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Abstract—Orthogonal time frequency space (OTFS) modulation
has attracted substantial attention recently due to its great potential
of providing reliable communications in high-mobility scenarios. In
this paper, we propose a novel hybrid signal detection algorithm for
OTFS modulation. By characterizing the input-output relationship
of OTFS modulation, we derive the near-optimal symbol-wise maxi-
mum a posteriori (MAP) detection algorithm for OTFS modulation,
which aims to extract the information of each transmitted symbol
based on the corresponding related received symbols. Furthermore,
in order to reduce the detection complexity, we propose a parti-
tioning rule that separates the related received symbols into two
subsets for detecting each transmitted symbol, according to the
corresponding path gains. We then introduce a hybrid detection
algorithm to exploit the power discrepancy of each subset, where
the MAP detection is applied to the subset with larger channel gains,
while the parallel interference cancellation (PIC) detection is applied
to the subset with smaller channel gains. Simulation results show
that the proposed algorithms can not only approach the performance
of the near-optimal symbol-wise MAP algorithms, but also offer a
substantial performance gain compared with existing algorithms.

Index Terms—Orthogonal time frequency space (OTFS), reduced-
complexity detection, sum-product algorithm.

I. INTRODUCTION

Various emerging applications, such as mobile communications

on board aircraft (MCA), low-earth-orbit satellites (LEOSs), high

speed trains, and unmanned aerial vehicles (UAVs) [1], [2],

are expected to operate in high-mobility environments, which

imposes great challenges for next generation wireless commu-

nications. However, the currently deployed orthogonal frequency

division multiplexing (OFDM) modulation is very vulnerable to

the severe inter-carrier interference due to the significant Doppler

spread introduced by the high-mobility [3].

The recently proposed orthogonal time frequency space

(OTFS) modulation provides a potential solution for reliable

communications in high-mobility scenarios [4]. Different from

the conventional OFDM modulation, OTFS modulation places

the information symbols in the delay-Doppler (DD) domain

instead of the time-frequency (TF) domain. It can be shown

that with the DD domain data multiplexing, each transmitted

symbol principally experiences the whole fluctuations of the TF

channel over an OTFS frame. Thus, OTFS modulation offers the

potential of exploiting the full channel diversity, achieving a better

error performance compared with that of the conventional OFDM

modulation in high-mobility environments [4].

In order to achieve the potential full channel diversity, ad-

vanced detection methods are required for OTFS detection.

The symbol-wise maximum a posteriori (MAP) detection is the

optimal detection method in the sense of minimizing the bit

error rate (BER) but it usually requires an exceedingly high

detection complexity which increases exponentially with the

number of paths of the channel. As a compromised approach,

a messaging passing algorithm was proposed in [5], where

Gaussian approximation is applied to model the characteristic of

interferences. Nevertheless, simply treating all interferences as

Gaussian variables may introduce substantial performance loss

relative to the MAP detection.

In this paper, we propose a novel hybrid MAP and paral-

lel interference cancellation (PIC) detection method for OTFS

modulation with a reduced computational complexity. Based on

the framework of sum-product algorithm [6], we first derive

the near-optimal detection algorithm in the symbol-wise MAP

sense, which needs to consider all possible combinations of

the related received symbols in the DD domain, for detecting

each transmitted symbol. Note that the detection complexity

of this method is exponential to the number of independent

paths, which becomes prohibitively high for a large number of

paths. To reduce the detection complexity of MAP detection,

we further propose a partitioning rule for the related received

symbols based on the path gains of the channel, where the related

symbols are separated into two subsets. Thus, a hybrid detection

algorithm is naturally introduced to exploit the power discrepancy

of each subset. On one hand, the symbols from the subset

corresponding to small path gains are approximated as Gaussian

random variables based on the a prior mean and variance and are

cancelled by performing PIC; On the other hand, the interference

induced by the symbols from the subset with large path gains

is regarded as useful information that is effectively extracted by

the MAP detection. The detection complexity of the proposed

hybrid detection algorithm is only exponential to the size of

subset with large path gains. More importantly, the proposed

hybrid detection algorithm offers the flexibility to adapt different

detection parameters based on the channel condition, thereby

providing a good trade-off between the detection performance and

the complexity. Simulation results show that the proposed hybrid

MAP and PIC detection outperforms the existing OTFS detection

algorithm and only has a marginal performance loss (less than 1

dB) to the near-optimal symbol-wise MAP algorithm.

Notations: We use A to denote the signal constellation and E

to denote the expectation operation, respectively; We use [·]N to

denote the modulo N operation; FN and IM denote the discrete

Fourier transform (DFT) matrix of size N ×N and the identity

matrix of size M ×M , respectively; δ(·) denotes the Dirac delta

function; vec(·) denote the vectorization operation; (·)∗ denote

the conjugate operation; ∝ represents both sides of the equation

are multiplicatively connected to a constant; Pr(·) denotes the

probability of an event.

II. SYSTEM MODEL

Without loss of generality, let us consider an OTFS system

whose block diagram is given in Fig. 1. Let N be the number of

time slots and M be the number of sub-carriers for each OTFS

symbol, respectively. An information sequence u is modulated

into x ∈ A
MN with length MN . In particular, the information

symbol vector x can be arranged as a two-dimensional (2D)

matrix X ∈ A
M×N , i.e., x

∆
= vec (X), and the (k, l)-th element

of X, x [k, l], is the modulated signal in the k-th Doppler and l-th

http://arxiv.org/abs/2010.13030v1
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Fig. 1. The block diagram of the considered OTFS system.

delay grid [4], for 0 ≤ k ≤ N−1, 0 ≤ l ≤ M−1. The TF domain

transmitted symbol X [n,m] , 0 ≤ n ≤ N−1, 0 ≤ m ≤ M−1 is

obtained according to X via the inverse symplectic finite Fourier

transform (ISFFT) [4], i.e.,

X [n,m] =
1√
NM

N−1
∑

k=0

M−1
∑

l=0

x [k, l]ej2π(
nk
N

−ml
M ). (1)

The time domain OTFS signal s (t) can be obtained by sending

X to a conventional OFDM modulator, which is written as

s (t) =

N−1
∑

n=0

M−1
∑

m=0

X [n,m] gtx (t− nT ) ej2πm∆f(t−nT ), (2)

where ∆f is the frequency spacing between adjacent sub-carriers,

T is the time slot duration, i.e., T∆f = 1, and gtx(t) is the

transmitter shaping pulse.

Similar to [4], we consider the DD domain representation of

the time-varying channel, where the channel impulse response is

given by

h (τ, ν) =

P
∑

i=1

hiδ (τ − τi) δ (ν − νi). (3)

In (3), P is the number of paths and hi, τi, and νi are the path

gain, delay, and Doppler shift corresponding to the i-th path,

respectively. Specifically, we denote by l
(i)
τ and l

(i)
ν the indices

of delay and Doppler, respectively, where we have

τi =
l
(i)
τ

M∆f
, νi =

l
(i)
ν

NT
. (4)

Note that in (4), the terms 1
M∆f and 1

NT refer to the delay and

Doppler resolutions, respectively [5]. For simplicity, in this paper,

we only consider the case where both l
(i)
τ and l

(i)
ν are integers,

i.e., the OTFS system does not have fractional delay or Doppler

shifts [7], [8]. We note that the fractional delay and Doppler

shifts can be addressed by adding virtual integer taps in the DD

domain channel [9] or by applying TF domain windows [10]1.

Furthermore, we assume that the path gain follows the Rayleigh

distribution with respect to the exponential power delay profile

[11], where the variance σ̂2
i corresponding to the i-th path gain

satisfies

σ̂2
i =

exp
(

−l
(i)
τ

/

10
)

P
∑

k=1

exp
(

−l
(i)
τ

/

10
)

. (5)

1In practice, the non-fractional case can be achieved by using sufficiently large
M and N [5].

At the receiver side, following the conventional OFDM demod-

ulation, the TF domain received symbols Y [n,m] can be written

as

Y [n,m] =

N−1
∑

n′=0

M−1
∑

m′=0

Hn,m [n′,m′]X [n′,m′] + w [n,m] , (6)

where w [n,m] is the corresponding TF domain white noise

sample with one-sided power spectral density (PSD) is N0, and

Hn,m [n′,m′]

=

∫ ∫

h (τ, ν)Agtx,grx ((n− n′)T − τ, (m−m′)∆f − ν)

ej2π(ν+m′∆f)((n−n′)T−τ)ej2πνn
′Tdτdν, (7)

denotes the corresponding channel in the TF domain. In (7),

the function Agtx,grx (τ∆, ν∆) is the so-called cross-ambiguity

function, which is given by [5]

Agtx,grx (τ∆, ν∆)
∆
=

∫

gtx (t) g
∗
rx (t− τ∆) e

j2πν∆∆ftdt, (8)

where grx (t) is the receiver filter. For simplicity, we only consider

the case that Agtx,grx (τ∆, ν∆) = δ (τ∆) δ (ν∆), i.e., the pulses of

the transmitter and receiver are ideal such that the bi-orthogonal

condition [5] holds. Note that although ideal pulses are not prac-

tically realizable, they can be well approximated by waveforms

with a support concentrated as much as possible in time and in

frequency [5]. Moreover, the proposed detection algorithm can

be straightforwardly extended to the cases of non-ideal pulses,

such as the rectangular pulse case. Based on the bi-orthogonal

assumption, (6) can be simplified as

Y [n,m] = H [n,m]X [n,m] + w [n,m] , (9)

where

H [n,m] =

∫ ∫

h (τ, ν)e−j2π(ν+m′∆f)τej2πνnT dτdν. (10)

By applying the SFFT, the overall input-output relationship

between the DD domain transmitted symbols x [k, l] and received

symbols y [k, l] is given by [5]

y [k, l] =

P
∑

i=1

hie
−j2πνiτix

[[

k − l(i)ν

]

N
,
[

l− l(i)τ

]

M

]

+ η [k, l] ,

(11)

where η [k, l] is the corresponding white noise sample in the DD

domain. Similar to X, we denote by Y the 2D received symbols,

whose (k, l)-th element is y [k, l].

Without loss of generality, we design the data detection algo-

rithm based on (11) in the sequel.

III. SYMBOL-WISE MAP DETECTION FOR OTFS

MODULATION

In this section, we derive the symbol-wise MAP Detection for

OTFS Modulation. Although this derivation is straightforward, it

has not been introduced in the literature of OTFS modulation to

the best of the knowledge of authors. The detection can be carried

out based on the symbol-wise maximum a posterior (MAP) rule,

i.e.,

x̂ [k, l] = arg max
x[k,l]∈A

Pr {x [k, l] |Y} , (12)
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where x̂ [k, l] is the element at the k-th row and l-th column in

the 2D estimated symbol matrix X̂. For notational brevity, let us

define the following sets.

H
(i) ∆

= {hj |1 ≤ j ≤ P, j 6= i} ,
Yk,l

∆
=

{

y
[[

k + l(i)ν

]

N
,
[

l + l(i)τ

]

M

]

∣

∣1 ≤ i ≤ P
}

,

X
(i)
k,l

∆
=
{

x
[[

k+l(i)ν −l(j)ν

]

N,
[

l+l(i)τ −l(j)τ

]

M

]

∣

∣1 ≤ j ≤ P, j 6= i
}

.

According to (11), it can be shown that the set Yk,l contains

the P received symbols that are associated to the DD domain

transmitted symbol x [k, l], while the set X
(i)
k,l contains P − 1

DD domain transmitted symbols that are related to the received

symbol Yk,l [i]. In particular, the probability Pr {x [k, l] |Y} can

be factorized with respect to Yk,l and X
(i)
k,l, for which we have

the following Theorem.

Theorem 1 (Probability factorization): Assuming that the

transmitted symbols in X are independently taking values in

the constellation set A with equal probabilities, the a posteriori

probability of Pr {x [k, l] |Y} can be approximated as

Pr {x [k, l] |Y} ≈
P
∏

i=1

∑

X
(i)
k,l

Pr
{

Yk,l [i]
∣

∣

∣
X

(i)
k,l, x [k, l]

}

Pr
{

X
(i)
k,l

∣

∣Y/∈Yk,l[i]

}

Pr {x [k, l]} , (13)

where Y/∈Yk,l[i] denotes the set of Y excluding the element

Yk,l [i].
Proof : The proof follows the standard sum-product algorithm

and is given in the Appendix.

It can be observed that the probability factorization given in

(13) can be fully characterized by a probabilistic graphical model

and the approximation in (13) becomes exact when the corre-

sponding model does not contain any cycles. Furthermore, the

probability factorization in (13) can be efficiently implemented

by using the sum-product algorithm [6], where the messages

are passed according the corresponding graphical model and

are updated with respect to the update rule of function nodes.

Without loss of generality, the considered graphical model is

given in Fig. 2. As the figure implies, the a prior probability

Pr {x [k, l]} is passed from the variable node x [k, l] to the

function node Yk,l [i]; For each variable node X
(i)
k,l[j], the prob-

ability Pr
{

X
(i)
k,l[j]

∣

∣Y/∈Yk,l[i]

}

is passed to the function node

Yk,l [i]; On the other hand, for each function node Yk,l [i], the

probability Pr {x [k, l]|Yk,l [i]} is passed to the variable node

x [k, l]. Specifically, we have

Pr
{

Yk,l [i]
∣

∣X
(i)
k,l, x [k, l]

}

=
1√
πN0

exp






−

∣

∣

∣

∣

∣

∣

∣

Yk,l [i]−
P−1
∑

j=1

H
(i)[j]X

(i)
k,l [j]−hix [k, l]

∣

∣

∣

∣

∣

∣

∣

2
/

N0






, (14)

and

Pr
{

x [k, l]
∣

∣Y/∈Yk,l[i]

}

∝
P
∏

j=1
j 6=i

Pr {x [k, l]|Yk,l [j]}. (15)

The detailed procedures for the symbol-wise MAP algorithm are

summarized in Algorithm 1.
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Fig. 2. The probabilistic graphical model of the symbol-wise MAP algorithm.

Algorithm 1: Symbol-Wise MAP Detection Algorithm

for OTFS Modulation

Input: Y, A, M , N , P , the maximum number of

iteration Imax, a prior probability Pr {x [k, l]} and

the channel state information hi, l
(i)
ν , l

(i)
τ , for

1 ≤ i ≤ P .

Output: X̂ and Pr {x [k, l]|Y}.

1 for I = 1; I ≤ Imax do

2 for i = 1; i ≤ P do

3 for k = 0; k ≤ N − 1 do

4 for l = 0; l ≤ M − 1 do

5 Enumerate all combinations of X
(i)
k,l.

6 For each possible combination of X
(i)
k,l,

compute (14) and Pr
{

X
(i)
k,l[j]

∣

∣Y/∈Yk,l[i]

}

based on (15).

7 Compute Pr {x [k, l] |Y} by using (13).

8 Make hard decision of x[k,l] based on

(12).
9 end

10 end

11 end

12 end

Remarks: Since the algorithm is derived from the symbol-

wise MAP sense, in principle, it is able to achieve the optimal

error performance of OTFS systems in terms of the BER, if

the corresponding graphical model does not contain any cycles.

Meanwhile, it can be observed from lines 5 and 6 of Algorithm 1

that the detection complexity of the symbol-wise MAP algorithm

is exponential to the number of paths P . However, such a

complexity becomes prohibitive when the number of paths is

significantly large. Therefore, we propose a reduced-complexity

detection method based on the symbol-wise MAP algorithm in

the following section in order to strike a balance between the

detection complexity and performance.

IV. HYBRID MAP AND PIC DETECTION FOR OTFS

MODULATION

It can be observed from (13) that the detection complexity

mainly arises from the enumeration of all possible combinations

of X
(i)
k,l. To reduce the detection complexity, we intend to separate

the set X
(i)
k,l into two subsets and only enumerate the combinations

of one subset. Let L be the size of the subset, whose total

combinations are to be enumerated. Then, we have the following

Proposition.

Proposition 1 (Partitioning Rule): Assuming that the path

gains in H
(i) are sorted in descending order according to its
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power, i.e., |hk|2 > |hj |2, if k < j, the two subsets of X
(i)
k,l

are defined as

X̃
(i)
k,l

∆
=

{

X
(i)
k,l [j] |1 ≤ j ≤ L

}

(16)

and

X̄
(i)
k,l

∆
=

{

X
(i)
k,l [j] |L+ 1 ≤ j ≤ P − 1

}

, (17)

respectively. Naturally, we propose to perform MAP detection

for the subset X̃
(i)
k,l, while perform PIC for the subset X̄

(i)
k,l,

since the subset X̄
(i)
k,l may have a less impact on the overall

error performance compared with that of the subset X̃
(i)
k,l. More

specifically, we assume that the elements in X̄
(i)
k,l are Gaussian

variables [5], i.e., X̄
(i)
k,l [j] has a mean µk,l,i [j] and variance

σ2
k,l,i [j]. In particular, the values of µk,l,i [j] and σ2

k,l,i [j] can

be derived from the a posteriori probabilities in the previous

iteration. Thus, we can modify (14) as

Pr
{

Yk,l [i]
∣

∣

∣X̃
(i)
k,l, X̄

(i)
k,l, x [k, l]

}

=
1

√

π (N0 + σ2)

exp

(

−
(

Yk,l [i]− hix [k, l]−
∑L

j=1
H

(i) [j] X̃
(i)
k,l[j]

−
∑P−L−1

j=1
H

(i)[j + L]E
{

X̄
(i)
k,l[j]

}

)2
/

(

N0 + σ2
)

)

, (18)

where σ2 =
∑P−L−1

j=1 σ2
k,l,i [j]. Note that the messages passed

between function nodes in the graphical model also need to be

updated corresponding to (18). Specifically, for each function

node X̃
(i)
k,l[j], the probability Pr

{

X̃
(i)
k,l[j]

∣

∣Y/∈Yk,l[i]

}

is passed to

the function node Yk,l [i]. On the other hand, for each function

node X̄
(i)
k,l[j], the corresponding mean µk,l,i [j] and variance

σ2
k,l,i [j] are passed to the function node Yk,l [i]; The details

of the proposed hybrid MAP and PIC detection algorithm are

summarized in Algorithm 2.

Remarks: It can be observed that the detection complexity of

the hybrid MAP and PIC detection algorithm is only exponential

to L. However, since PIC is applied in the algorithm, performance

loss may be induced if the estimates of elements from X̄
(i)
k,l

are not accurate. However, this performance loss is expected to

be marginal for a coded OTFS system, since the channel code

can usually provide reliable estimates of transmitted symbols.

In general, iterations between the detector and channel-decoder

are required in order to feed back useful information from the

decoder to the detector.

On the other hand, we note that the message passing algorithm

proposed in [5] is a special case of the proposed hybrid detection

algorithm with L = 0. Therefore, with L > 0, the proposed

hybrid detection algorithm can outperform the message passing

algorithm in [5]. In particular, with the increase of L, the error

performance of the proposed hybrid detection algorithm can

approach that of the symbol-wise MAP algorithm introduced in

Algorithm 1.

V. NUMERICAL RESULTS

In this section, we investigate the error performance of the

proposed algorithms under various channel conditions for both

coded and uncoded OTFS modulation. Without loss of generality,

we set N = 100 and M = 150 for OTFS modulation, where

the DD domain transmitted symbols are quadrature phase shift

Algorithm 2: Hybrid MAP and PIC Detection Algorithm

for OTFS Modulation

Input: Y, A, M , N , P , the maximum number of

iteration Imax, a prior probability Pr {x [k, l]},

and the channel state information hi, l
(i)
ν , l

(i)
τ , for

1 ≤ i ≤ P .

Output: X̂ and Pr {x [k, l]|Y}.

1 for I = 1; I ≤ Imax do

2 for i = 1; i ≤ P do

3 for k = 0; k ≤ N − 1 do

4 for l = 0; l ≤ M − 1 do

5 Calculate the mean and variance of each

elements in X̄
(i)
k,l.

6 Enumerate all combinations of X̃
(i)
k,l.

7 For each possible combination of X̃
(i)
k,l,

compute (18) and Pr
{

X̃
(i)
k,l[j]

∣

∣Y/∈Yk,l[i]

}

based on (15).

8 Compute Pr {x [k, l] |Y} by using (13).

9 Make hard decision of x[k,l] based on

(12).
10 end

11 end

12 end

13 end
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Fig. 3. BER performance of the proposed algorithms for uncoded OTFS systems
with P = 4, compared with the message passing algorithm in [5].

keying (QPSK) modulated. In order to demonstrate the advantage

of the proposed algorithms, we also include the error performance

of the message passing algorithm [5] with a damping factor 0.7
in our numerical results, where the number of iterations of the

proposed algorithms and the message passing algorithm is set to

be Imax = 10.

We set the maximum delay index as lmax = 10 and the

maximum Doppler index as kmax = 6, which is corresponding

to a relative user equipment speed around 250 km/h with 4 GHz

carrier frequency and 15 kHz sub-carrier spacing [5]. For each

channel realization, we randomly select the delay and Doppler

indices such that −kmax ≤ l
(i)
ν ≤ kmax and 0 ≤ l

(i)
τ ≤ lmax.

Fig. 3 demonstrates the BER performance of the proposed

algorithms for uncoded OTFS systems with P = 4. It can be

observed from the figure that at BER ≈ 1× 10−4, the proposed
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Fig. 4. FER performance of the proposed algorithms for Turbo coded OTFS
systems with P = 5.

hybrid detection algorithm with L = 1 shows a roughly 4.2
dB gain compared with that of the message passing algorithm

in [5], which is consistent with our discussion. Furthermore, we

notice that the BER performance of the proposed hybrid detection

algorithm improves with the increase of L. More importantly,

we observe that the BER performance of the proposed hybrid

detection algorithm with L = 2 approaches to that of the symbol-

wise MAP algorithm. This observation indicates that the proposed

partitioning rule can effectively reduce the detection complexity

without introducing a significant performance loss.

Fig. 4 demonstrates the frame error rate (FER) performance

of the proposed algorithms for Turbo coded OTFS systems

with P = 5, where the rate-1/3 Turbo code from the 3rd

Generation Partnership Project (3GPP) wideband code division

multiple access (WCDMA) standard [12] is applied. We notice

that the proposed hybrid detection algorithm shows a better FER

performance with the increase of L and noticeably outperforms

the message passing algorithm in [5]. Meanwhile, it can be

observed that with the application of channel coding, the proposed

hybrid detection algorithm only has a marginal performance loss

compared to the near-optimal symbol-wise MAP algorithm even

with L = 1, where the performance loss is less than 1 dB. This

observation indicates that our proposed algorithm can provide a

good trade-off between the error performance and complexity.

VI. CONCLUSION

In this paper, we proposed a novel hybrid detection algorithm

for OTFS modulation. We first derived the symbol-wise MAP

algorithm. Then, we proposed a partitioning rule which divides

the related symbols into two sets according to their associated

channel path gains. A hybrid detection algorithm was proposed

to exploiting the power discrepancy between the two subsets.

Specifically, the MAP detection was applied on the subset with

larger channel gains, while the PIC detection was applied to the

subset with smaller channel gains. Simulation results verified the

effectiveness our algorithm and showed that our proposed hybrid

detection algorithm can provide a good trade-off between the

error performance and detection complexity.

APPENDIX

According to the Bayes’s rule, (12) can be expanded as

Pr {x [k, l] |Y} ∝ Pr {Y |x [k, l]}Pr {x [k, l]} . (19)

Let Yk,l|Pi+1 denotes the vector of the (i + 1)-th element

Yk,l [i+ 1] to the P -th element Yk,l [P ] of Yk,l. By observing

(11), (19) can be further derived according to the chain rule,

which yields

Pr {Y |x [k, l]}Pr {x [k, l]}

=

P
∏

i=1

Pr
{

Yk,l [i]
∣

∣

∣Yk,l|Pi+1 ,Y\Yk,l, x [k, l]
}

Pr {x [k, l]} , (20)

where Y\Yk,l denotes the complementary set of Yk,l with respect

to Y. We further expand (20) as

P
∏

i=1

Pr
{

Yk,l [i]
∣

∣

∣Yk,l|Pi+1 ,Y\Yk,l, x [k, l]
}

Pr {x [k, l]}

=

P
∏

i=1

∑

X
(i)
k,l

Pr
{

Yk,l [i],X
(i)
k,l

∣

∣

∣Yk,l|Pi+1,Y\Yk,l, x [k, l]
}

Pr{x [k, l]}

=

P
∏

i=1

∑

X
(i)
k,l

Pr
{

Yk,l [i]
∣

∣

∣Yk,l|Pi+1 ,Y\Yk,l,X
(i)
k,l, x [k, l]

}

Pr
{

X
(i)
k,l

∣

∣

∣ Yk,l|Pi+1 ,Y\Yk,l

}

Pr {x [k, l]} (21)

=
P
∏

i=1

∑

X
(i)
k,l

Pr
{

Yk,l [i]
∣

∣

∣
X

(i)
k,l, x [k, l]

}

Pr
{

X
(i)
k,l

∣

∣

∣ Yk,l|Pi+1 ,Y\Yk,l

}

Pr {x [k, l]} , (22)

where (21) is due to the Bayes’s rule and the assumption that

the information symbols in X are independent from each other.

Finally, by assuming that the elements from X
(i)
k,l are independent

to the elements from Yk,l|i−1
1 , we arrive at the conclusion given

in Theorem 1. Note that the approximation becomes exact when

the above assumption is valid, i.e., the corresponding graphical

model does not contain any cycles.
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