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Abstract—Cooperative driving at isolated intersections at-
tracted great interest and had been well discussed in recent years.
However, cooperative driving in multi-intersection road networks
remains to be further investigated, because many algorithms
for isolated intersection cannot be directly adopted for road
networks. In this paper, we propose a distributed strategy to ap-
propriately decompose the problem into small-scale sub-problems
that address vehicle cooperation within limited temporal-spatial
areas and meanwhile assure appropriate coordination between
adjacent areas by specially designed information exchange. Sim-
ulation results demonstrate the efficiency-complexity balanced
advantage of the proposed strategy under various traffic demand
settings.

Index Terms—Connected and Automated vehicles (CAVs),
cooperative driving, multi-intersection road networks, distributed
strategy.

I. INTRODUCTION

NEW potential technologies in vehicle systems have
shown outstanding performance in ensuring safety, im-

proving efficiency, and saving energy. Electric vehicle tech-
nology has great potential in reducing fuel consumption and
air pollution [1], [2]. The advanced sensing systems [3] and
algorithms [4] enhance the perception ability of smart vehicles
and lead to the birth of automated vehicles [5], [6], which can
effectively reduce collisions in transportation systems. Further,
with the aid of vehicle-to-everything (V2X) communication
technologies, automated vehicles evolve into connected and
automated vehicles (CAVs) [7], [8] and they can share the
driving states with adjacent vehicles, schedule the movements
of neighboring vehicles to move safely and efficiently, and
thus improve traffic safety and efficiency. Such techniques are
usually called cooperative driving and have received increasing
interest recently [9]–[17].
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Most existing studies about cooperative driving focus on
coordinating the vehicles within local small areas, which can
be regarded as area-wide cooperative driving. In these studies,
we usually emphasize how to schedule the movements of
vehicles that move in different directions within the conflict
area so that these vehicles can pass through the conflict area
efficiently without collisions [18]–[21]. As pointed out in
[9], [21], [22], the key problem of cooperative driving is to
determine the optimal sequence of vehicles passing through
the conflict area.

In this paper, we tackle the cooperative driving problem
from the view of road network which contains multiple conflict
areas, and thus it can be regarded as network-wide cooperative
driving. Although many useful algorithms had been proposed
to promote cooperative driving at isolated conflict areas [23]–
[25], there still exist challenges for cooperative driving in road
networks.

Different from the isolated conflict areas, each vehicle needs
to pass through multiple conflict areas in the road network and
thus it results in extremely complicated interactions between
vehicles. More seriously, as pointed out in [26], it may gen-
erate the causality cycles in the process of planning trajectory
for vehicles, where the planning results of the vehicles around
different conflict areas affect each other mutually so that
it leads to failures when each vehicle plans its ultimately
optimal trajectory [26]. In such case, a few studies directly
deal with all vehicles in the road network and formulate a
large-scale planning problem, where each conflict between ve-
hicles introduces a binary variable to mathematically describe
vehicle sequence at conflict areas [27], [28]. It leads to high
computational complexity and makes the centralized planning
problem intractable. This causes a possible shift in solving
network-wide cooperative driving problem from centralized
approach to decentralized or distributed approach to guarantee
computational efficiency.

In fact, the decentralized or distributed approaches have
already been discussed in area-wide cooperative driving prob-
lem. In [29] and [30], a decentralized framework was pro-
posed to implement energy-optimal trajectory planning for the
vehicles around a signal-free intersection. Xu et al. [31] pro-
vided a distributed cooperation strategy to resolve all conflicts
produced at unsignalized intersections. In [32], a hierarchical-
distributed coordination structure is established for intersec-
tions to improve traffic efficiency. In these strategies, each
vehicle is responsible for planning its own trajectory according
to the movements information of neighbouring vehicles, which
can realize on-line computation at isolated conflict areas.

Similar to the aforementioned strategies in area-wide co-
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operative driving, the latest studies have tried to utilize the
decentralized or distributed ideas in network-wide cooperative
driving problem, e.g., [33]–[35]. In these studies, the algo-
rithms for area-wide cooperative driving are independently
applied in each single conflict area of the road network,
while no coordination between adjacent conflict areas. It has
a poor performance in improving traffic efficiency especially
when the adjacent conflict areas are close to each other,
since the conflict areas affect each other mutually in a road
network. Thus, distributed or decentralized cooperative driving
in road networks still needs to be further studied with respects
to the reduction of computational complexity and also the
improvement of traffic efficiency.

It is worth emphasizing that the concepts of “distributed”
and “decentralized” are indistinguishable in area-wide coop-
erative driving problem in many studies. However, we prefer
to adopt “distributed” to describe the nature of network-wide
cooperative driving problem, because the road network needs
to be divided into different areas in spatial dimension and
there exists information exchange between adjacent areas in
network-wide cooperative driving.

Therefore, in this paper, we propose a distributed strat-
egy for network-wide cooperative driving. The key idea is
to decompose the original large-scale problem into several
small-scale sub-problems within limited temporal-spatial ar-
eas. Then, each vehicle is sequentially incorporated into dif-
ferent sub-problems along with time to realize the target of
passing the whole road network, so that the vehicles around
different conflict areas can be coordinated separately. Thus,
the proposed distributed strategy can eliminate the causality
cycles and then decrease the computational complexity.

In addition, we design an appropriate prediction-based coor-
dination strategy by utilizing the information of vehicles from
adjacent areas to assure cooperation between adjacent areas
and thus guarantee the traffic efficiency. It leads to the current
coordination results of each area better adapted to the future
traffic flows. Although the distributed strategy theoretically
leads to a local optimal solution, the proposed strategy shows
predominant advantages over the existing cooperative driving
strategy regarding both traffic efficiency and computational
complexity through comparison simulations under various
traffic demand settings. It demonstrates the promising perfor-
mance of the distributed strategy in network-wide cooperative
driving problem.

The proposed distributed strategy works well in road net-
works, and the mechanism behind its effectiveness can be
traced to the following reasons. In general, the vehicle has
the priority to pass through the conflict area when it is close
to the area, so that the vehicles around adjacent conflict areas
have a trivial influence on the trajectory planning for those
vehicles close to current conflict area. Therefore, the vehicles
close to the current conflict area can omit the influence of those
vehicles which do not pass through the upstream conflict areas,
i.e., the vehicles around different conflict areas can be tackled
separately. It leads to that the causality cycles are indirectly
eliminated. In our proposed strategy, besides the vehicles
around the conflict area, we also incorporate the information
of vehicles in the sections connecting adjacent conflict areas

1、（1）网几何特性，道路本身；区与区之间（RSU）；
（2）讲车，要点：多个冲突区域；（因果环）
2、冲突关系讲完之后讲决策变量，区域内部每个车辆的通过顺序；（结合图标出顺序、安全距离）
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Fig. 1. A typical road network with four intersections.

into each sub-problem to implement the prediction-based coor-
dination strategy, which assures the cooperation between areas
and then guarantees traffic efficiency of the whole network.

To better present our findings, the rest of this paper is orga-
nized as follows. Section II presents the typical road network
scenario and formulates the trajectory planning problem of
cooperative driving in road networks from the perspective of
operational research. Section III proposes a distributed strategy
to attack the problem of cooperative driving in road networks.
Then, we provide simulation results in Section IV. Finally,
conclusion and further works are presented in Section V.

II. PROBLEM PRESENTATION

In this section, we will present the typical road network
scenario and formulate the trajectory planning problem of
coordinating all vehicles in multi-intersection road networks.

A. Scenario and Notations

In this paper, we take a typical road network scenario with
four signal-free intersections as an illustration to explain our
method; see Fig. 1. Other road networks could be handled in a
similar way. The red area is the conflict area of the correspond-
ing intersection, where the vehicles from different directions
may collide. Each intersection is assigned with a road-side
unit (RSU) as the local controller to schedule vehicles within
its control range. In addition, the adjacent intersections can
exchange the traffic information with each other to realize the
cooperation between different conflict areas. We denote the set
of intersections index as I , I = {1, 2, 3, 4}.

Different from isolated intersections, each vehicle needs
to pass through multiple conflict areas in the road network.
Thus, the conflict relations between vehicles are more compli-
cated than that of isolated intersections. Besides the conflicts
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TABLE I
THE NOMENCLATURE LIST

Variables Notations
I The set of intersection index.

CAV(i,j) The jth vehicle of the intersection i.
vc The constant velocity of vehicles in the sections outside control range.

J(i,j) The delay of CAV(i,j) to pass through the whole road network.
Jk
(i,j)

The delay of CAV(i,j) to pass through intersection k.

tassign,(i,j),k The time assigned to CAV(i,j) to enter the conflict area of intersection k.
tmin,(i,j),k The minimal arrival time of CAV(i,j) to enter the conflict area of intersection k.

∆t,1 The minimal allowable safe gap used in the physical constraints.
∆t,2 The maximal allowable safe gap used in the collision avoidance constraints.

b(i,j),(i′,j′) The binary variable introduced in collision avoidance constraints.
M The positive and sufficiently large number.

vmax,amax The maximal velocity and acceleration of vehicles, respectively.
lc, lr The length of intersection legs and road segments after dividing the road network, respectively.
ω1, ω2 The weight variable used in the objective function of the sub-problems.
T The terminal time of the whole planning process.

∆T The time between two consecutive optimizations of time-driven rolling horizon optimization mechanism.
tp The time when the last optimization was triggered.

Sc,i, Sr,i The set of driving states of vehicles in intersection area i and on the road segments, respectively.

between vehicles at the same intersection, e.g., vehicle C
and D, there also exist the conflicts between the vehicles
at different intersections, which may generate the so called
causality cycles. For instance, vehicle A will conflict with B
at both conflict area 1 and conflict area 2. When planning the
trajectory of vehicle B at intersection 1, it has to consider the
trajectory of vehicle A at intersection 1. Then, the trajectory
planning of vehicle A at intersection 1 will lead to the planning
for the trajectory of vehicle A at intersection 2, which is
affected by the trajectory of vehicle B at intersection 2. Thus,
we can find that the trajectory planning process of vehicle A
and B will generate a causality cycle, as shown in Fig. 2. It
leads to extremely complicated interactions between vehicles
and makes the planning problem intractable.

1

4 3

2

A

B

C

D
E

F

RSU RSU

RSU RSU

Trajectory planning of 

vehicle B at intersection 1 

Trajectory planning of 

vehicle A at intersection 1 

Trajectory planning of 

vehicle A at intersection 2 

Trajectory planning of 

vehicle B at intersection 2 

affected by

affected by

affected by

affected by

sub-problem 4 sub-problem 3

sub-problem 1 sub-problem 2

𝑓1(𝑥1, 𝒙𝟐, 𝑥3 ) 𝑓2(𝑥4, 𝑥5, 𝑥6)

𝑓3(𝑥7, 𝑥8, 𝑥9)𝑓4(𝑥10, 𝑥11, 𝑥12)

sub-problem 4 sub-problem 3

sub-problem 1 sub-problem 2

sub-problem 4 sub-problem 3

sub-problem 1 sub-problem 2

𝑓1(𝑥1, 𝑥3 )

𝒙𝟐

𝒙𝟐

vehicle G

0 time𝛼 ∙ ∆𝑇 (𝛼 + 𝛽) ∙ ∆𝑇present

𝑓4(𝑥10, 𝑥11, 𝑥12)

𝑓1(𝑥1, 𝑥3 ) 𝑓2(𝑥4, 𝑥5, 𝑥6, 𝒙𝟐)

𝑓3(𝑥7, 𝑥8, 𝑥9)

𝑓2(𝑥4, 𝑥5, 𝑥6)

𝑓3(𝑥7, 𝑥8, 𝑥9, 𝒙𝟐)𝑓4(𝑥10, 𝑥11, 𝑥12)

Note: denotes that the planning objects are dynamically swapped between adjacent sub-problems along with time. “          ”
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Fig. 2. A diagram of causality cycles generation.

In addition, several reasonable assumptions about the stud-
ied scenario are added as follows: a) all vehicles are con-
nected and automated (CAVs); b) lane-change behavior is not
allowed; c) the vehicles in the sections outside the control
range move with a constant velocity vc, e.g., vehicle F. We
adopt CAV(i,j) to denote the jth vehicle of the intersection i.
Additionally, the main notations are shown in TABLE I.

B. Trajectory Planning Problem

In this sub-section, we will formulate the trajectory planning
problem to schedule the vehicles in road networks from the
perspective of operational research.
(1) Decision Variable

As discussed in [21], the trajectory planning in cooperative
driving can be divided into two steps to decrease the problem
complexity. Firstly, we need to optimize the sequence of
vehicles at each conflict area, and then it is easy to derive
the required trajectory in reverse according to the sequence
of vehicles [23], [34], [36]. Therefore, in this paper, we still
focus on the sequence optimization at each conflict area, which
can be realized through optimizing the arrival time to conflict
areas for vehicles. Thus, the arrival time assigned to vehicles
tassign,(i,j),k is adopted as the decision variable of the trajectory
planning problem, where tassign,(i,j),k denotes the arrival time
assigned to CAV(i,j) to enter conflict area k. As shown in Fig.
3(a), each vehicle will be assigned the arrival time to enter the
conflict areas on its route.

From the trajectory plot of vehicle A and B in Fig. 3(b),
we can find that a feasible vehicle sequence at each conflict
area can be obtained via assigning the arrival time to each
vehicle and then it derives the required trajectory in reverse
according to the assigned time to resolve all conflicts between
vehicles. Note that the causality cycle is eliminated as long as
the arrival time assigned to each vehicle is feasible. It needs to
impose many constraints of the trajectory planning problem,
which will be introduced later.
(2) Objective Function

According to the assigned arrival time of each vehicle, it is
easy to obtain the delay of vehicles at each intersection, i.e.,

Jk
(i,j) = tassign,(i,j),k − tmin,(i,j),k, (1)

where Jk
(i,j) denotes the delay of CAV(i,j) when passing

through intersection k, and tmin,(i,j),k denotes the minimal
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(b) A feasible temporal-spatial trajectory plot of vehicle A and B.
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Fig. 3. An illustration of resolving conflicts between vehicle A and B.

arrival time of CAV(i,j) to enter the conflict area of intersec-
tion k, which satisfies the vehicle dynamics constraints and
can be obtained [24].

To improve traffic efficiency, cooperative driving in road
networks aims to minimize the average delay of vehicles
passing through the road network. Since many studies have
discussed how to select appropriate driving routes for vehicles
in a road network [33], [37], the problem of route planning
is not addressed in this paper, i.e., we assume that the
driving routes of vehicles are pre-determined. Thus, the delay
of vehicle passing through the whole road network is the
accumulated delay produced at different sections on its route,
and we can get

J(i,j) =

K∑
k=1

Jk
(i,j), (2)

where J(i,j) denotes the delay of CAV(i,j) to pass through the
road network, and K denotes the number of intersections on
the route of CAV(i,j).

Therefore, the objective function of cooperative driving in
road networks can be formulated as

min
tassign,(i,j),k

∑P
i=1

∑Q
j=1 J(i,j)

N
, (3)

where P and Q denote the number of intersections in the road
network and the number of vehicles around the corresponding
intersection, respectively. N denotes the total number of
vehicles in the road network.

(3) Constraints
There are mainly three kinds of constraints of the trajec-

tory planning problem including vehicle dynamics constraints,
physical constraints and collision avoidance constraints. For
each vehicle, these three kinds of constraints exist at all
conflict areas on its route of passing through the road network
and need to be resolved at once.
1) Vehicle Dynamics Constraints

To avoid unrealistic arrival time assigned to vehicles, the
assigned arrival time to enter each conflict area satisfies vehicle
dynamics, i.e.,

tassign,(i,j),k ≥ tmin,(i,j),k. (4)

2) Physical Constraints
To avoid the rear-end collision, the consecutive vehicles

moving on the same lane hold the physical constraints, i.e.,

tassign,(i,j),k − tassign,(i′,j′),k ≥ ∆t,1, (5)

where ∆t,1 is the minimal safe gap for avoiding rear-end
collision, and CAV(i,j) is physically ahead of CAV(i′,j′), such
as vehicle E and F in Fig. 1.
3) Collision Avoidance Constraints

To resolve the conflicts between vehicles from different
directions, the vehicles should pass through the conflict area
sequentially. Thus, the collision avoidance constraints are
imposed by introducing the binary variables, i.e.,

tassign,(i,j),k − tassign,(i′,j′),k +M · b(i,j),(i′,j′) ≥ ∆t,2, (6)

tassign,(i′,j′),k−tassign,(i,j),k+M ·
(
1− b(i,j),(i′,j′)

)
≥ ∆t,2, (7)

where CAV(i,j) and CAV(i′,j′) are two vehicles from different
directions and will meet at intersection k, such as vehicle C
and D in Fig. 1, or vehicle A and B in Fig. 3(a). ∆t,2 is the
minimal safe gap for avoiding collision between vehicles from
different directions, as shown in Fig. 3(b). In addition, M is a
positive and sufficiently large number and b(i,j),(i′,j′) ∈ {0, 1}.
Obviously, b(i,j),(i′,j′) = 1 means that CAV(i,j) can enter the
conflict area earlier than CAV(i′,j′).

Based on the above descriptions, the problem of sequence
optimization in road networks can be mathematically formu-
lated as a mixed-integer programming (MIP) problem, i.e.,

min
tassign,(i,j),k,b(i,j),(i′,j′)

∑P
i=1

∑Q
j=1 J(i,j)

N
, (8)

s.t. (4)(5)(6)(7).
Note that each conflict at conflict areas yields a binary

variable, which contains both the conflicts between vehicles
at the same intersection and the conflicts between vehicles
at different intersections illustrated in Section II-A. Compared
with cooperative driving at isolated intersections, there exist
more conflicts in road networks, which makes the size of
solution space soar drastically, especially when there is a large
number of vehicles and intersections in the road networks.
Thus, attaining a good solution in such huge searching space
is an exceedingly time-consuming process by solving problem
(8) or directly adopting the existing algorithms proposed for
isolated intersections, which makes problem (8) intractable.
To this end, it is necessary to propose a novel strategy to deal
with the large-scale planning problem.
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Fig. 4. An illustration of problem decomposition using the proposed sequential decomposition strategy (α, β > 0).

III. DISTRIBUTED COOPERATIVE DRIVING DESIGN

In this section, we introduce a distributed cooperative driv-
ing strategy for road networks, which can decrease computa-
tional complexity and also guarantee traffic efficiency.

In problem (8), each vehicle needs to plan the trajectory of
passing through the whole road network in one-time planning
procedure, which leads to strong coupling between adjacent
areas. In fact, the vehicles around other conflict areas have a
trivial influence on the trajectory planning for those vehicles
close to current conflict area. Thus, the idea of “sequen-
tial decomposition” can be proposed to tackle the problem
concerning computational burden. Specifically, we divide the
road network into different areas in the spatial dimension,
and then each vehicle will sequentially move into different
areas on its route and plan the trajectory of the corresponding
areas along with time, so that the vehicles within different
areas can be coordinated separately. Therefore, the constraints
of problem (8) between adjacent conflict areas are relaxed
and the causality cycles are eliminated through sequential
decomposition.

Inspired by the above ideas, we propose a distributed
strategy to decompose problem (8) into several sub-problems
within limited temporal-spatial areas. Specifically, each in-
tersection leads to a sub-problem to schedule the vehicles
within its control range. At the same time, a prediction-based
coordination strategy is integrated into each sub-problem to
guarantee the traffic efficiency, where the driving states of
vehicles outside the control range are incorporated into the
sub-problems to plan trajectories together with the vehicles
within the control range, so that the current coordination
results of each intersection can better adapt to the future traffic
flow. Meanwhile, the optimal trajectories are reserved for the
vehicles outside the control range, and then those vehicles can
immediately drive with the optimal trajectories once arriving

in the control range of the corresponding intersection without
waiting for the next planning procedure, which can further
utilize the temporal-spatial resources of traffic systems and
then guarantee the traffic efficiency. As for the distributed
strategy, we design that the trajectory planning procedure is
triggered at a regular time interval ∆T in the continuous traffic
process, which can be regarded as time-driven rolling horizon
optimization mechanism [23], [25].

The rest of Section-III is organized as follows. In Section-
III-A, we propose a sequential decomposition strategy to im-
plement problem decomposition. Section-III-B mathematically
formulates each sub-problem, and Section-III-C introduces the
solving algorithm to search a good solution of each sub-
problem. Finally, we give a brief discussion on the scalability
of the proposed distributed strategy in Section-III-D.

A. Problem Decomposition

In this sub-section, a sequential decomposition strategy is
proposed to decompose problem (8) into several small-scale
sub-problems, and then we define the coverage areas of each
sub-problem through road network division.

(1) Sequential Decomposition Strategy
To relax the constraints between adjacent conflict areas

of problem (8), we propose a sequential decomposition
strategy to decompose problem (8) into several small-scale
sub-problems. Through the cooperation among these sub-
problems, it is computationally efficient to realize cooperative
driving in road networks. As shown in Fig. 4, we give an
illustration to present the sequential decomposition strategy
from the perspective of operational research.

We use fi(·) to denote the decomposed sub-problem i.
xi denotes the planning object i of sub-problems, and the
planning objects refer to the vehicles in the road network. The
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sequential decomposition strategy is summarized as following
two aspects.

In the spatial dimension, instead of dealing with all planning
objects in problem (8), we divide the road network into
different areas and each area leads to a sub-problem, so that
the planning objects are assigned to different sub-problems.
Thus, each sub-problem is a small-scale planning problem and
these sub-problems can work synchronously to respectively
deal with a limited number of planning objects.

In the temporal dimension, the planning objects are swapped
among these sub-problems sequentially along with time, be-
cause each vehicle needs to pass through multiple conflict
areas in the road network. Thus, for each planning object, the
optimization target is sequentially realized in different small-
scale sub-problems rather than in one-time planning procedure
as in problem (8).

For instance, as shown in Fig. 1, vehicle B needs to pass
through three conflict areas in the road network. Thus, vehicle
B is sequentially incorporated into three sub-problems in the
distributed strategy, i.e., sub-problem 1, 2 and 3. As shown
in Fig. 4, we use the planning object x2 to denote vehicle
B. Firstly, x2 is optimized by sub-problem 1, and then sub-
problem 2 is responsible for its optimization target when
vehicle B moves into the coverage area of sub-problem 2. Fi-
nally, the planning object x2 is incorporated into sub-problem
3 with time going on. Thus, the task of vehicle B passing
through the whole road network is completed sequentially by
the cooperation among these sub-problems.

Trajectory planning of 

vehicle B at intersection 1 

Trajectory planning of 

vehicle A at intersection 1 

Trajectory planning of 

vehicle A at intersection 2 

Trajectory planning of 

vehicle B at intersection 2 

separate 

planning

separate 
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sequential
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×

× ×

×

Fig. 5. A diagram of causality cycles elimination.

Based on the sequential decomposition strategy, the causal-
ity cycles are eliminated, because the vehicles around different
conflict areas are separately coordinated in different sub-
problems and the trajectory of each vehicle passing through
the whole road network is sequentially planned in different
sub-problems. As discussed in Section II-A, vehicle A and
B in Fig.1 may generate the so called causality cycle when
implementing trajectory planning. In the proposed distributed
strategy, when planning the trajectory of vehicle B at inter-
section 1, the trajectory of vehicle A at intersection 1 does
not need to be considered. Similarly, the trajectory planning
of vehicle B at intersection 2 does not affect the planning
for the trajectory of vehicle A at intersection 2. In addition,
the trajectory planning of vehicle A at intersection 1 and
intersection 2 will be sequentially realized in different sub-
problems with time going on, so does vehicle B. Thus,
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Fig. 6. An illustration of defining the coverage areas of each sub-problem
through road network division.

the causality cycle between vehicle A and B is completely
eliminated, as shown in Fig. 5.

(2) Coverage Areas of Each Sub-Problem
In this sub-section, we propose an appropriate rule to divide

the road network into different areas to define the coverage
areas of each sub-problem.

The key idea of dividing road networks is that the vehicles
around different conflict areas are coordinated in different sub-
problems to eliminate the causality cycles and decentralize
the computational burden. Thus, the first step is to extract all
conflict areas in the road network. Then, we define two kinds
of basic areas covered by each sub-problem, consisting of an
intersection area and the road segments. As shown in Fig. 6,
the intersection area includes a single conflict area and the
areas close to the corresponding conflict area, and the road
segment is the area away from the conflict area, but connects
the adjacent intersection areas.

The range of the intersection area lc is determined by
the limited reliable communication range of vehicle-to-
infrastructure communication technologies (V2I), which is
similar to that of an isolated intersection in previous studies
[23], [25]. Thus, the vehicle cooperation in each intersection
area can be well resolved with the existing computationally
efficient strategies proposed for isolated intersection.

The range of road segments that needs to be considered
into each sub-problem is related to the computational re-
sources, because the computational complexity increases with
the incorporation of vehicles on road segments. In the case
of sufficient computational resources, the range of the road
segments should be considered as large as possible, so that
each sub-problem can obtain as much information of vehicles
on road segments as possible to implement prediction-based
strategy to maximize traffic efficiency. In addition, in the
prediction-based strategy, the intersection area must reserve
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the trajectory for those vehicles on road segments before they
arrive in intersection area. Therefore, there is a minimal length
of road segments considered into the sub-problems, i.e.,

lr ≥ vc ·∆T , (9)

where lr denotes the length of road segments that is considered
into the sub-problem, as shown in Fig. 6. It ensures that the
vehicles on the road segments have been incorporated into the
corresponding sub-problem at least once in the time-driven
rolling horizon optimization mechanism before they arrive in
the intersection area.

B. Sub-Problem Formulation

In this sub-section, following the formulation procedures of
problem (8) described in Section II-B, we can mathematically
formulate each sub-problem.
(1) Decision Variable

Similar to problem (8), the decomposed sub-problems also
aim to optimize the vehicle sequence of passing through the
conflict areas. Thus, the decision variable of each sub-problem
tassign,(i,j),k is also the arrival time assigned to the vehicles
within its responsibility to enter the conflict area.
(2) Objective Function

Different from problem (8), each sub-problem only needs
to optimize the vehicle sequence at one conflict area and then
obtain a limited temporal-spatial trajectory for each vehicle to
pass through the corresponding intersection area. Thus, the
objective of each sub-problem is to minimize the average
delay of vehicles of passing through current intersection area.
In addition, the driving states of the vehicles on the road
segments are incorporated into each sub-problem to implement
prediction-based coordination to guarantee traffic efficiency.
Therefore, the objective function of sub-problem k can be
formulated as a weighted sum expression, i.e.,

min
tassign,(i,j),k

∑Q1

j=1 ω1 · Jk
(i,j) +

∑Q2

j=Q1+1 ω2 · Jk
(i,j)

Q1 +Q2
, (10)

where Q1 and Q2 denote the number of vehicles in the
intersection area k and on the corresponding road segments,
respectively. Generally, the vehicles close to the conflict areas
are more likely to rank higher in the sequence than those away
from the conflict area. Thus, the delays of vehicles in the
intersection area and on the road segments are assigned with
different weights, i.e., ω1 and ω2, which instructs the process
of searching an appropriate vehicle sequence.

According to (10), it can be found that each sub-problem
only needs to deal with limited number of vehicles and plan
the trajectory of passing one intersection for each vehicle.
Thus, compared with problem (8), there exists less number
of decision variables in each sub-problem.
(3) Constraints

The constraints of each sub-problem still include three
types, i.e., vehicle dynamics constraints, physical constraints
and collision avoidance constraints, as shown in (4)-(7). For
each vehicle, these three kinds of constraints only exist at
current conflict area, while the conflicts produced at other

conflict areas are not considered in current sub-problem. Thus,
compared to problem (8), the sub-problem is a small-scale
MIP problem, i.e.,

min
tassign,(i,j),k,b(i,j),(i′,j′)

∑Q1

j=1 ω1 · Jk
(i,j) +

∑Q2

j=Q1+1 ω2 · Jk
(i,j)

Q1 +Q2
,

(11)
s.t. (4)(5)(6)(7).

In the above three kinds of constraints, the collision avoid-
ance constraint is the main factor affecting the computational
complexity, since the binary variables are introduced in the
collision avoidance constraints. In problem (8), not only the
vehicles around the same conflict area will produce binary
variables, but also the vehicles around different conflict areas.
However, in problem (11), the collision avoidance constraints
of vehicles around different conflict areas are eliminated and
thus the number of the binary variables in problem (11) is
extremely less than that in problem (8). A more detailed
explanation of the reduction in computational complexity is
as follows.

We use n1 to denote the total number of the conflicts
between vehicles around the same intersections in the road
network, e.g., vehicle C and D in Fig. 1. n2 denotes the
total number of the conflicts between vehicles around different
intersections, e.g., vehicle A and B in Fig. 1. For instance, as
shown in Fig. 1, n1 = 1 and n2 = 2.

In the road network scenario, each vehicle needs to pass
through multiple conflict areas and then produces the conflicts
with the vehicles around those conflict areas. Thus, n2 > n1
is usually holds especially when there are many conflict areas
in the road network.

Each conflict introduces a binary variable to formulate the
collision avoidance constraint, and all of the above collision
avoidance constraints are resolved at once in problem (8).
Thus, the size of solution space of problem (8) can be
abstracted as

s = 2n1+n2 , (12)

where s denotes the size of solution space of problem (8).
As for sub-problem (11), the conflicts between vehicles

around different conflict areas are not taken into account.
Thus, the size of solution space of each sub-problem can be
approximately abstracted as

s′ = 2n1/P , (13)

where s′ denotes the size of solution space of each sub-
problem, and P denotes the number of conflict areas in the
road network.

It can be noticed that s′ is significantly smaller than s espe-
cially when there are many conflict areas and vehicles in the
studied road network. Therefore, the computational complexity
of sub-problem (11) is extremely decreased compared with
that of problem (8).

C. Sub-Problem Solving Algorithm
In this sub-section, we introduce a modified Monte Carlo

tree search (MCTS) to search a good solution of each sub-
problem efficiently, and then we give a complete workflow of
each sub-problem in the distributed strategy.
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Directly solving the sub-problems is still a time-consuming
process, even if the size of solution space is significantly
smaller than problem (8). As pointed out in [25], [38], the
MCTS method has shown potentials to approach an approxi-
mately optimal solution at isolated intersections within limited
budgets. In this paper, we modify and extend this promising
tree search method to solve problem (11), where the vehicles
around the intersection area and on the upstream road seg-
ments are assigned with different priorities rather than being
treated equally. Specifically, in the search process of MCTS,
each node is assigned with a score to evaluate its potential
in approaching the optimal solution. The score of each node
is defined as the average delay for all vehicles contained in
the corresponding node [25]. To instruct the search process,
the derivation of score is modified with the objective function
of problem (11) to improve the search performance within a
limited computational budget, i.e.,

S =

∑Q1

j=1 ω1 · Jk
(i,j) +

∑Q′
2

j=Q′
1+1 ω2J

k
(i,j)

Q′
1 +Q′

2

, (14)

where Q′
1 and Q′

2 respectively denote the number of vehicles
in the intersection area k and on the road segments in the
corresponding node. More details about MCTS method in
searching a good vehicle sequence can refer to [25], [38].

After solving all sub-problems synchronously, we can ob-
tain the arrival time assigned for the vehicles both in each
intersection area and also the vehicles on the road segments
to enter the corresponding conflict area, and then it is easy
to derive the required trajectory in reverse according to the
assigned time [23], [33]. As for vehicles in each intersection
area, they will follow the planned trajectories, which can
better adapt to the future traffic flow with employing of the
driving states of vehicles on the road segments to safely and
efficiently pass through the corresponding conflict area. As for
vehicles on the upstream road segments, the intersection area
reserves the assigned arrival time for those vehicles instead of
planning the trajectory to save computational resources. Then,
the trajectory of those vehicles will be re-planed according to
the reserved assigned time once arriving in the intersection
area without waiting for the next planning results, which can
further improve traffic efficiency.

The workflow of sub-problem i is summarized in Fig. 7,
where t is the system time and T denotes the time when
the whole planning process will be terminated. The planning
procedure is triggered at regular time ∆T in the time-driven
rolling horizon optimization mechanism, and tp denotes the
time when the last optimization was triggered. Sc,i denotes
the set of driving states (location, velocity and acceleration)
of vehicles in intersection area i, and Sr,i is the set of driving
states of vehicles on the corresponding road segments. In
addition, tassign,IA,i and tassign,RS,i denote the time assigned
to the vehicles in intersection area and on road segments after
solving sub-problem i, respectively.

D. Scalability Discussion

The proposed strategy can work well in a multi-intersection
road network, because of the following reasons. Generally, the
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Fig. 7. An illustration of the workflow of sub-problem i.

intersections in the road network are not very close to each
other in space so that the vehicles around other conflict areas
have a trivial influence on planning trajectory for the vehicles
close to current conflict area. Intuitively, traffic management
and control in a road-network scenario is a distributed problem
in nature. Therefore, the coordination of vehicles around the
current conflict area does not need to consider the vehicles
that are far away from the current conflict area or even do not
passed through the upstream conflict areas. It is entirely in time
to consider the upstream vehicles when they pass through the
upstream conflict area and move to the current conflict areas,
and that is what the prediction-based coordination strategy
does in the distributed strategy.

As for the scenarios where the adjacent conflict areas are
within the reliable communication range of one control unit
[28], the proposed strategy can also deal with the trajectory
planning problem. In such case, as shown in Fig. 8, the two
close conflict areas need to be considered in combination, and
the road segments between two adjacent conflict areas can also
be regarded as a part of the combined conflict area so that the
methods promoted for single intersection can be applied in
such new topology, as there is no difference in nature of the
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41 32
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Fig. 8. Combining two close conflict areas as a large conflict area.

methods to resolve the conflicts even if there exists a slightly
more complex conflict relation of vehicles in the combined
conflict area than that in an isolated conflict area.

IV. SIMULATION RESULTS

Three simulations are designed in this section. The first
simulation evaluates the optimality and performance of the
proposed strategy under a simple but common road network.
The second simulation verifies the scalability of the proposed
strategy in a large-scale and randomized road network under
various settings. The third simulation addresses sensitivity
analysis with respect to the key factors including road network
geometry and parameter settings.

A. Simulation Settings

In following simulations, similar to [23], [39], we adopt the
method introduced in [35] to obtain the required trajectory
in reverse according to the assigned arrival time of each
vehicle in the continuous traffic process. We assume that the
vehicles arrive in a Poisson Process at each input lane and
the average arrival rate is varied to test the performance of
the proposed strategy under different traffic demands. Ac-
cording to [24], [39], the minimal safe gaps ∆t,1 and ∆t,2

to avoid the collisions at conflict areas are set as 1.5s and
2s, respectively. In addition, the vehicle dynamics parameters
amax, amin, vmax, vmin and vc are set as 3m/s2, −5m/s2,
15m/s, 0m/s and 10m/s respectively. As suggested in [25],
the maximal searching time of the MCTS method utilized in
the distributed strategy is set as 0.1s, which guarantees the
on-line computation in the practical applications.

All simulations are carried out on MATLAB R2018a and
Visual Studio platform in a personal computer with an i7 CPU
and a 16 GB RAM.

B. Performance Analysis under Simple Road Network

Considering that it is difficult to obtain the globally optimal
solution in a large-scale road network, in this subsection, we
first analyze the optimality of the proposed strategy under a
simple road network shown in Fig. 9(a), and then preliminarily
evaluate its coordination performance in terms of improving
traffic efficiency under a representative road network shown
in Fig. 9(b). The distance between adjacent conflict areas
is designed as 400m, and lr and lc are set as 100m and
200m respectively. The time interval between two successive
planning procedures ∆T is set as 2s.

4 3

1 2

1 2

(a) (b)

Fig. 9. The simple but representative road networks used in Section IV-B.

1) Optimality Analysis: we compare the solution obtained
by the proposed distributed strategy with the globally optimal
solution obtained by directly solving the MILP problem (8)
using CVX software with Mosek solver, where the modified
branch and bound algorithm is used to handle the binary
variables. We call the strategy that can get the globally optimal
solution as the optimal strategy. In addition, similar to [23]–
[25], the typical first-in-first-out (FIFO) strategy is also utilized
for comparison. Two performance metrics are used in this
simulation, i.e., average delay of vehicles passing through the
whole road network calculated by (3) and average computation
time used to get the vehicle sequence. We simulate 10 minutes
continuous traffic process for each arrival rate setting. The
simulation results are presented in TABLE II.

TABLE II
SIMULATION RESULTS OF OPTIMALITY ANALYSIS.

Arrival Rate Cooperative Driving Total Computation
(veh/h) Strategies Delaya (s) Time (s)

1200
FIFO Strategy 1.9722 0.0024

Optimal Strategy 1.3406 0.4518
Distributed Strategy 1.7331 0.1

2400
FIFO Strategy 24.7314 0.0022

Optimal Strategy 2.8081 1.0066
Distributed Strategy 3.1039 0.1

3600
FIFO Strategy 65.4656 0.0045

Optimal Strategy 5.4663 75.3943
Distributed Strategy 5.7381 0.1

aAverage delay of vehicles passing through the whole road network.

The simulation results indicate that the average delay of the
proposed distributed strategy is nearly equal to the globally op-
timal value obtained by the optimal strategy and significantly
decreased compared to the typical FIFO strategy. In addition,
the average computation time of the distributed strategy is
close to that of FIFO strategy, while the computation time of
the optimal strategy grows dramatically with the increasing
number of vehicles incorporated in the planning procedure.
Consequently, we can conclude that the proposed distributed
strategy can keep a good trade-off between traffic efficiency
and computational complexity in a road network scenario.

2) Performance Evaluation: we implement the comparison
simulations under a grid of intersections to preliminarily eval-
uate the coordination performance of the proposed strategy.
Note that it is extremely difficult to obtain the globally optimal
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TABLE III
COMPARISON RESULTS OF DIFFERENT STRATEGIES UNDER THE ROAD NETWORK CONSISTING OF FOUR INTERSECTIONS.

Arrival Rate Cooperative Driving Total Delay (s)
Average Speed Delay 1a (s) Delay 2b (s) Delay 3c (s) Delay 4d (s)

(veh/h) Strategies (m/s)

1200
FIFO Strategy 1.8636 12.8034 0.9111 0.7454 0.5946 1.3006

Distributed Strategy 0.9119 13.1093 0.5785 0.4859 0.3906 0.4095

2400
FIFO Strategy 2.2289 12.6885 1.0578 1.0695 1.0789 1.2487

Distributed Strategy 1.3356 12.9729 0.6375 0.6362 0.6825 0.7151

4800
FIFO Strategy 24.7228 8.5098 11.9398 10.5659 12.2515 11.3652

Distributed Strategy 3.0898 12.4495 2.0031 1.5472 1.2535 1.3229
aAverage delay of vehicles at intersection 1. bAverage delay of vehicles at intersection 2.
cAverage delay of vehicles at intersection 3. dAverage delay of vehicles at intersection 4.

solution in a large-scale road network scenario, so the optimal
strategy is not adopted in this comparison simulation. Three
kinds of performance metrics are used in this simulation, i.e.,
average delay of vehicles passing through the whole road
network, average delay of vehicles at each intersection and
average speed of passing through the whole road network. We
simulate 10 minutes continuous traffic process for each arrival
rate setting. The simulation results are shown in TABLE III.

The simulation results indicate that the proposed distributed
strategy outperforms the FIFO strategy in terms of all per-
formance metrics, and the advantage increases with the in-
crease of vehicle arrival rate. It demonstrates the promising
performance of the proposed strategy in terms of improving
traffic efficiency. It is worth emphasizing that, in addition
to the advantages in terms of the average delay of passing
through the whole road network, the proposed strategy also
works better than the FIFO strategy in terms of the average
delay at every single intersection and the average speed, which
validates that the proposed strategy can effectively alleviate
traffic congestions at every single intersection in the road
network and achieve traffic balance.

C. Scalability Verification under Complex Road network

In Section IV-B, we have preliminarily evaluated the promis-
ing performance of the proposed strategy under a simple
but common road network with two or four intersections.
In this subsection, we will further discuss the scalability
of the distributed strategy in a large-scale and randomized
road network that consists of many multi-lane intersections at
different places and with random distances from each other.

As mentioned, the vehicles far away from the current
conflict area have a trivial influence on planning trajectory
for the vehicles close to the current conflict area. Therefore,
in the proposed distributed strategy, each intersection needs to
cooperate with its adjacent intersections and ignore other un-
connected intersections in the road network to keep a good bal-
ance between computational complexity and traffic efficiency.
In this simulation, the scalability of the proposed strategy is
verified via evaluating the coordination performance at a rep-
resentative intersection which has four adjacent intersections,
as shown in Fig. 10, where li, i ∈ {1, 2, 3, 4}, denotes the
distance between intersection 1 and its adjacent intersections
respectively. It is a complex road network that consists of five
intersections and with random distances from each other. Each

intersection is designed as a multi-lane scenario. Importantly,
the designed road network is a basic and representative node
when implementing distributed cooperative driving in a large-
scale road network consisting of many complex intersections,
i.e., the performance of the proposed strategy in a large-scale
road network can be reflected by that in this designed scenario.
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Fig. 10. A basic and representative node of the large-scale road networks.

In this simulation, we design a randomized network in
a rather general scenario where the intersections are with
random distance from each other, i.e., l1 = 250m, l2 = 300m,
l3 = 350m, l4 = 400m. Instead of a single-lane scenario,
each intersection is with eight input lanes. The arrival rates
of vehicles entering the road network are designed as 2400,
4800, 7200, and 9600 veh/h to further evaluate the scala-
bility especially when there is a larger vehicle density in the
road network. We set lc of each intersection as 200m, and
lr on each leg of the corresponding intersection is set as
(li − lc), where i ∈ {1, 2, 3, 4}. The time interval between
two successive planning procedures ∆T is set as 2s. There are
three kinds of performance metrics selected in the simulations,
i.e., average delay at intersection 1, average delay of vehicles
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passing through the whole road network, and average speed
of vehicles passing through the whole road network.

In the rest of this subsection, we first incorporate various
state-of-the-art strategies promoted for isolated intersection
into the proposed distributed mechanism to determine which
performs better in a multi-intersection road network. Then,
various settings are tested to validate the performance of
the prediction-based coordination strategy designed in the
distributed mechanism to reflect the advantages of assuring
cooperation between adjacent areas.

1) Comprehensive Evaluations on Different Strategies with
the Proposed Distributed Mechanism: the FIFO strategy,
dynamic resequencing (DR) strategy [36], and Monte Carlo
tree search (MCTS) strategy [25], [38] are the state-of-the-
art strategies promoted for planning vehicle sequence at an
isolated intersection. In the proposed distributed strategy (DS),
we adopted MCTS as the coordination algorithm to solve
each sub-problem. In this simulation, FIFO and DR are also
incorporated into the proposed distributed mechanism as the
methods to solve each sub-problem and compared with DS.
The results under various traffic demand settings are shown in
TABLE IV.

TABLE IV
COMPARISON RESULTS OF DIFFERENT STRATEGIES IN ROAD NETWORKS.

Arrival Rate
(veh/h)

Strategies
Delay 1a

(s)
Total delayb

(s)
Average

speed (m/s)

2400
FIFO 3.7083 9.3018 11.4111
DR 1.4401 3.8009 12.1099
DS 1.1382 3.6625 12.1913

4800
FIFO 8.1906 25.7099 9.5021
DR 3.1599 8.5948 11.5071
DS 1.7641 6.6179 11.7431

7200
FIFO 22.4209 48.8589 8.3771
DR 4.0319 12.2744 10.9886
DS 2.5104 9.9962 11.2685

9600
FIFO 33.5967 67.8842 6.7781
DR 7.0261 21.1602 9.9586
DS 5.4461 17.9007 10.3111

aAverage delay of vehicles at intersection 1.
bAverage delay of vehicles passing through the whole road network.

Based on the simulation results, we can find that incorporat-
ing MCTS into the distributed mechanism (i.e., DS) has better
performance than the comparison strategies under various
traffic demand settings in terms of average delay at intersection
1, average total delay, and average speed. It worth being
noticed that the advantages of DS become more significant
with the increase of vehicle density. It indicates that MCTS
outperforms the candidate strategies for coordinating the ve-
hicles around every single conflict area when implementing
distributed cooperative driving and we can see that DS can
also work well in a large-scale and randomized road network
even with a large vehicle density.

2) Comprehensive Evaluations on the Proposed Prediction-
Based Strategy Designed in Distributed Mechanism: in this
simulation, the pure decentralized strategy (PDS), which
schedules the vehicles around different conflict areas inde-
pendently while no coordination between adjacent conflict

areas, is adopted in the comparison simulations to verify the
performance of the prediction-based strategy designed in DS.
To guarantee fairness, the MCTS is also introduced into PDS
with the same settings to independently schedule the vehicles
within the control range of each individual intersection. The
simulation results under various traffic demand settings are
shown in TABLE V.

TABLE V
SIMULATION RESULTS FOR EVALUATING PREDICTION-BASED STRATEGY.

Arrival Rate
(veh/h)

Strategies
Delay 1

(s)
Total delay

(s)
Average

speed (m/s)

2400
PDS 1.7167 4.8766 11.9905
DS 1.1382 3.6625 12.1913

4800
PDS 2.4106 7.8566 11.5483
DS 1.7641 6.6179 11.7431

7200
PDS 3.3085 11.9501 11.0063
DS 2.5104 9.9962 11.2685

9600
PDS 6.0441 18.7891 10.1845
DS 5.4461 17.9007 10.3111

According to the simulation results, the DS which utilizes
the information of vehicles outside the control range to im-
plement predictive coordination has distinctively better perfor-
mance than PDS in terms of average delay at intersection 1,
average total delay, and also average speed. It demonstrates the
advantages of assuring cooperation between adjacent areas in
network-wide cooperative driving and further verifies that DS
can keep a good balance between computational complexity
and traffic efficiency in complex road networks.

D. Sensitivity Analysis

In Section IV-C, it preliminarily indicates that DS has
the potential to generalize to various road networks. In this
subsection, we focus on sensitivity analysis to discuss how
the coordination performance varies with respect to some
key factors including road network geometry and parameter
settings of DS.

The road network geometry directly determines how to
divide the road network when implementing distributed co-
operative driving. In this regard, the sensitivity analysis with
respect to road network geometry can be performed by that
with respect to the road network division. As shown in Fig. 6,
to implement the proposed distributed strategy, two critical
measures need to be determined in the division, i.e., the
range of intersection area lc and the range of road segment
area lr for each conflict area. Generally, lc can be directly
determined by the limited reliable communication range of
V2I. Therefore, we present the sensitivity analysis firstly with
respect to lr, which determines how much information outside
the control range is used for predictive planning. In addition,
in the proposed distributed mechanism, we adopt a time-driven
rolling horizon optimization mechanism to decompose the
large-scale planning problem in the temporal dimension, i.e.,
the planning procedure is triggered at a regular time interval
∆T . Thus, the time interval between consecutive planning
procedures ∆T is another key parameter in the distributed
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strategy, so that we also implement sensitivity analysis with
respect to this parameter.

In this simulation, Fig. 10 is selected as the simulation
scenario again. We set the distance between adjacent conflict
areas as l1 = l2 = l3 = l4 = 400m, and the length of the
intersection area is designed as lc = 200m. The arrival rate of
vehicles is 6000veh/h. DS is compared with PDS in terms of
the following two representative performance metrics: average
delay at intersection 1 and decreased rate η of average delay
at intersection 1, i.e.,

η =
JPDS − JDS

JPDS
× 100%, (15)

where JPDS and JDS denote the average delay at intersection
1 when using PDS and DS, respectively.

1) Sensitivity Analysis with Respect to lr: in this simu-
lation, the time interval between two consecutive planning
procedures is set as ∆T = 4s. The length of the road
segments lr is varied as 50m, 100m, 150m and 200m, and
the comparison results are shown in Fig. 11.
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Fig. 11. The reduction of average delay under different lengths of road
segments lr compared to pure decentralized strategy.

It can be observed that the longer the road segment con-
sidered into each sub-problem is, the more significant the
performance improvement of DS produces, as more infor-
mation of vehicles outside the control range is considered
in the corresponding sub-problem to implement predictive
coordination. The performance sensitivity with respect to lr
indicates that we should consider longer road segments as
much as possible when network geometry and computational
resources permit.

2) Sensitivity Analysis with Respect to ∆T : in this simu-
lation, the length of the road segment considered into each
sub-problem is set as lr = 200m. The time interval between
two consecutive planning procedures ∆T is varied as 2s, 4s,
6s and 8s, and the comparison results are shown in Fig. 12.

According to the simulation results, it can be found that
for the proposed DS, the average delay increases along with
the time interval between two consecutive planning procedures
∆T , as the trajectory of vehicles can be updated more timely
when ∆T is smaller. In addition, the larger the time interval
∆T is, the more significant the performance improvement of
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Fig. 12. The reduction of average delay under different time intervals between
consecutive planning procedures compared to pure decentralized strategy.

DS produces, as each sub-problem of DS can earlier utilize
the information of vehicles outside the control range. It should
be noted that, in practical applications, ∆T is usually not
very small to save computational resources and guarantee
the driving stability of vehicles. Therefore, according to the
performance sensitivity with respect to ∆T , we can find an
appropriate value of this parameter under jointly considering
the coordination performance, computational resources, and
driving stability of vehicles.

V. CONCLUSIONS

In this work, a distributed strategy is proposed to attack
the challenging problem of network-wide cooperative driving.
In the proposed strategy, the large-scale planning problem is
sequentially decomposed to reduce computational complex-
ity, and the prediction-based coordination between adjacent
areas is implemented to guarantee traffic efficiency. Multiple
simulations jointly demonstrate that the proposed strategy
can approach a sufficiently optimal solution within limited
computation time and is able to generalize to different road
networks under various traffic demand settings.

In future work, some interesting aspects are also worth being
further studied. For instance, pedestrians can be considered
in intersection management in urban road networks [40];
the scenarios where the human-driven vehicles coexist with
CAVs [41] and the scenarios in freeway systems can also be
discussed.
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