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Abstract—This paper investigates the impact of realistic prop-
agation conditions on the achievable secrecy performance of
multiple-input multiple-output systems in the presence of an
eavesdropper. Specifically, we concentrate on the κ-µ shadowed
fading model because its physical underpinnings capture a wide
range of propagation conditions, while, at the same time, it allows
for a much better tractability than other state-of-the-art fading
models. By considering transmit antenna selection and maximal
ratio combining reception at the legitimate and eavesdropper’s
receiver sides, we study two relevant scenarios (i) the transmitter
does not know the eavesdropper’s channel state information
(CSI), and (ii) the transmitter has knowledge of the CSI of
the eavesdropper link. For this purpose, we first obtain novel
and tractable expressions for the statistics of the maximum of
independent and identically distributed (i.i.d.) variates related to
the legitimate path. Based on these results, we derive novel closed-
form expressions for the secrecy outage probability (SOP) and the
average secrecy capacity (ASC) to assess the secrecy performance
in passive and active eavesdropping scenarios, respectively. More-
over, we develop analytical asymptotic expressions of the SOP and
ASC at the high signal-to-noise ratio regime. In all instances,
secrecy performance metrics are characterized in closed-form,
without requiring the evaluation of Meijer or Fox functions. Some
useful insights on how the different propagation conditions and
the number of antennas impact the secrecy performance are also
provided.

Index Terms—κ-µ shadowed, generalized fading channels,
maximal ratio combining, multiple-input multiple-output, phys-
ical layer security, transmit antenna selection.

I. INTRODUCTION

T
RADITIONALLY, security systems are based on higher

layer cryptographic mechanisms, which contemplate

mathematically complex algorithms that demand a high con-

sumption of energy and computational resources. Such meth-
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ods pose great challenges for their implementation and man-

agement for the fifth-generation (5G) wireless networks in

practice. Therefore, classical cryptography by itself does not

constitute an integral solution to the security problems envi-

sioned for future wireless transmissions. In this sense, physical

layer security (PLS) arises as an alternative to providing secure

communications at the physical layer by smartly exploiting the

randomness (e.g., noise, interference, and fading) of wireless

channels [1–3].

The first notions of PLS in an information-theoretical con-

text were initially introduced by Shannon in his pioneering

work in [4]. Later, the so-called wiretap channel was intro-

duced by Wyner in [5]. Subsequently, Wyner’s results were

extended for the broadcast channel in [6] and for the Gaussian

channel in [7], where the secrecy capacity was defined as the

difference between the capacities of the main channel and the

wiretap channel. Thus, secret transmissions are possible if and

only if the quality of the legitimate channel is better than that

of the eavesdropper channel.

Based on these results, the key concepts concerning the gen-

eralization of the wiretap channel to multiple-input multiple-

output (MIMO) channels were investigated in [8, 9]. These

seminal works have inspired various research efforts to im-

prove the secrecy performance in different MIMO topologies.

For instance, the utilization of artificial noise (AN) has been

proposed to enhance the secrecy performance of MIMO net-

works [10]. Moreover, the impact of cooperative communica-

tions on the secrecy capacity of MIMO wiretap systems were

studied in [11, 12]. In [13], the authors focused on the secrecy

performance of cognitive MIMO relaying networks. On the

other hand, in order to achieve higher secrecy capacities,

different beamforming schemes were considered in [14–16].

Nevertheless, beamforming-based methods require as many

radio-frequency (RF) chains as antenna ports, as well as the

use of advanced signal processing algorithms to accurately

estimate the channel state information (CSI). This results in

a high computational demand, which may be infeasible for

resource-constrained devices. Alternatively, as optimal antenna

selection at the transmitter side only requires a single RF chain

compared to classical beamforming schemes [17], transmit

antenna selection (TAS) has been adopted to enhance secrecy

performance at low-cost and complexity. Therefore, several

works have focused on the advantages of TAS in the context

of PLS [18, 19]. In those works, PLS metrics were investigated

in the combined use of TAS and maximal ratio combin-

ing (MRC) receivers affected by Rayleigh and Nakagami-m
fading, respectively. Readers are encouraged to find further
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information on PLS techniques in TAS/MRC systems in [20]

(and references therein).

Recently, the secrecy performance in MIMO wiretap chan-

nels has been analyzed over generalized fading conditions

(i.e., α-µ [21] and η-µ [22] fading models). However, the

fading channels considered in the works mentioned above are

sometimes inaccurate to characterize the propagation medium

in emerging practical scenarios [23]. To circumvent this issue,

generalized and versatile channel models, such as the Fluctu-

ating Two-Ray (FTR) [24] and the κ-µ shadowed [25], have

been proposed. Such models rely on the assumption that dom-

inant components are subject to random fluctuations, which

are associated in some contexts to human-body shadowing.

Based on this channel feature, the κ-µ shadowed fading model

finds great applicability in a range of real-world applications

such as device-to-device (D2D) communications, underwater

acoustic communications (UAC), body-centric fading chan-

nels, unmanned aerial vehicle (UAV) systems, land mobile

satellite (LMS), etc [26]. Besides, the κ-µ shadowed fading

model brings a significant advantage compared to other state-

of-the-art generalized fading models, which is the improved

mathematical tractability [27]. Therefore, this model does not

require the use of rather sophisticated special functions like

Meijer-G or Fox-H functions, which are not included in stan-

dard mathematical packages, and their evaluation may pose

numerical challenges. In the context of PLS, secrecy metrics

over the two fading models mentioned above for single-

input single-output (SISO) wiretap channels were investigated

in [28, 29]. To the best of our knowledge, the secrecy perfor-

mance of MIMO systems over κ-µ shadowed fading channels

remains unexplored. To fill this gap, by proposing novel and

tractable expressions for the main statistics of the MIMO

TAS/MRC κ-µ shadowed fading channel, we investigate the

impact of multiple antennas and fading parameters on the

secrecy performance of these networks. The main takeaways

of our work are as follows:

• We provide new equivalent forms of the κ-µ shad-

owed CDFs, which are very useful to derive either the

maximum or minimum of independent and identically

distributed (i.i.d.) κ-µ shadowed random variables (RVs).

Based on these results, novel closed-form expressions for

the probability density function (PDF) and the cumulative

distribution function (CDF) of i.i.d. κ-µ shadowed ran-

dom variables (RVs) associated with the legitimate links

are derived.

• We derive exact closed-form expressions for the secrecy

outage probability (SOP) of the proposed system, assum-

ing that the transmitter is not aware of the CSI of the

wiretap channel. We also provide closed-form expressions

for the average secrecy capacity (ASC) by assuming

that the CSI of the wiretap channel is available at the

transmitter side. Both secrecy metrics are developed in a

TAS/MRC configuration under κ-µ shadowed fading.

• Simple asymptotic expressions for the SOP and the

ASC in the high signal-to-noise ratio (SNR) regime are

obtained. Based on these formulations, we provide some

useful insights of the impact of the system parameters
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Fig. 1. A general TAS/MRC MIMO network consisting of a legitimate pair
and one eavesdropper, where the transmitter Alice (A), the receiver Bob (B),
and the eavesdropper Eve (E) are equipped with NA, NB, and NE antennas,
respectively.

(i.e., numbers of antennas and fading parameters) on the

PLS performance.

The remainder of this manuscript is organized as follows.

Section II introduces the system and channel models, as

well as the chief statistics of the maximum of i.i.d. κ-µ
shadowed RVs. Section III derives closed-form expressions

for the SOP and the asymptotic behaviour of the SOP over

i.i.d. κ-µ shadowed fading channels. Section IV presents

analytical expressions for the ASC, and the asymptotic ASC

is also obtained. Section V shows illustrative numerical results

and discussions. Finally, concluding remarks are provided in

Section VI.

Notation: Throughout this paper, fZ(z) and FZ(z) denote

the PDF and the CDF of a RV Z, respectively. E [·] is

the expectation operator, Pr {·} represents probability, |·| is

the absolute value, ≃ refers to “asymptotically equal to”,

and ≈ refers to “approximately equal to”. In addition, Γ(·)
denotes gamma function [35, Eq. (6.1.1)], γ(·, ·) is the lower

incomplete gamma function [35, Eq. (6.5.2)], Γ(·, ·) is the

upper incomplete gamma function [35, Eq. (6.5.3)], C is

the Euler-Mascheroni constant [34, Eq. (8.367.1)], e is the

exponential constant [34, Eq. (0.245.1)], 2F1 (·, ·; ·; ·) is the

hypergeometric function [35, Eq. (15.1.1)], and 1F1 (·, ·, ·) is

the confluent hypergeometric function [35, Eq. (13.1.3)].

II. SYSTEM MODEL

We consider the classic three-node model, as illustrated

in Fig. 1, where a source node Alice (A) sends confidential

information to a legitimate destination node Bob (B), while

an eavesdropper Eve (E) attempts to intercept this information

through the eavesdropper channel. In this system, all nodes,

i.e., the transmitter, the receiver, and the eavesdropper, are

equipped with multiple antennas denoted by NA, NB, and

NE, respectively.

A. Channel Model

We assume that both main and eavesdropper channels are

subject to i.i.d. quasi-static κ-µ shadowed fading. In that way,

the PDF and CDF of the instantaneous SNR of the RV γ
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following κ-µ shadowed fading can be expressed as a finite

mixture of gamma distributions [27]1

• If m < µ

fγ(γ) =

µ−m
∑

j=1

A1,jf
G
γ (ωA1;µ−m− j + 1; γ)

+
m∑

j=1

A2,jf
G
γ (ωA2;m− j + 1; γ) , (1a)

Fγ(γ) = 1−
µ−m
∑

j=1

A1,j exp

(

− γ

∆1

) µ−m−j
∑

r=0

1

r!

(
γ

∆1

)r

−
m∑

j=1

A2,j exp

(

− γ

∆2

)m−j
∑

r=0

1

r!

(
γ

∆2

)r

, (1b)

• If m ≥ µ

fγ(γ) =

m−µ
∑

j=0

Bjf
G
γ (ωB ;m− j; γ) , (2a)

Fγ(γ) = 1−
m−µ
∑

j=0

Bj exp

(

− γ

∆2

)m−j−1
∑

r=0

1

r!

(
γ

∆2

)r

, (2b)

where fG
X (γ; m̃;x) denotes the PDF of a RV X that follows

a gamma distribution, defined as

fG
X (γ; m̃;x) =

(
m̃

γ

)m̃
xm̃−1

(m̃− 1)!
exp

(

−xm̃

γ

)

, (3)

and

A1,j =(−1)
m

(
m+ j − 2

j − 1

)(
m

µκ+m

)m(
µκ

µκ+m

)−m−j+1

,

A2,j =(−1)
j−1

(
µ−m+ j − 2

j − 1

)

×
(

m

µκ+m

)j−1(
µκ

µκ+m

)m−µ−j+1

,

Bj =

(
m− µ

j

)(
m

µκ+m

)j (
µκ

µκ+m

)m−µ−j

, (4)

and

ωA1 =∆1 (µ−m− j + 1) ,

ωA2 =∆2 (m− j + 1) ,

ωB =∆2 (m− j) , (5)

where

∆1 =
γ

µ (1 + κ)
,

∆2 =
µκ+m

m

γ

µ (1 + κ)
. (6)

1Noteworthy, the PDF and CDF of the κ-µ shadowed distribution can be
represented in many ways (i) hypergeometric functions as proposed in its orig-
inal format [25]; (ii) an infinite series in terms of Laguerre polynomials [26],
and (iii) an infinite [30] and finite [27] mixture of gamma distributions. In
this work, we stick to the last one because of its mathematically tractable
expressions, well-suited to dealing with TAS/MRC systems.

In these expressions, γ = E [γ] is the average SNR. Besides,

µ, m, and κ are the fading parameters that denote the number

of the multipath clusters, the shadowing severity index, and

the ratio between the total power of the dominant components

associated to the line-of-sight (LOS) and the total power of the

scattered waves, respectively. Finally, it is worth mentioning

that the CDFs given in (1b) and (2b) should be reformulated

in order to derive the maximum of i.i.d. κ-µ shadowed RVs,

as will be seen in appendix A.

B. Transmission Scheme

In our MIMO wiretap system, the optimum TAS protocol

selects the strongest antenna for transmission, i.e. the one

that maximizes the instantaneous SNR between Alice and

Bob. From a secrecy perspective, this allows to maximize the

channel capacity and fully exploit the multi-antenna diversity

at the transmitter, while the optimum TAS for Bob corresponds

to a random transmit antenna for Eve. Moreover, we assume

that the MRC technique is employed at both Bob and Eve.

Therefore, the index of the selected antenna at the transmitter,

denoted by k∗, is determined by

k∗ = arg max
1≤k≤NA

NB∑

l=1

|hk,l|2 , (7)

where hk,l is the channel coefficient of the link between k-th

transmitting antenna at Alice and l-th receive antenna at Bob.

This index is informed to Alice through a feedback channel.

Then, under a TAS/MRC setup, the received signals at the l-th
antenna of Bob and at the r-th (1 ≤ f ≤ NE) antenna of Eve

are given by

yB,l =
√
Phk∗,lx+ nl, (8a)

yE,f =
√
Pgk∗,fx+ nf , (8b)

where P is is the average transmit power, x denotes the secret

message to be transmitted, hk∗,l is the channel coefficients

of the link between the selected antenna k∗ at Alice and the

l-th receive antenna at Bob. Likewise, gk∗,f is the channel

coefficient of the link between the selected antenna k∗ at Alice,

and the f -th receive antenna at Eve. Besides, nl and nf are

additive white complex Gaussian noise at the receivers of the

l-th antenna of Bob and at the f -th antenna of Eve with zero

mean and variance σ2
w with w ∈ {B,E}, respectively. Based

on (8), the corresponding instantaneous SNRs at the receivers

can be expressed as

γB =
P
∑NB

l=1 |hk∗,l|2

σ2
B

, (9a)

γE =
P
∑NE

f=1 |gk∗,f |2

σ2
E

. (9b)

C. Channel Statistics

In this section, we present the framework followed for

obtaining the statistics of the main and eavesdropper channels,

which will be used on the secrecy analysis in the next sections.
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Regarding the eavesdropper channel, let γk∗,f =
P |gk∗,f |2

σ2

E

be the instantaneous received SNR of the f -th diversity

branch of the MRC receiver at Eve. Now, by considering

NE i.i.d. κ-µ shadowed RVs, i.e., γk∗,f ∼ (γE, κE, µE,mE)
for f = {1, . . . , NE}, the sum of these RVs is another

κ-µ shadowed RV with scaled parameters, i.e., γE ∼
(NEγE, κE, NEµE, NEmE) [25, Proposition 1]. Therefore,

from (9b) the corresponding PDF and CDF at Eve are re-

spectively given by

• If mE < µE

fγE
(γE) =

ηE∑

j=1

AE
1,jfG

(
ωE
A1; ηE − j + 1; γE

)

+

νE∑

j=1

AE
2,jfG

(
ωE
A2; νE − j + 1; γE

)
, (10a)

FγE
(γE) =1−

ηE∑

j=1

AE
1,j exp

(

− γE
∆E

1

) ηE−j
∑

r=0

1

r!

(
γE
∆E

1

)r

−
νE∑

j=1

AE
2,j exp

(

− γE
∆E

2

) νE−j
∑

r=0

1

r!

(
γE
∆E

2

)r

,

(10b)

where ηE = NE(µE −mE), and νE = NEmE.

• If mE ≥ µE

fγE
(γE) =

βE∑

j=0

BE
j fG

(
ωE
B ; νE − j; γE

)
, (11a)

FγE
(γE) =1−

βE∑

j=0

BE
j exp

(

− γE
∆E

2

) νE−j−1
∑

r=0

1

r!

(
γE
∆E

2

)r

,

(11b)

where βE = NE(mE − µE). For notational convenience, all

the coefficients marked with superscripts E (e.g., ∆E
1 ) refer to

the fading parameters at Eve, which can be obtained from (4)

to (6) by substituting γ, µ, m and κ by NEγE, NEµE, NEmE,

and κE, respectively.

Regarding the legitimate link, let γk∗,l =
P |hk∗,l|2

σ2

B

be

the instantaneous received SNR of the l-th diversity branch

of the MRC receiver at Bob, then the CDF and PDF of

γB =
∑NB

l=1 γk∗,l are respectively given in the following

propositions.

Proposition 1. The CDF of γB is given by

• If mB < µB

FγB
(γB) =1 +

NA∑

k=1

(−1)k
(
NA

k

) k∑

c=0

(
k

c

)
∑

ρ(c,νB)

c!

p1! · · · pνB
!

×






νB∏

q=1






(
1

∆B
2

)νB−q

(νB − q)!

νB∑

z=νB+1−q

AB
2,νB+1−z






pq





× exp
(

−γB

(
k−c
∆B

1

)) ∑

ρ(k−c,ηB)

(k − c)!

s1! · · · sηB
!

×






ηB∏

t=1






(
1

∆B
1

)ηB−t

(ηB − t)!

ηB∑

z=ηB+1−t

AB
1,ηB+1−z






st




× exp
(

−γB

(
c

∆B
2

))

γ
∑ηB

t=1
(ηB−t)st+

∑νB
q=1

(νB−q)pq

B ,

(12)

where ηB = NB(µB −mB), νB = NBmB. As in the previ-

ous case, all the coefficients marked with superscripts B (e.g.,

∆B
1 ) refer to the fading parameters at Bob, which can be ob-

tained from (4) to (6) by substituting γ for NBγB, µ for NBµB,

m for NBmB, and κ for κB. Also, based on the multinomial

theorem [35, Eq. (24.1.2)], we have that ρ (k − c, ηB) =
{(s1, s2, · · · , sηB

) : st ∈ N,
∑ηB

t=1 st = k − c}, and similarly

ρ (c, νB) =
{

(p1, p2, · · · , pνB
) : pq ∈ N,

∑νB

q=1 pq = c
}

.

• If mB ≥ µB

FγB
(γB) =1 +

NA∑

k=1

(−1)k
(
NA

k

)
∑

ρ(k,νB)

k!

s1! · · · sνB
!

×






νB∏

t=1






(
1

∆B
2

)νB−t

(νB − t)!

βB∑

z=βB+1−T (j−1)

BB
βB−z






st




× exp
(

−γB

(
k

∆B
2

))

γ
∑νB

t=1
(νB−t)st

B , (13)

where ρ (k, νB) = {(s1, s2, · · · , sνB
) : st ∈ N,

∑νB

t=1 st = k}
and βB = NB(mB − µB).

Proof. See Appendix A.

Proposition 2. From (12) and (13), the PDFs of γB can be

obtained as

• If mB < µB
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fγB
(γB) =

NA∑

k=1

(−1)k
(
NA

k

) k∑

c=0

(
k

c

)
∑

ρ(c,νB)

c!

p1! · · · pνB
!

×






νB∏

q=1






(
1

∆B
2

)νB−q

(νB − q)!

νB∑

z=νB+1−q

AB
2,νB+1−z






pq





×
exp

(

−γB

(
k−c
∆B

1

+ c
∆B

2

))

∆B
1∆

B
2

∑

ρ(k−c,ηB)

(k − c)!

s1! · · · sηB
!

×






ηB∏

t=1






(
1

∆B
1

)ηB−t

(ηB − t)!

ηB∑

z=ηB+1−t

AB
1,ηB+1−z






st




× γ
−1+

∑ηB
t=1

(ηB−t)st+
∑νB

q=1
(νB−q)pq

B

×
(

∆B
1∆

B
2

(
ηB∑

t=1

(ηB − t)st +

νB∑

q=1

(νB − q)pq

)

− γB
(
∆B

1 c−∆B
2 (c− k)

)

)

. (14)

• If mB ≥ µB

fγB
(γB) =

NA∑

k=1

(−1)k
(
NA

k

)
∑

ρ(k,νB)

k!

s1! · · · sνB
!

×






νB∏

t=1






(
1

∆B
2

)νB−t

(νB − t)!

βB∑

z=βB+1−T (j−1)

BB
βB−z






st




×
exp

(

−kγB

∆B
2

)

∆B
2

γ
−1+

∑νB
t=1

(νB−t)st
B

×
(

∆B
2

νB∑

t=1

(νB − t)st − kγB

)

. (15)

III. SECRECY OUTAGE PROBABILITY ANALYSIS

A. Exact SOP Analysis

For the first scenario, we consider a silent eavesdropper

whose CSI is not available for Alice. Therefore, Alice selects

a constant secrecy rate RS to transmit messages to Bob. In

practice, this setup is associated with a passive eavesdropping

scenario. The secrecy capacity CS is defined as [5]

CS =max {CB − CE, 0} , (16)

in which CB = log2(1 + γB) and CE = log2(1 + γE) are the

capacities of the main and eavesdropper channels, respectively.

Note that secrecy can be guaranteed only if RS ≤ CS, and is

compromised otherwise. In this scenario, the SOP is a useful

performance metric for measuring information leakage. The

SOP is defined as the probability that the instantaneous CS

falls below a predefined target secrecy rate, RS, and this is

expressed as [31]

SOP = Pr {CS (γB, γE) < RS}
= Pr {γB < τγE + τ − 1}

=

∫ ∞

0

FγB
(τγE + τ − 1) fγE

(γE)dγE, (17)

where τ
∆
= 2RS .

From this, the expression for the SOP can be obtained as

stated in the following Proposition.

Proposition 3. The SOP for mi < µi and mi ≥ µi with

i ∈ {B,E} over i.i.d. κ-µ shadowed fading channels can be

obtained as (19) and (20), respectively, at the top of the next

page.

Proof. See Appendix B.

From (17), a high SNR approximation of the SOP, defined

as SOPA can be expressed as

SOPA = Pr {γB < τγE} ≤ SOP. (18)

B. Asymptotic SOP

In this section, we obtain an asymptotic closed-form ex-

pression for the SOP in order to gain more insights into the

impact of the fading parameters on the secrecy performance

of the proposed system. For that purpose, we consider the

behaviour at the high SNR regime of the legitimate link,

where γB → ∞ while γE is kept fixed, i.e., the case in

which A is very close to B and E is located far away. Our

aim is to express the asymptotic SOP expression in the form

SOP∞ ≈ Gcγ
−Gd

B [32], where Gc and Gd represent the

secrecy array gain and the secrecy diversity gain (or diversity

order), respectively. The expression for the asymptote of the

SOP over κ-µ shadowed fading channels is given in the

following Proposition.

Proposition 4. The asymptotic closed-form expression of the

SOP over i.i.d. κ-µ shadowed can be obtained as (21), at the

top of the next page.

Proof. See Appendix C.

Remark 1. From (21), it can be noticed that the secrecy

diversity gain is given by Gd = NANBµB. In other words,

the secrecy diversity gain is directly affected by the number of

antennas (i.e., NA and/or NB) or the number of wave clus-

ters arriving at Bob. Interestingly, neither the LOS condition

through κB nor the LOS fluctuation through mB affect the

secrecy diversity order. This fact plays a pivotal role in the

secrecy performance of the system (as will be discussed in

Section V). On the other hand, notice that the fading parameter

µE corresponding to the eavesdropper channel does not affect

the secrecy diversity gain of the underlying system (see Fig. 5).
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SOP =

NA∑

k=0

(−1)k
(
NA

k

) k∑

c=0

(
k

c

)
∑

ρ(k−c,ηB)

(k − c)!

s1! · · · sηB
!






ηB∏

t=1






(
1

∆B
1

)ηB−t

(ηB − t)!

ηB∑

z=ηB+1−t

AB
1,ηB+1−z






st




∑

ρ(c,νB)

c!

p1! · · · pνB
!

×






νB∏

q=1






(
1

∆B
2

)νB−q

(νB − q)!

νB∑

z=νB+1−q

AB
2,νB+1−z






pq



 exp

(

− (τ − 1)

(
k − c

∆B
1

+
c

∆B
2

))
∑ηB

t=1
(ηB−t)st+

∑νB
q=1

(νB−q)pq
∑

b=0

×
(∑ηB

t=1(ηB − t)st +
∑νB

q=1(νB − q)pq

b

)

(τ − 1)
∑ηB

t=1
(ηB−t)st+

∑νB
q=1

(νB−q)pq−b
(τ)

b

[
ηE∑

j=1

(
ηE − j + 1

ωE
A1

)ηE−j+1

×
AE

1,j

(ηE − j)!

(
τ (k − c)

∆B
1

+
τc

∆B
2

+
ηE − j + 1

ωE
A1

)−1−b+j−ηE

Γ (1 + b− j + ηE) +

νE∑

j=1

AE
2,j

(νE − j)!

(
νE − j + 1

ωE
A2

)νE−j+1

×
(
τ (k − c)

∆B
1

+
τc

∆B
2

+
νE − j + 1

ωE
A1

)−1−b+j−νE

Γ (1 + b− j + νE)

]

. (19)

SOP =

NA∑

k=0

(−1)k
(
NA

k

)

exp

(

−k
(τ − 1)

∆B
2

)
∑

ρ(k,νB)

k!

s1! · · · sνB
!






νB∏

t=1






(
1

∆B
2

)νB−t

(νB − t)!

βB∑

z=βB+1−T (j−1)

BB
βB−z






st




∑νB
t=1

(νB−t)st∑

b=0

τ b

×
(∑νB

t=1(νB − t)st
b

)

(τ − 1)
∑νB

t=1
(νB−t)st

βE∑

j=0

BE
j

νE − j − 1

(
νE − j

ωE
B

)νE−j (
kτ

∆B
2

+
νE − j

ωE
B

)j−b−νE

Γ (b− j + νE) .

(20)

SOP∞ ≃
(

mNBmB

B (1 + κB)
NBµB µNBµB−1

B τNBµB

NBγ
NBµB

B (mB + κBµB)
NBmB Γ (NBµB)

)NA

mNEmE

E

Γ (NEµE) (µEκE +mE)
NEmE

(
µE (1 + κE)

γE

)−NANBµB

× Γ (NANBµB +NEµE) 2F1

(

NEmE, NANBµB +NEµE, NEµE,
κEµE

mE + κEµE

)

. (21)

IV. AVERAGE SECRECY CAPACITY

In this section, we consider the active eavesdropping sce-

nario, where the CSIs of both main and eavesdropper channels

are known at Alice. Unlike the passive eavesdropping scenario,

Alice can now adapt her transmission rate according to any

achievable secrecy rate RS such that RS ≤ CS. Then, the

maximum achievable secrecy rate occurs when RS = CS.

Since the CSI of the eavesdropper channel is available at Alice,

the average secrecy capacity is an essential performance metric

to assess the secrecy performance.

A. Exact ASC

According to [31], the ASC, CS, is defined as the average

of the secrecy rate over the instantaneous SNR of the main

and eavesdropper channels. For convenience, we adopt the

formulation of CS introduced in [21, Proposition 3]

CS = CB − L (γB, γE) , (22)

where CB is the average capacity of the main link in the

absence of an eavesdropper, given by

CB =
1

ln 2

∫ ∞

0

1− FγB
(γE)

1 + γE
dγE, (23)

and L (γB, γE) can be interpreted as an ASC loss, defined as

L (γB, γE) =
1

ln 2

∫ ∞

0

F γE
(γE)F γB

(γE)

1 + γE
dγE ≥ 0, (24)

in which F γB
and F γE

denote the complementary CDF

(CCDF) of the RVs γB, and γE, respectively. Then, the

ASC expressions over i.i.d. κ-µ shadowed fading channels

in a TAS/MRC system are given as stated in the following

Proposition.

Proposition 5. The ASC closed-form expressions for mi ≥ µi

and mi < µi with i ∈ {B,E} over i.i.d. κ-µ shadowed fading

channels can be formulated as (25), and (26), at the top of

the next page, respectively.

Proof. See Appendix D.
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CS =
1

ln 2

NA∑

k=1

(−1)k+1

(
NA

k

)
∑

ρ(k,νB)

k!

s1! · · · sνB
!






νB∏

t=1






(
1

∆B
2

)νB−t

(νB − t)!

βB∑

z=βB+1−T (j−1)

BB
βB−z






st


 exp

(
k

∆B
2

)

× Γ

(

1 +

νB∑

t=1

(νB − t)st

)

Γ

(

−
νB∑

t=1

(νB − t)st,
k

∆B
2

)

− 1

ln 2

NA∑

k=1

(−1)k+1

(
NA

k

)
∑

ρ(k,νB)

k!

s1! · · · sνB
!

×






νB∏

t=1






(
1

∆B
2

)νB−t

(νB − t)!

βB∑

z=βB+1−T (j−1)

BB
βB−z






st




βE∑

j=0

BE
j

νE−j−1
∑

r=0

1

r!

(
1

∆E
2

)r

exp

(
k

∆B
2

+
1

∆E
2

)

× Γ

(

1 + r +

νB∑

t=1

(νB − t)st

)

Γ

(

−r −
νB∑

t=1

(νB − t)st,
k

∆B
2

+
1

∆E
2

)

. (25)

CS =
1

ln 2

NA∑

k=1

(−1)k+1

(
NA

k

) k∑

c=0

(
k

c

)
∑

ρ(c,νB)

c!

p1! · · · pνB
!






νB∏

q=1






(
1

∆B
2

)νB−q

(νB − q)!

νB∑

z=νB+1−q

AB
2,νB+1−z






pq





∑

ρ(k−c,ηB)

(k − c)!

s1! · · · sηB
!

×






ηB∏

t=1






(
1

∆B
1

)ηB−t

(ηB − t)!

ηB∑

z=ηB+1−t

AB
1,ηB+1−z






st


 exp

(
k − c

∆B
1

+
c

∆B
2

)

Γ

(

1 +

ηB∑

t=1

(ηB − t)st +

νB∑

q=1

(νB − q)pq

)

× Γ

(

−
ηB∑

t=1

(ηB − t)st −
νB∑

q=1

(νB − q)pq,
∆B

2 (k − c) + ∆B
1 c

∆B
1∆

B
2

)

− 1

ln 2

NA∑

k=1

(−1)k+1

(
NA

k

) k∑

c=0

(
k

c

)
∑

ρ(c,νB)

c!

p1! · · · pνB
!

×






νB∏

q=1






(
1

∆B
2

)νB−q

(νB − q)!

νB∑

z=νB+1−q

AB
2,νB+1−z






pq





∑

ρ(k−c,ηB)

(k − c)!

s1! · · · sηB
!






ηB∏

t=1






(
1

∆B
1

)ηB−t

(ηB − t)!

ηB∑

z=ηB+1−t

AB
1,ηB+1−z






st




× exp
(

k−c
∆B

1

+ c
∆B

2

)





ηE∑

j=1

AE
1,j

ηE−j
∑

r=0

1

r!

(
1

∆E
1

)r

exp

(
1

∆E
1

)

Γ

(

−r −
ηB∑

t=1

(ηB − t)st −
νB∑

q=1

(νB − q)pq,
k−c
∆B

1

+ c
∆B

2

+ 1
∆E

1

)

× Γ

(

1 + r +

ηB∑

t=1

(ηB − t)st +

νB∑

q=1

(νB − q)pq

)

+

νE∑

j=1

AE
2,j

νE−j
∑

r=0

1

r!

(
1

∆E
2

)r

Γ

(

1 + r +

ηB∑

t=1

(ηB − t)st +

νB∑

q=1

(νB − q)pq

)

× exp

(
1

∆E
2

)

Γ

(

−r −
ηB∑

t=1

(ηB − t)st −
νB∑

q=1

(νB − q)pq,
k−c
∆B

1

+ c
∆B

2

+ 1
∆E

2

))

. (26)

B. Asymptotic ASC

In this section, we derive a closed-form asymptotic ASC

expression to assess the system performance in the high-SNR

regime. Herein, as in the asymptotic SOP analysis, we consider

that γB goes to infinity, while γE is kept unchanged. Based on

this, the asymptotic expression of the ASC can be expressed

as [21]

C
∞

S ≃ C
γ
B
→∞

B − CE, (27)

where the average capacity of the eavesdropper channel, CE,

is given by [21]

CE =
1

ln 2

∫ ∞

0

1− FγE
(γE)

1 + γE
dγE, (28)

Proposition 6. The asymptotic expressions of ASC for mi <
µi and mi ≥ µi with i ∈ {B,E} over i.i.d. κ-µ shadowed

fading channels are given in (29) and (30), at the top of the

next page, respectively. In these expressions, U(u) and W(w)
are obtained from (31).

Proof. See Appendix E.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we provide illustrative numerical results

along with Monte Carlo simulations to verify the proposed

analytical derivations. In all plots, as a consequence of using

the κ-µ shadowed fading statistics in [27], we consider that the

fading severity parameters (i.e., µi and mi for i ∈ {B,E}) take

integer values. We use integer values for the following reasons:
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C
∞

S ≃ log2(NBγB) + log2(e)

NA∑

k=1

(−1)k
(
NA

k

) k∑

c=0

(
k

c

)
∑

ρ(c,νB)

c!

p1! · · · pνB
!






νB∏

q=1






(
NBγ

B

∆B
2

)νB−q

(νB − q)!

νB∑

z=νB+1−q

AB
2,νB+1−z






pq





×
∑

ρ(k−c,ηB)

(k − c)!

s1! · · · sηB
!






ηB∏

t=1






(
NBγ

B

∆B
1

)ηB−t

(ηB − t)!

ηB∑

z=ηB+1−t

AB
1,ηB+1−z






st


U

(
ηB∑

t=1

(ηB − t)st +

νB∑

q=1

(νB − q)pq

)

− 1

ln 2

×
(

exp
(

1
∆E

1

) ηE∑

j=1

AE
1,j

ηE−j
∑

r=0

Γ
(

−r, 1
∆E

1

)

r!

(
1

∆E
1

)r

Γ (1 + r) + exp
(

1
∆E

2

) νE∑

j=1

AE
2,j

νE−j
∑

r=0

Γ
(

−r, 1
∆E

2

)

r!

(
1

∆E
2

)r

Γ (1 + r)

)

.

(29)

C
∞

S ≃ log2(NBγB) + log2(e)

NA∑

k=1

(−1)k
(
NA

k

)
∑

ρ(k,νB)

k!

s1! · · · sνB
!






νB∏

t=1






(
NBγ

B

∆B
2

)νB−t

(νB − t)!

βB∑

z=βB+1−T (j−1)

BB
βB−z






st




×W
(

νB∑

t=1

(νB − t)st

)

− 1

ln 2
exp

(
1

∆E
2

) βE∑

j=0

BE
j

νE−j−1
∑

r=0

1

r!

(
1

∆E
2

)r

Γ (1 + r) Γ

(

−r,
1

∆E
2

)

. (30)

U(u) =







C + ln
(

(k−c)NBγ
B

∆B
1

+ cNBγ
B

∆B
2

)

, for u = 0

−
(

NBγ
B(c∆B

1
+(k−c)∆B

2 )
∆B

1
∆B

2

)−(
∑ηB

t=1
(ηB−t)st+

∑νB
q=1

(νB−q)pq)
Γ
(
∑ηB

t=1(ηB − t)st +
∑νB

q=1(νB − q)pq

)

, otherwise.

W(w) =







C + ln
(

kNBγ
B

∆B
2

)

, for w = 0

−
(

kNBγ
B

∆B
2

)−(
∑νB

t=1
(νB−t)st)

Γ (
∑νB

t=1(νB − t)st) , otherwise.
(31)

(i) the shape parameter µB,E was originally defined in the κ-

µ distribution as the number of clusters of multipath waves

propagating in a certain environment [33]. So, as asserted

in [33], the consideration that the parameters, µB,E to take

integer values is related to the physical model for the κ-µ
distribution; and (ii) in practice, the impact of restricting the

fading parameter mB,E to take integer values is noticeable only

in severe shadowing environments (i.e., low values of mB,E).

For medium to mild shadowing scenarios (i.e., high values of

mB,E), the impact of constraining mB,E to take integer values

is even more negligible [27]. Also, in all figures, Monte Carlo

simulations are represented with markers.

In Fig. 2, we compare the SOP as a function of γB for

different numbers of transmit antennas, NA, while the number

of receive antennas is set to NB = NE = 2. Moreover, other

system parameters are setting as: RS = 1 bps/Hz, γE = 8 dB,

µi = 2, κi = 2, and mi = 3 for i ∈ {B,E}. Note that in all

instances, our analytical expressions, for exact and asymptotic

SOP, perfectly match with Monte Carlo simulations. Here,

our goal is to analyze the impact of NA on the secrecy

diversity gain of the legitimate channels for the considered

cases. Therefore, based on the asymptotic plots, we see that

the antenna configuration at Alice clearly contributes to the

slope of the SOP in a proportional way. On one hand, this

means that the decay of the SOP is steeper (i.e., better secrecy

performance) as the number of transmit antennas increases. On

the other hand, as the number of transmit antennas decreases

the SOP is impaired and the decay is not so pronounced. These

facts are in coherence with the results discussed in Remark 1.

Fig. 3 presents the SOP vs. γB for different numbers of

eavesdroppers antennas, NE, and a fixed number of antennas

at the legitimate nodes, NA = NB = 2. The remainder

parameters are set to: RS = 1 bps/Hz, γE = 8 dB, µi = 3, and

κi = 5, for i ∈ {B,E}. In this scenario, we explore the impact

of having light (mB = mE = 10) or heavy (mB = mE = 1)

shadowing on the LOS components at both Bob and Eve in an

environment with multiple antennas. It can be observed that

the combination of mild shadowing in the LOS components

with a reduced number of antennas at Eve derives into a

better secrecy performance, as expected. Conversely, when the

shadowing is heavy or a large number of antennas is used at the

eavesdropper, these always lead to lower secrecy performance.

In Fig. 4, we illustrate the SOP as a function of γB by con-

sidering different numbers of receive antennas NB, and fixed

number of antennas NA = NE = 2. The other parameters are
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Fig. 2. SOP vs. γB, for various numbers of transmit antennas, NA, and a
fixed number of receive antennas, NB = NE = 2. The setting parameter
values are: RS = 1 bps/Hz, γE = 8 dB, µi = 2, κi = 2, and mi = 3 for
i ∈ {B,E}. Markers denote Monte Carlo simulations.
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Fig. 3. SOP vs. γB, for various numbers of eavesdroppers antennas, NE,
and a fixed number antennas, NA = NB = 2. The setting parameter values
are: RS = 1 bps/Hz, γE = 8 dB, µi = 3, and κi = 5, for i ∈ {B,E}.
Markers denote Monte Carlo simulations, whereas the solid and dash-dotted
lines represent analytical solutions.

setting as follows: RS = 2 bps/Hz, γE = 8 dB, µi = 1, and

mi = 2 for i ∈ {B,E}. In this scenario, we consider small

(κB = κE = 1.5) and large (κB = κE = 10) LOS components

on the received wave clusters for a different number of

antennas at Bob. We observe that the joint effect of increasing

the number of Bob’s antennas (which improves the secrecy

diversity gain) and strong LOS components (κB = κE = 10)

leads to a significant improvement on the secrecy performance.

This result is linked to the fact that NB directly influences the

slope of the SOP, as shown in Remark 1. However, in the

opposite scenario (wherein both NB and κi for i ∈ {B,E}
decrease), we note that the secrecy performance significantly

deteriorates.

Fig. 5 shows the SOP vs. γB for NA = NB = 2,
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Fig. 4. SOP vs. γB, for different numbers of receive antennas, NB, and
unchanged number of: (i) receive antennas, NE = 2, and (ii) transmit
antennas, NA = 2. The setting parameter values are: RS = 2 bps/Hz,
γE = 8 dB, µi = 1, and mi = 2 for i ∈ {B,E}. Markers denote Monte
Carlo simulations, whereas the solid and dash-dotted lines represent analytical
solutions.

NE = 3 and different received wave clusters, µB and µE. The

remainder parameters are set to: RS = 2 bps/Hz, γE = 8 dB,

κi = 4, and mi = 5 for i ∈ {B,E}. In the proposed scenarios,

we investigate the influence of the number of wave clusters at

the receiver nodes on the secrecy performance. We consider

the following two cases: (i) µE is kept fixed, whereas µB goes

from 2 to 5; (ii) µB is kept unchanged, whereas µE goes from

2 to 5. In the former case, we note that the secrecy diversity

order varies at the rate of the parameter µB. For instance,

as µB increases, the secrecy performance improves. In the

latter case, it is observed that as µE increases, the slope of the

SOP remains identical. This fact corroborates our finding (see

Remark 1) that the secrecy diversity gain of the system is not

affected by the number of received wave clusters at Eve. From

a secrecy perspective, this result is a valuable insight into the

design and implementation criteria of future mobile networks.

In Fig. 6, we show SOP against the κi values with fixed

fluctuation mi = 3 for i ∈ {B,E}. For all curves, the config-

uration parameters are as follows: NA = 3, NB = NE = 2,

RS = 3 bps/Hz, γE = 8 dB, and γB = 25 dB. Here, we

investigate the achievable SOP when the LOS components,

i.e. κi (for i ∈ {B,E}) increase. We observe three different

scenarios for the SOP behavior regarding the configuration

of parameters. For µi > mi (with i ∈ {B,E}), increasing the

received power through the LOS components is detrimental for

the secrecy performance, which may seem counter-intuitive at

a first glance. However, the case with µB > mB (note that

µE becomes irrelevant as indicated in Fig. 5) indicates that

the dominant components associated to LOS are affected by

a larger fading severity than the scattering counterpart, and

therefore performance worsens as κB increases. Conversely,

µi < mi (with i ∈ {B,E}), the SOP is enhanced as

the LOS components increase. For the specific case where

µi = mi (with i ∈ {B,E}), we note that the SOP does

not vary according to the parameter κi (for i ∈ {B,E}).
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Fig. 5. SOP vs. γB, for NA = NB = 2, NE = 3, and different received
wave clusters, µB, and µE. The setting parameter values are: RS = 2 bps/Hz,
γE = 8 dB, κi = 4, and mi = 5 for i ∈ {B,E}. The solid and dash-dotted
lines represent analytical solutions.
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Fig. 6. SOP vs. κi, with NA = 3, NB = NE = 2, and fixed mi = 3 for
i ∈ {B,E}. The setting parameter values are: RS = 3 bps/Hz, γE = 8 dB,
and γB = 25 dB. Markers denote Monte Carlo simulations.

We can explain this observation because if µi = mi (for

i ∈ {B,E}) this implies that both the scattering and the

shadowed LOS components in each cluster experience the

same fading severity. Therefore, SOP becomes independent

of κi in this setup.

Fig. 7 depicts the ASC performance vs. γB, for different

configurations of NA, NB, and NE. The remainder parameters

are set to: γE = 8 dB, number of clusters µi = 2 with high

fluctuation mi = 1, and LOS environments κi = 5 for i ∈
{B,E}. From all figures, it is straightforward to see that for

the scenarios with severe LOS fluctuation, an excellent strategy

to improve the CS is to equip Bob with more antennas than

Alice. In the opposite scenario, when Eve’s capabilities (e.g.,

more antennas) are better than those of legitimate peers, the

secrecy performance is compromised.

Finally, Fig. 8 shows the ASC as a function of γB, con-
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Fig. 7. ASC vs. γB, for different configurations of NA, NB, and NE. The
corresponding parameter values are: γE = 8 dB, µi = 2, mi = 1, and
κi = 5 for i ∈ {B,E}. Markers denote Monte Carlo simulations.
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Fig. 8. ASC vs. γB, for different numbers of receive antennas, NB, and
fixed number of antennas, NA = NE = 2. The corresponding parameter
values are: γE = 8 dB, and µi = mi = 2 for i ∈ {B,E}. Markers denote
Monte Carlo simulations, whereas the solid and dash-dotted lines represent
analytical solutions.

sidering different numbers of receive antennas, NB, and a

fixed number of antennas, NA = NE = 2. The remainder

parameters are set to: γE = 8 dB, and µi = mi = 2 for

i ∈ {B,E}. We note that CS is not affected by increasing the

power of the LOS components (i.e., κi = 1.5 to κi = 10 for

i ∈ {B,E}). This result confirms that an increase in the power

of the LOS components does not always favor the CS. This

observation is linked to the discussions in Fig. 6, so CS is

independent of κi. Obviously, this channel behavior changes

when mi ≥ µi or mi < µi (for i ∈ {B,E}). In addition,

in Fig. 7 and Fig. 8, we see that the asymptotic ASC curves

tightly approximate the Monte Carlo simulations and the exact

analytical values in the high SNR regime.
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VI. CONCLUSIONS

We analyzed how different propagation mechanisms,

namely LOS condition, LOS fluctuation and clustering of

scattered multipath waves, impact the PLS performance of

MIMO wiretap systems. Our closed-form exact and asymptotic

expressions revealed that a larger contribution of LOS compo-

nents with a weak fluctuation together with a rich scattering

condition for the legitimate link favors a communication with

secrecy. However, whenever the LOS components arriving at

Bob suffer from a larger fading severity than the multipath

clustering counterpart (i.e. mB < µB), secrecy performance

worsens as κB is increased. We observe that the asymptotic

behavior depends not only on the number of antennas of

the legitimate pairs (as expected) but also on the scattering

environment (i.e., µB) of the legitimate link. This fact is a

crucial insight to be taken into account in the design criteria

of the next networks. We also verified that the role of the

fading parameters at Eve becomes less important as γB > γE.

APPENDIX A

PROOF OF PROPOSITION 1

The instantaneous SNR at Bob is given by γB =
∑NB

l=1 γk∗,l.

So, using (7), the CDF of γB can be formulated as

FγB
(γB) =

(

Fγ1
(γB)

)NA

, (32)

where γ1 =
∑NB

l=1 γk,l with γk,l denoting the instantaneous

received SNR of the link between a single transmitting k-

th antenna at Alice and the l-th receive antenna at Bob. In

dealing with i.i.d. channels, the CDF of γ1 can be obtained

by following the same methodology used for (10), and (11),

i.e., γ1 ∼ (NBγB, κB, NBµB, NBmB). However, the resulting

CDFs of γ1
2 become intractable in developing (32), if not

impossible. Therefore, we propose to reformulate such CDFs

of γ1 from its original forms to equivalent expressions by

changing the indices of the sums and rearranging some of

the terms, so we obtain

• If mB < µB

Fγ1
(γB) =1−

ηB∑

j=1

(
γB

∆B
1

)ηB−j exp

(

−
γB

∆B
1

)

(ηB−j)!

ηB∑

z=ηB+1−j

AB
1,ηB+1−z

−
νB∑

j=1

(
γB

∆B
2

)νB−j exp

(

−
γB

∆B
2

)

(νB−j)!

ν∑

z=ν+1−j

AB
2,νB+1−z,

(33)

where ηB = NB(µB −mB), and νB = NBmB.

• If mB ≥ µB

2The resulting CDFs of γ1 refer to (10b) and (11b) by changing all the
subscripts E by B.

Fγ1
(γB) =1−

νB−1∑

j=0

(
γB

∆B
2

)νB−1−j exp

(

−
γB

∆B
2

)

(νB−1−j)!

×
βB∑

z=βB+1−T (j)

BB
βB−z, (34)

where βB = NB(mB − µB), the coefficients marked with su-

perscripts B (e.g., ∆B
1 ) are associated to the fading parameters

at Bob, and

T (j) =

{

j + 1, for 0 ≤ j ≤ βB

βB + 1, otherwise.

In both (33) and (34), the respective coefficients can be

obtained from (4) to (6) by substituting γ, µ, m, and κ by

NBγB, NBµB, NBmB, and κB, respectively.

In what follows, we derive the CDF of γB for mB < µB

and mB ≥ µB.

• If mB < µB

Substituting (33) into (32) and by applying the binomial

expansion twice [34, Eq. (1.111)], we get

FγB
(γB) =

NA∑

k=0

(−1)k
(
NA

k

) k∑

c=0

(
k

c

)( ηB∑

j=1

(
γB

∆B
1

)ηB−j

︸ ︷︷ ︸

T1

×
exp

(

−
γB

∆B
1

)

(ηB−j)!

ηB∑

z=ηB+1−j

AB
1,ηB+1−z

)k−c

︸ ︷︷ ︸

T1

(
νB∑

j=1
︸ ︷︷ ︸

T2

×
(

γB

∆B
2

)νB−j exp

(

−
γB

∆B
2

)

(νB−j)!

ν∑

z=νB+1−j

AB
2,νB+1−z

)c

︸ ︷︷ ︸

T2

.

(35)

Next, by using the multinomial theorem [35, Eq. (24.1.2)]

for both terms T1 and T2, and after some mathematical

manipulations, the CDF of γB can be formulated as in (12),

which concludes the proof.

• If mB ≥ µB

Replacing (34) into (32) and by applying the binomial expan-

sion [34, Eq. (1.111)], it follows that

FγB
(γB) =

NA∑

k=0

(−1)k
(
NA

k

)( νB∑

j=1

(
γB

∆B
2

)νB−j

︸ ︷︷ ︸

T3

×
exp

(

−
γB

∆B
2

)

(νB−j)!

βB∑

z=βB+1−T (j−1)

BB
βB−z

)k

︸ ︷︷ ︸

T3

. (36)

Again, by using the multinomial expansion [35, Eq. (24.1.2)]

into T3, and after some algebraic manipulations, the CDF of

γB can be expressed as in (13). This completes the proof.
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APPENDIX B

PROOFS OF PROPOSITION 3

A. SOP

• If mi < µi for i ∈ {B,E}

Substituting (10a) and (12) into (17), we can obtain

SOP =

NA∑

k=0

(−1)k
(
NA

k

) k∑

c=0

(
k

c

)
∑

ρ(k−c,ηB)

(k − c)!

s1! · · · sηB
!

×






ηB∏

t=1






(
1

∆B
1

)ηB−t

(ηB − t)!

ηB∑

z=ηB+1−t

AB
1,ηB+1−z






st




×
∑

ρ(c,νB)

c!

p1! · · · pνB
!






νB∏

q=1






(
1

∆B
2

)νB−q

(νB − q)!

×
νB∑

z=νB+1−q

AB
2,νB+1−z

)pq
]

exp
(

− (τ−1)(k−c)

∆B
1

)

× exp
(

− (τ−1)c

∆B
2

)
[

ηE∑

j=1

AE

1,j

(ηE−j)!

(
ηE−j+1

ωE

A1

)ηE−j+1

×
∫ ∞

0

(τγE + τ − 1)
∑ηB

t=1
(ηB−t)st+

∑νB
q=1

(νB−q)pq

︸ ︷︷ ︸

I1

× γηE−j
E exp

(

−γE

(
τ(k−c)

∆B
1

+ τc
∆B

2

+ ηE−j+1
ωE

A1

))

dγE
︸ ︷︷ ︸

I1

+

νE∑

j=1

AE

2,j

(νE−j)!

(
νE−j+1

ωE

A2

)νE−j+1
∫ ∞

0

γνE−j
E

︸ ︷︷ ︸

I2

× (τγE + τ − 1)
∑ηB

t=1
(ηB−t)st+

∑νB
q=1

(νB−q)pq

︸ ︷︷ ︸

I2

× exp
(

−γE

(
τ(k−c)

∆B
1

+ τc
∆B

2

+ νE−j+1
ωE

A1

))

dγE
︸ ︷︷ ︸

I2

]

.

(37)

Here, with the aid of [34, Eq. (1.111)], we expand the

binomial terms in I1 and I2. Then, by using [34, Eq. (3.351.2)]

to solve the integrals in I1 and I2, the respective SOP can be

expressed as in (19), which concludes the proof.

• If mi ≥ µi for i ∈ {B,E}

Substituting (11a) and (13) into (17), we get

SOP =

NA∑

k=0

(−1)k
(
NA

k

)

exp
(

−k (τ−1)

∆B
2

) ∑

ρ(k,νB)

k!

s1! · · · sνB
!

×






νB∏

t=1






(
1

∆B
2

)νB−t

(νB − t)!

βB∑

z=βB+1−T (j−1)

BB
βB−z






st




×
βE∑

j=0

BE

j

νE−j−1

(
νE−j

ωE

B

)νE−j
∫ ∞

0

γνE−j−1
E exp

(

−γEkτ

∆B
2

)

︸ ︷︷ ︸

I3

× (τγE + τ − 1)
∑νB

t=1
(νB−t)st exp

(

−γE

(
νE−j

ωE

B

))

dγE
︸ ︷︷ ︸

I3

.

(38)

Again, by using [34, Eq. (1.111) - Eq. (3.351.2)], we ex-

pand the binomial term in I3. Next, with the aid of [34,

Eq. (3.351.3)] to solve I3, the SOP can be formulated as

in (20). This concludes the proof.

APPENDIX C

PROOF OF PROPOSITION 4

A. SOP∞

1) Keeping γE Fixed and γB → ∞ : Firstly, by using the

asymptotic-matching method proposed in [36], the CDF of a

κ-µ shadowed RV given in (1b) and (2b) can be approximated

by a gamma distribution with CDF

FG
X (x) ≈ γ(α, x

λ
)

Γ (α)
, (39)

where the shape parameters α and λ are given in terms

of the κ-µ shadowed fading parameters as α = µ and

λ = γ
(1+κ)µ

(
(m+κµ)m

mm

) 1

µ

. Now, in order to asymptoti-

cally approximate Fγ1
(γB), we use the following relationship

γ (a, x) ≃ xa/a as x → 0 in (39), and then replacing

γ → NBγB, µ → NBµB, m → NBmB, and κ → κB. Next, by

plugging the resulting asymptotic Fγ1
(γB) in (32), this yields

FB(γB) ≃
(

mNBmB

B (1 + κB)
NBµB µNBµB−1

B γNBµB

B

NBγ
NBµB

B (mB + κBµB)
NBmB Γ (NBµB)

)NA

.

(40)
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Combining (40) with [25, Eq. (4)] with the respective substi-

tutions into (18), it follows that

SOP∞ ≃
(

mNBmB

B (1 + κB)
NBµB µNBµB−1

B τNBµB

NBγ
NBµB

B (mB + κBµB)
NBmB Γ (NBµB)

)NA

× µNEµE

E mNEmE

E (1 + κE)
NEµE

Γ (NEµE) γ
NEµE

E (µEκE +mE)
NEmE

×
∫ ∞

0

γNEµE+NANBµB−1
E exp

(

−γEµE (1 + κE)

γE

)

︸ ︷︷ ︸

I4

× 1F1

(

NEmE, NEµE,
γEκEµ

2
E (1 + κE)

γE (mE + κEµE)

)

dγE
︸ ︷︷ ︸

I4

.

(41)

Finally, using [34, Eq. (7.522.9)] yields the desired result.

APPENDIX D

PROOF OF PROPOSITION 5

• If mi < µi for i ∈ {B,E}

Inserting (12) in (23), the result is

CB =
1

ln 2

NA∑

k=1

(−1)k+1

(
NA

k

) k∑

c=0

(
k

c

)
∑

ρ(c,νB)

c!

p1! · · · pνB
!

×






νB∏

q=1






(
1

∆B
2

)νB−q

(νB − q)!

νB∑

z=νB+1−q

AB
2,νB+1−z






pq





×
∑

ρ(k−c,ηB)

(k − c)!

s1! · · · sηB
!






ηB∏

t=1






(
1

∆B
1

)ηB−t

(ηB − t)!

×
ηB∑

z=ηB+1−t

AB
1,ηB+1−z

)st]∫ ∞

0

exp

(

−
γEc

∆B
2

)

(1+γE)

︸ ︷︷ ︸

I5

× exp
(

−γE

(
k−c
∆B

1

))

γ
∑ηB

t=1
(ηB−t)st+

∑νB
q=1

(νB−q)pq

E dγE
︸ ︷︷ ︸

I5

.

(42)

Employing [34, Eq. (3.353.5)], the integral in I5 can be ex-

pressed in simple exact closed-form. Then, by substituting (12)

together with (10b) into (24), it follows that

L (γB, γE) =

NA∑

k=1

(−1)k+1

(
NA

k

) k∑

c=0

(
k

c

)
∑

ρ(c,νB)

c!

p1! · · · pνB
!

×






νB∏

q=1






(
1

∆B
2

)νB−q

(νB − q)!

νB∑

z=νB+1−q

AB
2,νB+1−z






pq





× 1

ln 2

∑

ρ(k−c,ηB)

(k − c)!

s1! · · · sηB
!






ηB∏

t=1






(
1

∆B
1

)ηB−t

(ηB − t)!

×
ηB∑

z=ηB+1−t

AB
1,ηB+1−z

)st]( ηE∑

j=1

AE
1,j

ηE−j
∑

r=0

1

r!

×
(

1

∆E
1

)r ∫ ∞

0

exp
(

−γE

(
k−c
∆B

1

+ c
∆B

2

+ 1
∆E

1

))

︸ ︷︷ ︸

I6

× 1

(1 + γE)
γ
r+

∑ηB
t=1

(ηB−t)st+
∑νB

q=1
(νB−q)pq

E dγE
︸ ︷︷ ︸

I6

+

νE∑

j=1

AE
2,j

νE−j
∑

r=0

1

r!

(
1

∆E
2

)r ∫ ∞

0

exp

(

− γE
∆E

2

)

︸ ︷︷ ︸

I7

× exp

(

−γE

(
k − c

∆B
1

+
c

∆B
2

))
1

(1 + γE)
︸ ︷︷ ︸

I7

× γ
r+

∑ηB
t=1

(ηB−t)st+
∑νB

q=1
(νB−q)pq

E dγE
︸ ︷︷ ︸

I7

.

)

(43)

Again, by using [34, Eq. (3.353.5)], both I6 and I7 can be

evaluated in closed-form fashion. Then, by combining (42)

and (43), the CS can be expressed as in (26). This completes

the proof.

• If mi ≥ µi for i ∈ {B,E}

Plugging (13) in (23), we have

CB =
1

ln 2

NA∑

k=1

(−1)k+1

(
NA

k

)
∑

ρ(k,νB)

k!

s1! · · · sνB
!

×






νB∏

t=1






(
1

∆B
2

)νB−t

(νB − t)!

βB∑

z=βB+1−T (j−1)

BB
βB−z






st




×
∫ ∞

0

1

(1 + γE)
exp

(

−γE

(
k

∆B
2

))

γ
∑νB

t=1
(νB−t)st

E dγE
︸ ︷︷ ︸

I7

.

(44)

With the aid of [34, Eq. (3.353.5)], I7 can be evaluated in exact
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closed-form. Next, inserting (11b) and (13) into (24) yields

L (γB, γE) =
1

ln 2

NA∑

k=1

(−1)k+1

(
NA

k

)
∑

ρ(k,νB)

k!

s1! · · · sνB
!

×






νB∏

t=1






(
1

∆B
2

)νB−t

(νB − t)!

βB∑

z=βB+1−T (j−1)

BB
βB−z






st




×
βE∑

j=0

BE
j

νE−j−1
∑

r=0

1

r!

(
1

∆E
2

)r ∫ ∞

0

exp

(

− γE
∆E

2

)

︸ ︷︷ ︸

I8

× 1

(1 + γE)
exp

(

−γEk

∆B
2

)

γ
∑νB

t=1
(νB−t)st+r

E dγE

︸ ︷︷ ︸

I8

.

(45)

Similar to the evaluation of I7, the identity [34, Eq. (3.353.5)]

is used to calculate I8. Finally, by combining (44) and (45),

the CS can be formulated as in (25), which concludes the

proof.

APPENDIX E

PROOF OF PROPOSITION 6

• If mi < µi for i ∈ {B,E}

Inserting (10b) in (28), this yields

CE =
1

ln 2

(
ηE∑

j=1

AE
1,j

ηE−j
∑

r=0

1

r!

(
1

∆E
1

)r ∫ ∞

0

exp

(

− γE
∆E

1

)

︸ ︷︷ ︸

I9

× γr
E

(1 + γE)
dγE

︸ ︷︷ ︸

I9

+

νE∑

j=1

AE
2,j

νE−j
∑

r=0

1

r!

(
1

∆E
2

)r

×
∫ ∞

0

exp

(

− γE
∆E

2

)
γr
E

(1 + γE)
dγE

︸ ︷︷ ︸

I10

.

)

(46)

Recalling [34, Eq. (3.353.5)], integrals I9 and I10 can be

computed in exact-closed fashion. Hence, an approximation

of C
γ
B
→∞

B can be formulated as in [37] by

C
γ
B
→∞

B ≈ log2(γT) + log2(e)
dM(n)

dn

∣
∣
∣
∣
n=0

, (47)

where γT = NBγB is the total average SNR at Bob, and

M(n) ,
E[γn

B
]

γn
B

denotes the normalized moments of the RV

γB. From (14), M(n) can be expressed as

M(n) =
1

γn
B

NA∑

k=1

(−1)k
(
NA

k

) k∑

c=0

(
k

c

)
∑

ρ(c,νB)

c!

p1! · · · pνB
!

×






νB∏

q=1






(
1

∆B
2

)νB−q

(νB − q)!

νB∑

z=νB+1−q

AB
2,νB+1−z






pq





×
∑

ρ(k−c,ηB)

(k − c)!

s1! · · · sηB
!






ηB∏

t=1






(
1

∆B
1

)ηB−t

(ηB − t)!

×
ηB∑

z=ηB+1−t

AB
1,ηB+1−z

)st]∫ ∞

0

exp

(

−γB

(

k−c

∆B
1

))

∆B
1
∆B

2

︸ ︷︷ ︸

I11

× exp
(

−γBc

∆B
2

)

γ
−1+n+

∑ηB
t=1

(ηB−t)st+
∑νB

q=1
(νB−q)pq

B
︸ ︷︷ ︸

I11

×
(

∆B
1∆

B
2

(
ηB∑

t=1

(ηB − t)st +

νB∑

q=1

(νB − q)pq

)

︸ ︷︷ ︸

I11

−γB
(
∆B

1 c−∆B
2 (c− k)

)
dγB

︸ ︷︷ ︸

I11

)

. (48)

Expanding the integral term in (48) and making use of [34,

Eq. (3.351.3)], I11 can be evaluated in a simple form. Next,

taking the derivative of the resulting expression with respect to

n, and setting n equal to zero, C
γ
B
→∞

B can be formulated in

closed-form fashion. Finally, by replacing C
γ
B
→∞

B and (46)

into (27), and after some manipulations, C
∞

S is attained as

in (29). This completes the proof.

• If mi ≥ µi for i ∈ {B,E}

Substituting (11b) into (28), we obtain

CE =
1

ln 2

βE∑

j=0

BE
j

νE−j−1
∑

r=0

1

r!

(
1

∆E
2

)r ∫ ∞

0

exp

(

− γE
∆E

2

)

︸ ︷︷ ︸

I12

× γr
E

(1 + γE)
dγE

︸ ︷︷ ︸

I12

. (49)

Again, making use of [34, Eq. (3.353.5)], I12 is computed in

a closed-form solution. Here, following similar steps to obtain

C
γ
B
→∞

B as in the previous case, we substitute (15) into M(n),
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we get

M(n) =
1

γn
B

NA∑

k=1

(−1)k
(
NA

k

)
∑

ρ(k,νB)

k!

s1! · · · sνB
!

×






νB∏

t=1






(
1

∆B
2

)νB−t

(νB − t)!

βB∑

z=βB+1−T (j−1)

BB
βB−z






st




× 1

∆B
2

∫ ∞

0

exp

(

−kγB
∆B

2

)

γ
−1+n+

∑νB
t=1

(νB−t)st
B

︸ ︷︷ ︸

I13

×
(

∆B
2

νB∑

t=1

(νB − t)st − kγB

)

dγB

︸ ︷︷ ︸

I13

. (50)

Performing the integral term in (50) and recalling the iden-

tity [34, Eq. (3.351.3)], I13 is obtained in closed-form expres-

sion. Next, by plugging (50) in (47), then taking the derivative

with respect to n, and setting n = 0, C
γ
B
→∞

B is attained in

closed-from formulation. Finally, by substituting the C
γ
B
→∞

B

together with (49), and after some algebra, C
∞

S is expressed

as in (30). This completes the proof.
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