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Quasi-Distributed Antenna Selection for Spectral
Efficiency Maximization in Subarray Switching

XL-MIMO Systems
João Henrique Inacio de Souza, Abolfazl Amiri, Taufik Abrão, Elisabeth de Carvalho, and Petar Popovski

Abstract—In this paper, we consider the downlink (DL) of
a zero-forcing (ZF) precoded extra-large scale massive MIMO
(XL-MIMO) system. The base-station (BS) operates with limited
number of radio-frequency (RF) transceivers due to high cost,
power consumption and interconnection bandwidth associated to
the fully digital implementation. The BS, which is implemented
with a subarray switching architecture, selects groups of active
antennas inside each subarray to transmit the DL signal. This
work proposes efficient resource allocation (RA) procedures to
perform joint antenna selection (AS) and power allocation (PA) to
maximize the DL spectral efficiency (SE) of an XL-MIMO system
operating under different loading settings. Two metaheuristic RA
procedures based on the genetic algorithm (GA) are assessed
and compared in terms of performance, coordination data size
and computational complexity. One algorithm is based on a
quasi-distributed methodology while the other is based on the
conventional centralized processing. Numerical results demon-
strate that the quasi-distributed GA-based procedure results
in a suitable trade-off between performance, complexity and
exchanged coordination data. At the same time, it outperforms
the centralized procedures with appropriate system operation
settings.

Index Terms—Extra-large scale massive MIMO (XL-MIMO),
antenna selection (AS), resource allocation (RA), genetic algo-
rithm (GA), distributed signal processing.

I. INTRODUCTION

The benefits of adopting a high number of antennas at the
base-station (BS) have attracted the interest on the massive
MIMO transceiver design for the multi-antenna wireless com-
munications systems beyond the fifth generation (B5G) and of
the sixth generation (6G). The main advantages are the large
array gain, inter-channel orthogonality and channel hardening.
Also, increasing the number of antenna elements can enhance
the cell coverage, improving the quality-of-service (QoS) of
the border-cell users [1].

When the BS array attains extreme physical dimensions
to support crowded scenario locations, such as airports and
large shopping malls, the system is classified as extra-large
scale massive MIMO (XL-MIMO) [2]. The XL-MIMO array
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provides the benefits of massive MIMO with additional beam-
forming resolution due to the large array aperture [3]. The
XL-MIMO array is characterized by key changes in the
electromagnetic propagation conditions when compared to the
conventional spatial stationary massive MIMO regime. The
first property is the spherical wavefront propagation feature
for the received signal due to the distance between the BS and
the users being less than the Rayleigh distance [4]. Second,
each cluster of scatterers sees only a portion of the array.
Thus, the transmitted signal by each user reaches a small
group of antennas, which comprises the visibility region (VR)
of this user [2]. Additionally, the different propagation paths
experienced along the array result in variations on the average
received power. Results in [5], [6] demonstrate that the spatial
non-stationarities produced by these two properties limit the
performance of the system in terms of spectral efficiency (SE)
unless an appropriated signal processing technique is applied.

Despite the benefits of high numbers of antennas, the XL-
MIMO scenario imposes challenges for transceiver design.
The first of them is the high cost and power consumption
of fully digital implementations, which require one radio-
frequency (RF) transceiver per antenna element [7], [8]. In
addition, adopting a large number of antennas demands a
high interconnection bandwidth to transmit the baseband data
throughout the links to the BS processing unit. This turns
into a serious implementation bottleneck, since the required
bandwidth can not be handled by the current radio interfaces
[9], [10]. Lastly, handling the complexity of signal processing
techniques is a relevant issue, since the number of executed
operations in linear detectors, such as zero-forcing (ZF) and
minimum mean-squared error (MMSE), scales with the num-
ber of antennas [11].

In order to design practical BS architectures, one can
limit the number of RF transceivers to cope with the cost
constraints. The implementation with a limited the number of
RF transceivers can benefit from the large array by adopting
techniques such as antenna selection (AS) and hybrid pre-
coding. Often, hybrid precoding design is associated with the
solution of intricate optimization problems [12]. In addition,
the commonly employed analog phase shifters are more ex-
pensive and consume more power than conventional on-off
switches [8]. For these reasons, combining the AS procedures
with linear precoding designs result in attainable strategies
aiming at robust and effective implementations. Different
approaches and tools can be adopted to perform AS, such
as convex optimization [7], [13], [14], greedy heuristics [7],
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[15], machine learning [16] and metaheuristics [17]–[20].
One strategy to combat the problem of high interconnec-

tion bandwidth is to use hierarchical architectures. Adding
multiple processing units to handle small groups of antennas
and choosing the right signal processing methods can reduce
significantly the amount of exchanged information in the
regime of asymptotic number of antennas, as discussed in
[9], [10]. However, the coordination of such processing units
to perform different signal processing and resource allocation
(RA) tasks constitutes a big challenge. In addition, many of
these activities rely on the knowledge of fully reliable channel
state information (CSI), which is hard to attain due to the
high array dimensions. Many works on channel estimation
[21], precoding and data detection [9], [10], [22]–[25] in
massive and XL-MIMO consider distributed pre-processing at
local nodes. However, studies on the distributed RA strategies,
mainly involving AS, are scarce.

The signal processing complexity is an important concern
in XL-MIMO due to the high number of antenna elements.
However, differently from the conventional massive MIMO,
the XL-MIMO can benefit from the spatial non-stationarities
adopting local signal processing strategies to treat the signals
inside the VRs at the BS subarrays with reduced complexity
[22], [24].

A. Literature Review

AS strategies for MIMO systems are extensively discussed
in the literature. One AS algorithm to improve capacity in
low rank matrix channels on point-to-point MIMO was first
introduced in [26]. Later, the capacity distribution of systems
with receive AS has been derived in [27]. These results were
extended to massive MIMO regime in [28] and [29]. In these
papers, the authors derived capacity bounds for systems with
transmit and receive AS, respectively.

The authors in [13], [14] proposed AS procedures re-
spectively for the channel capacity and downlink (DL) sum-
capacity maximization based on the convex optimization
framework. One technique based on the branch-and-bound
algorithm is used in [8]. Considering linearly-precoded sys-
tems, the problems of AS for SE and sum-SINR maximization
are addressed respectively in [15], [30]. Differently, the work
in [31] analyzed one joint AS and power allocation (PA)
procedure in a system with spatially distributed antennas. The
proposed procedure runs at each antenna with side-information
shared within its neighborhood. Besides, AS considering lim-
ited connections in the RF transceivers switching matrices is
examined in [7].

On the other hand, there are only a few works that con-
sider the AS problem for the XL-MIMO systems. A spatial
users mapping procedure to maximize SE implemented with
convolutional neural networks (CNN) is proposed in [16].
The aim is to determine each effective subarray window to
precode the users signals using ZF. Results demonstrate that
the CNN-based procedure achieves SE values comparable
to the optimal mapping algorithm. In [17], several transmit
AS procedures to maximize the energy efficiency (EE) from
the long-term fading coefficients are proposed. Asymptotic

SINR expressions for the received signal with AS are derived.
Since the derived optimization problem is NP-hard, three of
the proposed procedures are implemented by metaheuristic
techniques, one being the genetic algorithm (GA). The GA is a
powerful evolutionary metaheuristic that was used in different
contexts to solve AS problems, as it is considered in [18]–[20].

B. Contribution

Motivated by the benefits of large numbers of antennas at
the BS and the restricted number of RF transceivers, this work
examines the joint AS and PA problem on the DL of a linearly-
precoded XL-MIMO system. Differently from other papers
adopting AS strategy, a distributed BS signal processing archi-
tecture is considered and the AS procedures are characterized
in terms of the exchanged information between the processing
nodes. Furthermore, we extend part of the results of [17] with
the proposition of AS algorithms for XL-MIMO that use the
short-term fading coefficients instead of the long-term ones.
Additionally, we address the problem of joint AS and PA in
XL-MIMO subarrays using a decentralized RA algorithm. The
proposed RA algorithm uses the Sherman-Morrison-Woodbury
(SMW) formula to perform optimal power allocation (OPA)
and AS in a decentralized fashion.

The BS is constituted by multiple non-overlapping subarrays
with dedicated remote processing units (RPUs), which perform
independently channel estimation, precoding calculation and
RA, mainly AS and PA. Each subarray is equipped with a
fixed number of antenna elements and RF transceivers. Using
the ZF precoding, the optimization goal is to maximize the
SE subjected to the constraints of subarrays connections and
maximum transmitted power.

The contribution of this work is fourfold. i) Description
of a distributed transceiver design for XL-MIMO based on a
subarray switching architecture; ii) proposition of a centralized
procedure based on the evolutionary heuristic GA to perform
joint AS and PA to maximize the SE with subarray connection
and maximum transmitted power constraints; iii) proposition
of a distributed version of the GA procedure for joint AS and
PA which achieves performance tight to the centralized one but
with low-size coordination data and less number of executed
operations; iv) extensive analysis of the proposed procedures
in terms of number of symbols for training, coordination data
size and number of floating point operations per second (flops).

The numerical results corroborate the GA-based procedures
in achieving high performance, specifically in crowded XL-
MIMO applications. Additionally, the decentralized GA ver-
sion offers a good trade-off between performance, number
of operations and coordination data size, outperforming the
centralized procedures by adopting proper settings.

The rest of the paper is organized as follows. In Section II
is described the system model, including the distributed subar-
rays processing at the BS. Next, in Section III are described the
centralized and distributed GA-based optimization procedures
for joint AS and PA in XL-MIMO systems, while Section IV
discusses two feasible AS procedures adopted as a result of
decoupling the joint AS and PA optimization problem. Sec-
tion V examines the complexity of the proposed algorithms.
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Figure 1. XL-MIMO system deployed inside a square cell with size L. The
BS is a ULA with M antennas divided into B subarrays of Mb antennas
each one. The K users are randomly distributed at a distance in the range
(0.1L,L) from the array.

Extensive numerical results are discussed in Section VI. Final
comments and conclusions are provided in Section VII.

C. Notation
Boldface small a and capital A letters represent respectively

vectors and matrices. Capital calligraphic letters A represent
finite sets, and |A| denotes the cardinality of the set A.
In denotes the identity matrix of size n. {·}T and {·}H
denote respectively the transpose and the conjugate transpose
operators. diag(·), tr(·) and det(·) denote respectively the
diagonal matrix, trace and determinant operators. d·e denotes
the greatest integer operator.

(
n
k

)
denotes the binomial coeffi-

cient. CN (µ, σ2) is a circularly symmetric complex Gaussian
distribution with mean µ and variance σ2. E[·] denotes the
expectation operator.

II. SYSTEM MODEL

Consider the DL of a narrow-band multi-user XL-MIMO
system with the BS equipped with M antennas and N RF
transceivers serving K single-antenna users, as is depicted in
Fig. 1. During the DL, the BS uses ηtr symbols to perform
channel estimation and ηdata symbols to transmit the payload.
We assume that the time interval used to send the total DL
symbols ηDL = ηtr + ηdata is less than the channel coherence
time.

The array in the BS is composed of B independent subar-
rays, each with Mb antennas and Nb < Mb RF transceivers.
The subarrays are equipped with a RPU to perform, in a
distributed way, channel estimation, precoding calculation and
RA tasks, specially AS and PA procedures. In addition, the BS
has a central processing unit (CPU) to coordinate the subarrays
operation. Fig. 2 depicts all the described BS blocks.

Assumption 1 (Subarray switching stage): A flexible switch-
ing stage is implemented in each XL subarray. This stage

Figure 2. Diagram of the BS architecture for DL. The BS array is composed
by B subarrays containing Mb antennas, Nb RF transceivers and one RPU.
Additionally, the BS has a CPU for subarrays coordination.

allows every antenna of the subarray i to connect to any
RF transceiver of it. Results in [7] demonstrate that partially
connected architectures introduce lower insertion loss than
fully-flexible matrices, which allows the connection of any
antenna in the entire array to any RF transceiver.

We assume that each subarray has perfect knowledge of the
channel coefficients associated to its antennas. See [21] for
details on channel acquisition in distributed signal processing
architectures. Besides, we deploy the ZF precoder to decode
signals in each subarray. We adopt the technique in [21] to
calculate the ZF precoder with low interconnection traffic,
splitting the computations between the RPUs and the CPU.

A. Channel Model

In the XL-MIMO scenario, spatial non-stationarities arise
due to the large array physical dimensions and number of
antenna elements. Such non-stationarities are addressed in
the adopted channel model as the variation of the mean
received power along the array, as in [17], [22]. The path-
loss coefficient associated to the BS antenna m and the user
k is defined as

βm,k = q0d
−κ
m,k (1)

where q0 is the path-loss attenuation at a reference distance,
dm,k is the distance between the antenna m and the user k
and κ is the path-loss exponent.

Let Rk ∈ CM×M , Rk = diag([β1,k · · · βM,k]T ) be the
matrix with the long-term fading coefficients of the user k.
The channel vector of the user k is defined as

hk = R
1
2

k h
′
k (2)

where h′k ∈ CM×1, h′k ∼ CN (0, IM ) is the short-term fading
vector. From the users channel vectors, the channel matrix
H ∈ CM×K is defined as

H =
[
h1 · · · hK

]
=
[
hT1 · · · hTM

]T
(3)
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considering hm ∈ C1×K as the channel vector with the
coefficients associated to the antenna m.

During the DL, the BS activates a group of antennas
represented by the set S ⊆ {1, . . . ,M} such that |S| ≤ N . A
partition of the set S, i.e. {Sb}, ∀b = 1, . . . , B, contains the
index of the selected antennas in the subarray b. This set is
defined such that |Sb| ≤ Nb ∀b, meeting the adopted subarray
structure. The equivalent channel matrix of the active antennas
is defined as a row-wise submatrix of H, HS∈ C|S|×K .
Similarly, the matrix HSb∈ C|Sb|×K contains only the channel
vectors related to the active antennas in the subarray b.

Let Dm ∈ {0, 1} , ∀m = 1, . . . ,M be an indica-
tor equal to 1 if the antenna m is active during the DL
and 0 otherwise. These indicators form the diagonal matrix
D = diag([D1 · · · DM ]T ). During the precoding and SE
computations, it is required to calculate the matrix product
HH
SHS of the active antennas channel matrix. Intended to

enable this computation by the distributed signal processing
architecture, the Gramian matrix is defined as in the following.

Remark 1 (Gramian matrix): Let Gm = hHmhm, ∀m =
1, . . . ,M be the Gramian matrix associated with the BS an-
tenna m. The setMb is defined for b = 1, . . . , B as the group
of antennas in the subarray b. The Gramian matrix associated
to the b-th subarray includes only the active antennas inside
it, and it can be written as

GSb = HH
SbHSb =

∑
m∈Mb

DmGm (4)

Similarly, the array Gramian matrix considering only the active
antennas is defined as

GS = HH
SHS =

M∑
m=1

DmGm (5)

An upper bound for the system performance considering the
active antennas in the set S, namely the DL sum-capacity, is
calculated by [14]:

CDPC = max
P

log2 det
(
IK +

1

σ2
z

PHH
SHS

)
(6)

= max
P

log2 det
(
IK +

1

σ2
z

PGS

)
where σ2

z is the additive noise power, while P =
diag ([p1 · · · pK ]) denotes the matrix with the allocated power
for each user. The powers pk, ∀k = 1, . . . ,K are defined in
order to meet the total power constraint

∑K
k=1 pk = Pmax. The

DL sum-capacity is achieved by the dirty paper coding (DPC)
precoder, which has prohibitive high-complexity for practical
implementations.

B. Downlink Signal

The data signal transmitted by the BS is defined as x ∈
C|S|×1,

x = FP
1
2 s (7)

where F∈ C|S|×K denotes the ZF precoding matrix, calcu-
lated by

F = HS
(
HH
SHS

)−1
(8)

= HSG
−1
S

s = [s1 · · · sK ]T denotes the vector of modulated data
symbols such that E

[
‖sk‖22

]
= 1, ∀k = 1, . . . ,K and

E [s∗ksk′ ] = 0, ∀k 6= k′. The allocated powers in (7) are
calculated in order to meet the following power constraint

tr
[
P
(
HH
SHS

)−1]
= tr

(
PG−1S

)
= Pmax (9)

Therefore, the entries of P depend on the active antennas set
S and the PA policy.

The signal received by the users in the DL is defined as
y ∈ CK×1,

y = HH
S FP

1
2 s + z (10)

= P
1
2 s + z

where z ∈ CK×1, z ∼ CN
(
0, σ2

zIK
)

denotes the additive
noise vector.

Given the ZF precoding design, the system SE is calculated
by

SE =
K∑
k=1

log2

(
1 +

pk
σ2
z

)
(11)

which is equivalent to the SE of K independent Gaussian
channels with received signal-to-noise ratio (SNR) equal to
pk/σ

2
z ∀k.

C. Optimal Power Allocation (OPA) Policy

The OPA policy is the one that solves the problem of
maximizing the system SE at (11), subjected to the maximum
power constraint in (9):

maximize
P

SE =

K∑
k=1

log2

(
1 +

pk
σ2
z

)
(12a)

subject to tr
[
P(HH

SHS)−1
]
≤ Pmax (12b)

pk ≥ 0, ∀k = 1, . . . ,K (12c)

The optimization problem in (12) is equivalent to the well-
known PA problem on independent Gaussian channels. It has
an analytical closed-form solution derived by the Lagrange
multipliers method (water filling solution). The optimal power
distribution is calculated by [32]:

pk =
(
µ
[
(HH
SHS)−1

]−1
k,k
− σ2

z

)+
(13)

where (x)+ = max(x, 0) and µ is a constant calculated by

µ =
1

K

{
Pmax + σ2

z tr
[
(HH
SHS)−1

]}
(14)

If pk = 0 for some user k, the PA problem including this user
is not feasible. For this reason, the k-th user is deactivated
and the power distribution is recalculated considering only the
group of the remaining active users. This process must be
repeated until a group of users which results in a feasible
solution is found.
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III. ALGORITHM FOR JOINT ANTENNA SELECTION AND
POWER ALLOCATION

The problem of jointly selecting the antenna-elements of the
BS and allocating appropriate power amounts to maximizing
the ZF SE given the constraints of maximum RF transceivers,
subarray connections, and maximum power is formulated as

maximize
D,P

SE =
K∑
k=1

log2

(
1 +

pk
σ2
z

)
(15a)

subject to
∑

m∈Mb

Dm ≤ Nb, b = 1, . . . , B (15b)

tr
[
P(HHDH)−1

]
≤ Pmax (15c)

Dm ∈ {0, 1}, m = 1, . . . ,M (15d)
pk ≥ 0, k = 1, . . . ,K (15e)

The objective function in (15a) is the system SE. The con-
straints (15b) are the subarray connections constraints, which
allow the activation of a maximum of Nb RF transceivers
in each subarray. Also, the constraint (15c) ensures that the
maximum transmitted power is equal to or less than Pmax.
Moreover, the constraints (15d) and (15e) define respectively
the binary antenna association variables and non-negative
allocated powers.

Since D is binary constrained, the problem (15) constitutes
a non-convex combinatorial optimization problem. One ap-
proach to solve (15) comprises two steps: firstly, determining
the optimal active antennas set via exhaustive search assuming
equal PA; after that, given the result D? from the exhaustive
search, the allocated power matrix P? is calculated adopting
the OPA policy in (13).

The AS via exhaustive search considering the activation
of all the RF transceivers requires testing

(
Mb

Nb

)B
candidate

solutions, a number that attains prohibitive dimensions in the
XL-MIMO regime. For instance, in a system with B = 8
subarrays equipped with Mb = 64 antennas and Nb = 32
RF transceivers, there is a number of feasible solutions on the
order of magnitude equal to 10146. Testing all these solution
candidates in a timely manner is impracticable. An efficient
alternative to the exhaustive search is to perform a guided
search along the feasible set using an intelligent metaheuristic
procedure. In this way, a good quality solution can be obtained
in feasible time testing only a few candidates.

A. Genetic Algorithm

One metaheuristic procedure adopted to solve many dif-
ferent combinatorial problems in wireless communications is
the GA. This technique implements different search phases
to efficiently explore the feasible set and exploit the good
candidates properties in order to find promising regions in
the feasible sub-spaces. Differently from exact optimization
methods, evolutionary metaheuristics do not require convex
objective functions or constraints. In addition, the execution
complexity can be fitted to the available computational burden
by adjusting the input parameters and number of iterations.
Despite the advantages, the GA, as well as other metaheuris-
tics, does not ensure finding the optimal solution.

Table I
GLOSSARY OF THE GENETIC ALGORITHM TERMS

Parameter Description
Individual Candidate solution for the optimization problem
Population Set of candidate solutions for the optimization problem
Offspring Set of candidate solutions generated during an iteration
Gene One optimization variable of the candidate solution
Chromosome Set of optimization variables of the candidate solution
Generation Genetic algorithm iteration
Fitness Objective function of the optimization problem
Score Value of the objective function for a candidate solution

In general, GA solves efficiently a variety of optimiza-
tion problems [17]–[20]. Our implemented version of GA
has attained near-optimum solutions for the problem (15)
in a competitive time/complexity, owing to its competitive
performance-complexity trade-off. Besides, the GA comprises
smart mechanisms to balance exploration and exploitation of
the search sub-spaces, as well as avoiding local optima in
complex cost surfaces. Lastly, unlike single-state strategies,
e.g. simulated annealing and tabu search, the GA has a readily
parallelizable algorithmic structure, capable of providing fast
convergence [33].

As the GA is a procedure inspired by principles of genetics
and natural selection, it inherited several terms from biology.
To simplify understanding, Table I contains a glossary of
some common GA terms adopted throughout this work. In
the following, the implemented GA procedures, phases and
variables deployed to solve the problem (15) are briefly
described.

Optimization variables encoding: The optimization variables
of the problem (15) are the antennas state indicators Dm and
the users allocated powers pk. The powers pk are determined
by the OPA, eq. (13). Therefore, only the antennas indicators
should be encoded as individuals. Thus, the antennas state
indicators Dm, ∀m = 1, . . . ,M are defined as genes and the
vectors di,b ∈ {0, 1}Mb×1 such that [di,b]m = Dm, ∀m ∈
Mb, b = 1, . . . , B containing the optimization variables
w.r.t. each subarray represent the chromosomes, where i is
the individual index. Every individual is defined by a vector
di ∈ {0, 1}M×1,

di =
[
dTi,1 · · · dTi,B

]T
=
[
D1 · · · DM

]T
(16)

Fitness function: The fitness function considered for the
implementation is the ZF SE defined in (11), with the power
distribution computed by the OPA policy.

The implemented GA contains the following phases: a)
elitism, b) tournament selection, c) crossover and d) mutation.
These phases require the definition of the parameters: popula-
tion size Np, number of individuals for elitism Ne, number
of tournaments Ns, crossover probability pc and mutation
probability pm. Each procedure is summarized in the sequel.

Elitism: The elitism aims to keep the best individuals of the
current generation without change. At every generation, the
Ne best individuals are chosen as the first individuals of the
next generation. Elitism ensures that the SE obtained with the
best AS indices of the GA iteration is always a non-decreasing
value.
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Tournament selection: During the tournament selection, the
individuals are pairwise randomly compared according to their
score values. The winners of the Ns tournaments become can-
didates for the crossover phase. The selection step compares
the sets of AS indices produced at each GA iteration according
to the SE achieved by them.

Crossover: The crossover phase aims to mix the chromosomes
of the tournaments winners in order to obtain new solutions.
This phase exploits the good properties of the current set of AS
indices. Two tournament winners, named parent 1 and parent
2, are randomly selected to generate two new individuals.
Each chromosome of child 1 has the probability pc of being
inherited from parent 1 and 1−pc from parent 2. Considering
child 2, every chromosome has the probability pc of being
inherited from parent 2 and 1− pc from parent 1.

Mutation: The mutation phase aims to add random small
changes at the offspring generated by crossover. This phase
promotes the variability among the set of AS indices, exploring
different regions of the feasible set. The chromosomes are
mutated with probability pm, when one random selected gene
of the chromosome is flipped. To preserve the feasibility of the
solutions, the mutation phase is implemented by the scheme
of Algorithm 1. The set Pc denotes the offspring generated
during the crossover, and Pm is the offspring after mutation.

Convergence: There are several mechanisms to check the
GA convergence. Herein, the implemented algorithm has two
different criteria: the maximum number of generations Tmax

and the no improvement of the best score during the last Tstall
generations.

Algorithm 2 summarizes the implemented procedure, named
genetic algorithm for resource allocation (GA-RA). The set
P0 denotes the initial population, Pt the population of the
generation t, Ps the winners of the tournament selection and
Ptemp a temporary set for the elitism phase.

B. Quasi-Distributed Genetic Algorithm

The proposed GA-RA procedure requires the entire channel
matrix H knowledge at the CPU to compute the individuals
score values. Such requirement is unfeasible in the XL-MIMO

Algorithm 1: Mutation procedure
Input: Crossover offspring Pc , pm, B,Mb, Nb
Output: Mutated offspring Pm

1 Pm ← ∅;
2 for di ∈ Pc do
3 for b = 1 : B do
4 if rand uniform(0, 1) ≤ pm then
5 k ← rand discrete uniform(1,Mb);
6 if [di,b]m == 0 and

∑Mb

j=1[di,b]j == Nb
then

7 Go to line 5;

8 [di,b]m ← flip([di,b]m);

9 Pm ← Pm ∪ di;

scenario due to the high bandwidth to transfer all the channel
coefficients associated to thousands of antennas to the CPU.
For this reason, one solution that does not depend on the
knowledge of full CSI at the CPU is preferable.

One solution to avoid the requirement of full knowledge of
the H matrix consists of performing local AS at each subarray,
considering fixed the AS indices in the other subarrays. The
contribution of these fixed AS indices can be calculated previ-
ously by the CPU and transmitted to the RPUs with reduced
bandwidth and processing power resources. Therefore, each
subarray can selects its antennas using the GA. The proposed

Algorithm 2: GA-RA
Input: Np, Ne, Ns, pc, pm, Tmax, Tstall, B,Mb, Nb,H
Output: The best selected antennas set, D?

1 P0 ← ∅;
2 P0 ← P0 ∪ N-AS(H) (Section IV-B);
3 for i = 1 : Np − 1 do
4 P0 ← P0 ∪ rand individual();

5 for t = 0 : Tmax do
6 Pt+1,Ps,Pc ← ∅;
7 Ptemp ← Pt;
8 for i = 1 : Ne do Elitism
9 de ← argmax

dj

score(dj), dj ∈ Ptemp;

10 Pt+1 ← Pt+1 ∪ de;
11 Ptemp ← Ptemp\de;
12 for i = 1 : Ns do Tournament selection
13 ds1 ,ds2 ← rand(Pt);
14 ds ← argmax

dj

[score(ds1), score(ds2)];

15 Ps ← Ps ∪ ds;

16 for i = 1 : Ne do Crossover
17 dc1 ,dc2 ← rand(Ps);
18 do1 ,do2 ← 0M
19 for j = 1 : B do
20 if rand uniform(0, 1) ≤ pc then
21 do1,j ← dc1,j ;
22 do2,j ← dc2,j ;

23 else
24 do1,j ← dc2,j ;
25 do2,j ← dc1,j ;

26 Pc ← Pc ∪ do1 ∪ do2 ;

27 Pm ← mutation(Pc) (Algorithm 1);
28 Pt+1 ← Pt+1 ∪ Pm;
29 d?t+1 ← argmax

di

score(di), di ∈ Pt+1;

30 if t > Tstall then Stall convergence criterion
31 dstall ← argmax

di

score(di), di ∈ Pt−Tstall
;

32 if score(d?t+1) == score(dstall) then
33 Break the loop;

34 D? ← diag(d?t+1);
35 return D?;
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quasi-distributed genetic algorithm for resource allocation
(DGA-RA) implements this concept and is presented in the
following.

Analyzing the fitness function of the GA-RA procedure in
(11), one can observe that it depends on the inverse of the
array Gramian matrix, G−1S = (HH

SHS)−1. The computation
of G−1S can be done from the subarrays Gramian matrices by

G−1S =

(
B∑
b=1

GSb

)−1
(17)

Therefore, the CPU can compute the inverse of the array
Gramian matrix to calculate the GA-RA fitness function only
with the subarrays Gramian matrices calculated locally at
the RPUs. Each subarray Gramian matrix has K2 entries,
while the channel matrix has MK. Therefore, calulating the
contribution of the selected antennas at the CPU using the
Gramian matrix strategy requires less bandwidth than by using
the centralized strategy if BK2 < MK holds.

Based on (17), the DGA-RA procedure operates as follows.
Initially, each subarray selects an active antennas set based on
a simple criterion, such as the norm-based antenna selection
(N-AS) described in the subsection IV-B. Then, the subarrays
compute their Gramian matrices based on the selected set and
transmit them to the CPU. At the CPU, the array Gramian
matrix is computed by (17) and transmitted back to the
subarrays. Afterwards, every subarray performs local antenna
selection by a GA implementation, considering that the other
subarrays are fixed. To evaluate the fitness function in eq.
(11), the subarrays compute the array Gramian inverse matrix
adopting the SMW formula for matrix inversion, as follows.

Remark 2 (SMW formula): The SMW formula [34] gives the
inverse of the matrix (A + UVH) from A−1, U and V by
computing:

(A+UVH)−1 = A−1−A−1U
(
I + VHA−1U

)−1
VHA−1

(18)
Adopting this formulation, the array Gramian matrix can be
calculated at the subarray b during the iteration n by letting

A−1 =
(
G

(n−1)
S

)−1
, (19)

U =

[
−
(
H

(n−1)
Sb

)H (
H

(n)
Sb

)H]
, (20)

VH =

[
H

(n−1)
Sb
H

(n)
Sb

]
, (21)

where the superscript (n) denotes the variable during the n-th
iteration of the DGA-RA procedure (proof in Appendix A).

After performing local AS, each subarray transmits their
achieved SE values to the CPU. The CPU updates the AS
indices of the subarray that has achieved the maximum SE
values at the iteration n. Then, the CPU requests the subarray
Gramian matrix of the updated subarray, and recalculates the
inverse of the array Gramian matrix, (G

(n)
S )−1. The process

can be executed iteratively following the scheme depicted in
Fig. 3.

Figure 3. Proposed DGA-RA procedure steps with coordination between the
CPU and the RPUs. The superscript (n) denotes the n-th iteration.

The GA implemented in the DGA-RA procedure is similar
to that one described in the Algorithm 2, except for some
details at the optimization variables encoding and the crossover
phase. About the individual encoding, the optimization vari-
ables at each subarray are reduced from M to Mb, since local
AS is performed at each RPU. In addition, as the optimization
variables consider only one subarray at each RPU, the indi-
viduals have two chromosomes: one represented by the first
Mb/2 genes, and another composed by the remaining genes.

Due to this new chromosome definition, one further pro-
cedure after the crossover phase is required to preserve the
feasibility of the solution. The chosen method is to deactivate
antennas of individuals with more than Nb antennas in a
random fashion until they become feasible.

IV. ANTENNA SELECTION PROCEDURES

Two techniques to perform antenna selection are presented
in the sequel, the DL sum-capacity maximization antenna
selection (SCMAX-AS) and the N-AS method, proposed re-
spectively in [14], [7]. The goal of solving only the antenna
selection problem is to decouple the two RA problems asso-
ciated to (15) aiming at obtaining tractable formulations.

A. Antenna Selection for DL Sum-Capacity Maximization

Firstly, we analyze the equal power allocation (EPA) strat-
egy, i.e. P = Pmax

K IK , intended to obtain a manageable
optimization problem. The problem of selecting the set of
active antennas in order to maximize the DL sum-capacity
with the constraints of maximum number of RF transceivers
and subarray connections is formulated as [14]:

maximize
D

CEPA = log2 det
(
IK +

Pmax

Kσ2
z

HHDH

)
(22a)

subject to
∑

m∈Mb

Dm ≤ Nb, b = 1, . . . , B (22b)

Dm ∈ {0, 1}, m = 1, . . . ,M (22c)

Despite the concavity of the objective function in (22a) [13],
the problem (22) is not convex due to the binary constraint
in (22c). Hence, we define a convex relaxation of (22) by
taking the variables Dm in the range (0, 1). This new problem,
which can be solved with convex optimization tools, has the
constraint (22c) replaced by

0 ≤ Dm ≤ 1, m = 1, . . . ,M (23)
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Notice that the solution of the convex relaxation results in non-
binary values for the active antenna indicators Dm, which is
outside the original problem domain.

One method for performing the antenna selection by solving
the convex relaxation is to activate the Nb antennas with
the highest Dm values at each subarray. This procedure is
named in this work as SCMAX-AS, and is followed by the
OPA policy in eq. (13). This AS procedure gives near-optimal
results, except for N � M [14]. Therefore, in a XL-MIMO
system where the number of available RF transceivers is much
less than the array antennas, the achieved system SE with the
SCMAX-AS algorithm will be sub-optimal.

B. Norm-Based Antenna Selection (N-AS)

The N-AS procedure focus on selecting the subset of Nb
antennas with the highest channel vector norm values [7].
We adopt this method to initiate the population of the GA-
based procedures due to its low computational cost. The N-AS
method solves the optimization problem formulated as

maximize
D

Π =

M∑
m=1

Dm‖hm‖22 (24a)

subject to
∑

m∈Mb

Dm ≤ Nb, b = 1, . . . , B (24b)

Dm ∈ {0, 1}, m = 1, . . . ,M (24c)

where the objective function consists of the sum of the
squared norms of the channel vectors associated to the selected
antennas. The problem (24) can be solved quickly by selecting
the Nb antennas with the highest channel vector norms at each
subarray. After selection, the PA is performed by the OPA
policy in (13).

V. COMPLEXITY ANALYSIS

The complexity of the presented procedures is evaluated in
terms of the number of symbols required for channel acquisi-
tion, the size of the coordination data exchanged between the
RPUs and the CPU, and the number of flops during execution.

A. Training

In the following, we analyze the procedures in terms of
training symbols for CSI acquisition. The length of the mu-
tually orthogonal pilot signals used to estimate the channel
vectors at the BS depends on: a) the number of users; b) the
number of available RF transceivers; c) the number of antennas
at the BS.

The number of symbols to acquire the entire channel matrix,
required in all the presented procedures except in the N-AS,
is K

⌈
M
N

⌉
. Particularly, the N-AS algorithm requires only the

knowledge of the channel vector norms for selection. For
this reason, the N-AS can be implemented without explicit
channel estimation, supported by physical power-meters [21].
With this implementation, the N-AS requires a total of 2K
symbols to operate. From this total, K symbols are required
to estimate the norms of the channel vectors, and the remaining
K symbols are used to estimate the channel vectors associated
to the selected antennas.

B. Coordination Data Size

The coordination data is defined as the data originated at the
RPUs that is required at the CPU during the RA procedures.
Determining the coordination data size is crucial since it can
grow tremendously in the XL-MIMO scenario. In practical
implementations, techniques as data compression helps alle-
viating the high interconnection bandwidth associated to the
coordination data. However, such kind of consideration and
optimization are out of the scope of this work.

Table II contains the coordination data size associated to the
considered RA procedures, detailing the type of required data
in each one. The GA-RA and SCMAX-AS procedures require
the entire channel matrix at the CPU, while the DGA-RA one
relies on the subarrays Gramian matrices. On the other hand,
the N-AS procedure does not require any CSI knowledge at the
CPU for antenna selection purpose, being the most appealing
technique in terms of the coordination data size.

C. Number of Flops

The third complexity metric is the number of flops executed
by each procedure. The complexity analysis for the N-AS and
the GA-based AS algorithms are as follows. The SCMAX-
AS procedure is not considered due to the high complexity
associated with computing the number of executed operations
by the convex optimization solver.

N-AS: The operations executed at each subarray on the N-AS
procedure consists of calculating the channel vector norms
then sorting the obtained values to get the Nb largest ones.
Assuming that the sorting operation has the complexity of the
order Mb log(Mb), the per-subarray flops for N-AS is

CN-AS = Mb(2K − 1) +Mb log(Mb) (25)

GA-RA: The complexity of the GA-RA method is dominated
by the number of operations required for the evaluation of
the GA fitness function, eq. (11). At the first iteration, the
algorithm evaluate the fitness function for Np individuals.
During the remaining iterations, (T − 1)(Np − Ne) fitness
function evaluations are done, where T denotes the total
number of generations.

As the OPA policy involves simple computations, the com-
plexity of the fitness function is reduced to the inversion of the
array Gramian matrix. The flops to compute the array Gramian
matrix inverse is derived in Appendix B. From this result, the
total flops for the GA-RA algorithm is

CGA-RA = [T (Np −Ne) +Ne]

(
7

3
K3 + 2NK2 −K2

)
(26)

DGA-RA: For the DGA-RA procedure, a similar approach
to the one used for GA-RA can be followed. Despite that,

Table II
COORDINATION DATA EXCHANGED BETWEEN THE RPUS AND THE CPU

Procedure Implementation Data type Data size
GA-RA Centralized Channel matrix MK
SCMAX-AS [14] Centralized Channel matrix MK
N-AS [7] Totally distributed – –
DGA-RA Quasi-distributed Gramian matrix (B +Nit)K

2
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Table III
SIMULATION PARAMETERS

Parameter Value
Cell size L = 30 m
# Users K ∈ [1, 217]
Maximum transmitted power Pmax = 230 µW
Path-loss at the reference distance q0 = −35.3 dB
Path-loss exponent κ = 3
Noise power σ2

z = −96 dBm

Uniform Linear Array Setup
# Antennas M ∈ [32, 2048]
# RF transceivers N ∈ [64, 256]
# Subarrays B = {2, 4, 8}
# Antennas per subarray Mb =M/B
# RF transceivers per subarray Nb = N/B

the inverse of the array Gramian matrix is computed by the
SMW formula, which is implemented with a different number
of flops. The number of flops to obtain the inverse of the
array Gramian matrix in the DGA-RA procedure is derived
in Appendix C. Taking into account these differences and the
fact that the DGA-RA procedure runs over Nit iterations, the
total number of flops is given by:

CDGA-RA = Nit [T (Np −Ne) +Ne]× (27)

×
[

7

3
N3
b + 2K3 +N2

b (4K − 1) +

+K2(4Nb − 2) +N2
b (1− 2K) +K

]
VI. NUMERICAL RESULTS

The numerical evaluations of the proposed methods as well
as the benchmark techniques are presented in this section. The
simulation system parameters are given in Table III. The users
are randomly located inside a square cell of size L, and the
BS is equipped with a uniform linear array (ULA) positioned
on one side of the cell, as depicted in Fig. 1. Additionally, the
users are random uniformly located at a distance in the range
(0.1L,L) from the array. Although the results in the following
are obtained for the ULA, they can be easily extended to other
array form factors, such as the uniform planar one.

Before comparing the proposed techniques, it is necessary to
tune the GA-RA and DGA-RA GA input parameters in order

Table IV
GENETIC ALGORITHM PARAMETERS

Symbol Description Parameter value
GA-RA DGA-RA

Np Population size 80 80
Ne Elitism individuals 8 8
Ns Tournaments 36 36
pc Crossover probability 0.33 0.35
pm Mutation probability 0.13 0.36
Tmax Maximum generations 103 102

Tstall Stall generations 300 30

to obtain a suitable performance-complexity trade-off. The
input parameter Np, pc and pm values are selected using the
iterated local search algorithm [35]. The number of individuals
for elitism is equal to 10% of the population size, and the
number of tournaments is defined in order to fill the population
after the elitism phase. Additionally, the stall convergence
criterion parameter is approximately 30% of the maximum
number of generations. The selected parameters for the GA-
based procedures are listed in Table IV. Notice that the DGA-
RA procedure is set to run 10 times less generations than the
GA-RA, since the number of optimization variables decrease
from M at the GA-RA to Mb in the DGA-RA procedure.

In Fig. 4, the quality of convergence of the GA-RA pro-
cedure is corroborated varying the parameters Np, pc and
pm independently. Each surface is computed by averaging the
achieved scores over 20 realizations. These results on the best
and average SE scores among the generations t confirm the
parameter values adopted in Table IV, while demonstrating a
relative low tuning sensibility of the GA-RA convergence to
the three input parameters.

Fig. 5 depicts the system SE achieved by the proposed RA
procedures versus the number of available RF transceivers. In
addition to the proposed solutions, the SE attained by random
AS scheme and using all the M antennas are plotted as the
lower and upper performance bounds, respectively. The results
consider M = 512, B = 8, K = 50 and Nit ∈ {5, 16}
for the DGA-RA procedure. Observing the Fig. 5, one realize
that the GA-based procedures achieve better SE results than
the other ones. In the sequence, there are respectively the
SCMAX-AS and N-AS. As expected, all the performance
curves are upper and lower bounded by the SE achieved
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Figure 4. Convergence of the GA-RA with the number of generations t varying the GA input parameters Np, pc and pm. The ”best” and ”average” SE
surfaces are obtained over 20 realizations. In each plot, the values of the remaining input parameters are given in Table IV.
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Figure 5. Comparison of SE vs the number of available RF transceivers.
M = 512, B = 8, K = 50 and, for the DGA-RA procedure Nit ∈ {5, 16}.

using full-array ZF and random AS, respectively. The SE
gap between the procedures decreases as the number of RF
transceivers increases. Analyzing the GA-based procedures,
the DGA-RA achieves SE values tight to the GA-RA running
with only five iterations. However, setting Nit = 16 makes
the DGA-RA system SE values outperform marginally the
ones obtained by the GA-RA procedure. Therefore, the quasi-
distributed procedure can achieve a performance comparable,
or even better, to the fully centralized approach by adopting a
sufficient number of iterations.

In the following, Fig. 6 depicts the system SE achieved
by the proposed RA procedures versus the number of users.
These numerical results consider M = 512, B = 8, N = 256
and Nit ∈ {5, 16} for the DGA-RA procedure. For better
understanding, let L = K/N be the system effective loading
factor. For all the proposed procedures, firstly the SE increases
with K, assuming a decreasing behavior after a peak. This is
due to the reduction of spatial degrees of freedom increasing
the system loading factor, typically observed in linearly pre-
coded systems [36]. Comparing the procedures, all of them
get comparable SE values for a low loading factor. However,
for high loading factor values, typically L = 0.6, the GA-
RA and DGA-RA procedures get substantial better results.
Again, the DGA-RA outperforms the GA-RA in terms of SE
by setting Nit = 16. Combining the results in Figs. 5 and
6, we conclude that the GA-based procedures perform with
higher SE gains over the other available AS schemes [7], [14]
in crowded XL-MIMO scenarios, i.e., when the loading factor
is high, L > 0.25.

A. Complexity Analysis

The numerical results in the following cover the computa-
tional complexity of the proposed procedures. In Fig. 7(a) the
coordination data size of the centralized procedures (GA-RA
and SCMAX-AS) and the DGA-RA one versus the number of
users is illustrated. The curves are evaluated by the expressions
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Figure 6. Comparison of SE vs the number of users. M = 512, B = 8,
N = 256 and, for the DGA-RA procedure Nit ∈ {5, 16}.
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Figure 7. Coordination data size of the GA-based RA schemes vs the number
of (a) users and (b) antennas. When it is not specified, Nit = 16 and K = 50.

in Table II. The result considers M ∈ {512, 2048} and, for the
DGA-RA procedure, Nit = 16 and B ∈ {2, 4, 8}. Comparing
the RA approaches when the number of users is low, the
quasi-distributed one get lower coordination data sizes than
the centralized procedures. For higher numbers of users, the
coordination data size associated to DGA-RA acquires larger
values than the obtained by the centralized procedures. This
point of inversion of behavior depends on the numbers of an-
tennas, subarrays and iterations w.r.t. the DGA-RA procedure.
It is worth mentioning that the coordination data size grows
quadratically with K for the DGA-RA procedure, while it
grows linearly with K for the centralized RA procedure.

Fig. 7(b) depicts the coordination data size of the central-
ized procedures and the DGA-RA one versus the number of
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antennas in the BS. The results consider K = 50 and, for
the DGA-RA method, Nit ∈ {5, 16} and B ∈ {2, 4, 8}. The
coordination data size grows linearly with M in the centralized
procedures, while for the DGA-RA procedure, it does not
depend on M . In fact, this is the primary aim for choosing a
distributed RA technique in XL-MIMO, in which the BS is
equipped with an asymptotically high number of antennas.

The next results are related to the complexity in terms of
flops. Fig. 8(a) illustrates the number of flops per processing
unit of the GA-based procedures versus the number of avail-
able RF transceivers. The curves are evaluated by the eqs. (26)
and (27). Such results consider K = 50 and, for the DGA-RA
procedure, B = 8 and Nit ∈ {1, 5, 16}. For low numbers of
RF transceivers, the values of flops for the DGA-RA procedure
are lower than the GA-RA algorithm. Again, after a point of
inversion of behavior, the values of flops for GA-RA get lower
than the ones for the quasi-distributed procedure. This point
of changing of behavior decreases as Nit increases.

The curves with the number of flops per processing unit
of the GA-based procedures versus the number of users are
depicted in Fig. 8(b). This result considers N = 256 and, for
the DGA-RA procedure, B = 8 and Nit = {1, 5, 16}. For low
numbers of users, the values of flops of the GA-RA procedure
are lower than the ones get for the DGA-RA. However, this
behavior inverts quickly, and the gap between the values of
flops for both centralized and distributed procedures becomes
constant. This constant behavior for large K is due to the fact
that both eqs. (26) and (27) grow asymptotically with K3.

VII. CONCLUSIONS

This work proposes a subarray switching architecture for
the BS antenna array, while examining the problem of joint
AS and PA optimization aiming at maximizing the SE of
XL-MIMO systems with limited number of RF transceivers.

64 560 1056 1552 2048

Number of RF transceivers

10
1

10
2

10
3

10
4

F
lo

p
s
 p

e
r 

p
ro

c
e

s
s
in

g
 u

n
it
 (

G
fl
o

p
s
)

9060301 120 150

Number of users

10
-1

10
0

10
1

10
2

10
3

GA-RA
DGA-RA (N

it
 = 1)

DGA-RA (N
it
 = 5)

DGA-RA (N
it
 = 16)

(a) (b)

Figure 8. Flops per processing unit of the proposed GA-based procedures vs
the number of (a) available RF transceivers and (b) users. B = 8 and, when
it is not specified, K = 50 and N = 256.

Two GA-based near-optimal and low-complexity procedures
are proposed. One is the centralized GA-RA, designed to
operate with the entire channel matrix available at the CPU.
The other is the quasi-distributed DGA-RA, based on the
subarrays Gramian matrices. Both evolutionary metaheuris-
tic optimization methods are analyzed in terms of achieved
SE, coordination data size and flops, and compared with
benchmarks, including two procedures from the literature,
the SCMAX-AS and the N-AS followed by optimal PA.
Numerical results corroborate that the GA-based AS and PA
procedures achieve high SE gains compared to the selected
benchmarks, particularly in crowded XL-MIMO scenarios, i.e.,
when the effective loading factor L > 0.25. At the same
time, the distributed DGA-RA method can outperform the
other procedures with low-size coordination data and low
computational complexity by taking the appropriate system
operation settings.

APPENDIX A
LOCAL COMPUTATION OF THE INVERSE OF THE ARRAY

GRAMIAN MATRIX VIA THE
SHERMAN-MORRISON-WOODBURY FORMULA

To compute the array Gramian matrix at the subarray b,
the RPU must follow these two steps. Firstly, remove the
contribution of the selected antennas at the subarray b at the
iteration n − 1. Then, add the contribution of the selected
antennas at the iteration n. Therefore, it needs to compute the
inverse of the array Gramian matrix by the expression(

G
(n)
S

)−1
=
(
G

(n−1)
S −G

(n−1)
Sb + G

(n)
Sb

)−1
(28)

which evaluation would be straightforward if all the terms
were available at the subarray.

However, the subarray needs to compute (G
(n)
S )−1 knowing

only (G
(n−1)
S )−1 and the local channel vectors, i.e. hm ∀m ∈

Mb for the subarray b. Writing the subarray Gramian matrices
of (28) in terms of the local channel matrices results in

−G
(n−1)
Sb + G

(n)
Sb

= −
(
H

(n−1)
Sb

)H
H

(n−1)
Sb +

(
H

(n)
Sb

)H
H

(n)
Sb

=

[
−
(
H

(n−1)
Sb

)H (
H

(n)
Sb

)H] [H(n−1)
Sb
H

(n)
Sb

]
(29)

From (28) and (29), it is possible to define the SMW
formula variables, A−1, U and VH , in terms of the available
information at the subarray as the eqs. (19), (20) and (21),
respectively.

APPENDIX B
FLOPS TO COMPUTE THE INVERSE OF THE ARRAY

GRAMIAN MATRIX VIA THE CHOLESKY DECOMPOSITION

Initially, the computation of the array Gramian matrix is
done by solving the product in (5), which costs 2K2N −K2

flops [34]. Afterwards, define the Cholesky decomposition of
the array Gramian matrix as

GS = LLH (30)
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where L is a lower triangular matrix. The computation of L
can be done with K3/3 flops [34]. Then, each column of the
inverse of the Gramian matrix can be computed solving the
set of linear systems below by backforward substitution,

LLHx = ei, ∀i = 1, . . . ,K (31)

where ei denotes the canonical basis vector, i.e. a row vector
with all entries equal to 0, except the entry i which is equal
to 1. Each linear system can be solved with 2K2 flops [34],
totaling 2K3 flops for all the columns of G−1S . Therefore,
the total flops for the array Gramian matrix computation and
inversion is equal to

CChol. =
7

3
K3 + 2NK2 −K2 (32)

APPENDIX C
FLOPS TO COMPUTE THE INVERSE OF THE ARRAY

GRAMIAN MATRIX VIA THE
SHERMAN-MORRISON-WOODBURY FORMULA

To count the flops to compute the matrix inversion by the
SMW formula, the eq. (18) is decomposed in six parts. The
computations involved in each part and their respective flops
are organized in Table V. The flops in Table V are counted
assuming that the contribution of the selected antennas during
the previous iteration is removed. Such assumption is reason-
able since the expression in (28) can be done sequentially, by
keeping only the terms −G(n−1)

Sb or G(n)
Sb at a time.

All the parts include only simple matrix multiplications and
sums, except for the part Q3. This part can be efficiently com-
puted by the Cholesky decomposition approach followed by
the backforward substitution procedure described in Appendix
B. Therefore, the total flops required to compute the inverse
of the array Gramian matrix via the SMW formula is equal to

CSMW =
7

3
N3
b + 2K3 +N2

b (4K − 1) (33)

+K2(4Nb − 2) +N2
b (1− 2K) +K

Table V
FLOPS INVOLVED ON THE SHERMAN-MORRISON-WOODBURY FORMULA

COMPUTATION

Symbol Expression Number of flops
Q1 VHA−1 2NbK

2 −NbK
Q2 I+Q1U 2N2

bK −N
2
b +Nb

Q3 Q−1
2 7/3N3

b
Q4 UQ3 2N2

bK −NbK
Q5 I−Q4Q1 2NbK

2 −K2 +K
Q6 A−1Q5 2K3 −K2
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