carlo trials, and N is the
number of devices.

We evaluate the SNR versus the MSE of LS, MMSE,
OMP, BP, SBL, and FI-SBL. The CDMA spreading factor
and the number of devices are assigned to be M = 128 and
N = 100, respectively. We select different user activity factor
pa, pa = 0.1 and pa = 0.3, the results are depicted in Fig.
4. From Fig. 4, we find that the SBL and FI-SBL methods
outperform the LS, MMSE, OMP, and BP detectors. This is
because LS and MMSE do not utilize any sparsity property.
Due to the unknown sparsity, the greedy OMP algorithm
has some performance loss. The BP method converts the
optimization problem into minimal 1-norm, and we associate
the relaxed 1-norm problem with the help of CVX tool box
[13], which involves more effort. Meanwhile, it is noticed
that the SBL method has good performance. The reason is
that the SBL method exploits the prior information on the
Gaussian distributions of the channel vector and is well suited
for the condition when the activity factor is small. Fig. 4
depicts FI-SBL has the best recovery performance. Compared
with SBL, the FI-SBL strategy has a much faster rate of
convergence. The inverse of a matrix in SBL maybe inaccurate
when the condition number of this matrix is large, and FI-SBL
repalces the matrix inverse with relaxed-ELBO. Moreover, the
performance gain of SBL and FI-SBL against other algorithms
increases when SNR gets lower. This indicates that SBL and
FI-SBL have better robustness against noise.

Table I records the running time of different algorithms.
From the table, FI-SBL goes through much shorter running
time, compared with SBL. This is because that the relaxed-
ELBO involved by FI-SBL has much lower computational
complexity than the matrix inverse involved by SBL.

Fig. 5 illustrates the impact of the number of users N on
the MSE performance of LS, MMSE, OMP, BP, SBL, and
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Fig. 4. MSE verse SNR of different algorithms when (a) pa = 0.1; (b)
pa = 0.3.

TABLE I
RUNNING TIME OF DIFFERENT ALGORITHMS UNDER M = 128

AND N = 100 BASED ON 1000 MONTE CARLO AVERAGING

Algorithm runtime for pa = 0.1 (s) runtime for pa = 0.3 (s)
LS 0.5827 0.7008

MMSE 0.5108 0.5427
OMP 0.9771 1.0145
BP 77.9687 71.2468

SBL 264.9341 239.5753
FI-SBL 1.4215 1.2214

FI-SBL, with pa = 0.1, SNR = 20 dB and M = 128. From
the figure, we observe that SBL and FI-SBL outperform LS,
MMSE, OMP, and BP. Moreover, with the increase of device
number, the MSE of the SBL and FI-SBL algorithms are
relatively steady. This indicates that SBL and FI-SBL have
better robustness against the increase of device number.

VI. CONCLUSIONS

In this paper, we adopt LA-CDMA as the multiple access
technology in grant-free NOMA systems for massive MTC
communications, and develop two novel Bayesian inference
algorithms, i.e., SBL and FI-SBL, for joint active user detec-
tion and channel estimation based on CS theory. SBL improves
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Fig. 5. MSE verse device number N of different algorithms.

the robustness of MUD and CE by exploiting the sparse
prior information of the estimated channel vector. FI-SBL
significantly reduces the computational complexity of SBL by
replacing matrix reversion operations with relaxed evidence
lower bound. Simulation results have presented that these two
methods outperforms the classical strategies, and the FI-SBL
method has superiority in running time.
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