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Abstract—A reconfigurable intelligent surface (RIS) enhanced
non-orthogonal multiple access assisted backscatter communica-
tion (RIS-NOMABC) system is considered. A joint optimization
problem over power reflection coefficients and phase shifts is
formulated. To solve this non-convex problem, a low complexity
algorithm is proposed by invoking the alternative optimization,
successive convex approximation and manifold optimization al-
gorithms. Numerical results corroborate that the proposed RIS-
NOMABC system outperforms the conventional non-orthogonal
multiple access assisted backscatter communication (NOMABC)
system without RIS, and demonstrate the feasibility and effec-
tiveness of the proposed algorithm.

Index Terms—Backscatter communication, power allocation,
reconfigurable intelligent surface, non-orthogonal multiple ac-
cess.

I. INTRODUCTION

Backscatter communication has been actively studied as

a low-power, low-complexity and short-range communication

technology for Internet of Things (IoT) [1]. The key idea of

backscatter communication is to ask an energy-constrained

backscatter device (BD) to carry out passive reflection and

modulation of a sinusoidal continuous wave sent by a carrier

transmitter (CT). Meanwhile, non-orthogonal multiple access

(NOMA) has received considerable attention for its great

potential to support massive IoT devices and enhance spectrum

efficiency [2]. NOMA allows multiple users to access the same

orthogonal resource block. To support more users and further

improve the system performance, it is natural to consider the

combination of backscatter communication and NOMA.

For NOMA assisted backscatter communication

(NOMABC) systems, the resource allocation problem

was first studied in [3]. The aim was to maximize the

minimum throughput among all BDs by jointly optimizing

the backscatter time and power reflection coefficients. The

secure beamforming problem for the multiple-input single-

output (MISO) NOMABC system was considered in [4],

where the objective was to maximize the outage secrecy

rate. A new cognitive NOMABC network was proposed

in [5], and the transmit power of the primary user and the
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reflection coefficients of BDs were jointly optimized. To

better exploit NOMA in backscatter communication systems,

a new reflection coefficient selection criteria was proposed

in [6]. To illustrate the proposed criteria, the performance of

the NOMABC system in terms of the average number of bits

was analyzed.

On the other hand, owing to the capability of smartly recon-

figuring the wireless propagation environment, reconfigurable

intelligent surfaces (RISs) have received significant attention

for their potential to enhance the capacity and coverage of

wireless networks [7]. An RIS is made of electromagnetic

(EM) material, which consists of a large number of reconfig-

urable passive elements. Each elements can reflect the incident

signal by appropriately tuning its amplitude and phase. There-

fore, RISs have the capability of enhancing the received signal

power, overcoming the path loss, and suppress the co-channel

interference of the users.

There have been extensive works on RISs and their contribu-

tions focus on diverse application scenarios under different as-

sumptions, such as backscatter communication [8, 9], NOMA

systems [10–12], and simultaneous wireless information and

power transfer (SWIPT) networks [13]. Particularly, in [10],

the subchannel assignment, power allocation, phase shifts and

decoding order were optimized jointly by maximizing the

achievable sum rate. The downlink RIS assisted NOMA (RIS-

NOMA) system over fading channels was considered in [11],

where the joint optimization problem over resource allocation

and phase shifts was solved by maximizing the average sum

rate. For MISO RIS-NOMA systems, the active beamforming

and passive beamforming were optimized jointly by mini-

mizing the total transmit power in [12]. The RIS assisted

bistatic backscatter networks was first studied in [8], where

the transmit beamforming vector was jointly optimized with

the RIS phase shifts. In [9], the performance of backscatter

technology with RIS in terms of the symbol error probability

was evaluated.

It is interesting to investigate the promising applications of

the RIS technique in NOMABC systems for further perfor-

mance improvement. To the best of our knowledge, the RIS

enhanced NOMABC (RIS-NOMABC) system design has not

been studied yet. In this paper, we consider the RIS-NOMABC

system. Our objective is to jointly design the power reflection

coefficients at the BDs and the phase shifts at the RIS such

that the system sum rate is maximized, subject to the minimum

quality of service (QoS) requirement for each BDs. To solve

the formulated problem, we propose a joint optimization algo-

rithm based on the alternative optimization, successive convex

approximation (SCA) and manifold optimization approaches.
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Notations: CM×1 denotes a complex vector of size M;

diag(x) denotes a diagonal matrix whose diagonal elements

are the corresponding elements in vector x; The m-th element

of vector x is denoted as [x]m; x† and xH denote the conjugate

and conjugate transpose of vector x, respectively; The notation

∠x denotes the phase of a complex number x; ⊙ denotes

the Hadamard products; The function R (x) denotes the real

part of a complex number x; CN
(
0, σ2

)
represents a random

vector following the distribution of zero mean and σ2 variance;

II. SYSTEM MODEL

We consider a RIS-NOMABC system, as shown in Fig. 1,

which consists of one CT, one RIS, one backscatter receiver

(BR), and K BDs. Each of the CT, BR, and BDs is equipped

with a single antenna. The RIS is equipped with QRIS pas-

sive reflecting elements. The CT transmits sinusoidal carrier

signals, and the BDs modulate their information over incident

carriers by intelligently changing their load impedances. The

BR receives the signals with the aid of the RIS. We assume

that the direct CT-RIS link is blocked.

Let PT be the CT’s transmit power, and sk be the informa-

tion symbol of each BDs. Denoting by wk the power reflection

coefficient of the k-th BD. The backscattered signal at the k-th

BD is [3]

xk = hk

√
wkPTsk (1)

where hk ∈ C1×1 is the channel from the CT to the k-th BD.

The signal received at the BR is

y =

K∑

k=1

(
h̃k + g

H
R,BRΘfk,R

)
hk

√
wkPTsk + z, (2)

where h̃k ∈ C
1×1, gR,BR ∈ C

QRIS×1, fk,R ∈ C
QRIS×1

are the channel from the k-th BD to the BR, the RIS

to the BR, the k-th BD to the RIS, respectively, Θ =
diag

{
ejθ1 , ejθ2 , · · · , ejθQRIS

}
is the phase-shift matrix of the

RIS, z ∼ CN
(
0, σ2

)
is the additive white Gaussian noise

(AWGN) with zero mean and variance σ2 at the BR.

In conventional uplink NOMA systems, the users with

higher channel gains are often decoded earlier at the base

station. However, this ordering method cannot be applied in

RIS-NOMABC systems, because the combined channel gains

can be modified by tuning the RIS phase shifts. The optimal

decoding order in the RIS-NOMABC system will be any

one of the K! different decoding orders. Let Dk denote the

decoding order for the signal of BD k, where Dk = m means

that the signal of BD k is the m-th one to be decoded at the

BR. For any two BDs, i.e., BD j and BD k, we assume that

BD j is decoded after BD k, which means that Dj > Dk. In

Fig. 1: RIS-NOMABC system model

addition, the combined channel gains of the two BDs need to

satisfy the following condition:∣∣∣
(
h̃k + g

H
R,BRΘfk,R

)
hk

∣∣∣ >
∣∣∣
(
h̃j + g

H
R,BRΘf j,R

)
hj

∣∣∣ (3)

According to the NOMA protocol [2], the achievable data

rate of BD k is given by

Rk = log2

(
1 +

wkPTHk∑
Dj>Dk

wjPTHj + σ2

)
(4)

where Hk =
∣∣∣
(
h̃k + g

H
R,BRΘfk,R

)
hk

∣∣∣
2

is the the combined

channel gain of BD k.

We aim to maximize the system sum rate of all BDs

through appropriate power reflection coefficients at the BDs

and phase shfits at the IRS. Therefore, the formulated joint

power reflection coefficients and phase shifts optimization

problem is given by

max
θq,wk

K∑

k=1

log2

(
1 +

wkPTHk∑
Dj>Dk

wjPTHj + σ2

)
, (5a)

s.t. log2

(
1 +

wkPTHk∑
Dj>Dk

wjPTHj + σ2

)
> Rmin

k , (5b)

Hk > Hj , if Dj > Dk, k 6= j, (5c)

0 6 wk 6 1, (5d)

θq ∈ [0, 2π] , (5e)

Dk ∈ D, (5f)

where D is the set of all possible decoding orders, q =
1, 2, · · · , QRIS and k, j = 1, 2, · · · ,K . The above problem (5)

is challenging, not only due to the non-convex objective

function and constraints, but also due to that the parameters to

be optimized are entangled with each other. In the following

sections, we will develop an alternative optimization based

algorithm to decouple the optimization variables.
III. PROPOSED SOLUTION

Since the total number of decoding order combinations is a

finite value, the optimal system sum rate can be obtained by

solving problem (5) with any one of decoding orders at first

and selecting the maximum objective function’s value among

all decoding orders. Without loss of generality, we set Dk = k.

Then, the system sum rate of the RIS-NOMABC system can

be re-expressed as

Rsum =
K∑

k=1

log2

(
1 +

wkPTHk∑K

j=k+1 wjPTHj + σ2

)

(a)
= log2

(
1 +

∑K

k=1 wkPTHk

σ2

)
,

(6)

where (a) come from the fact that the terms inside the brackets

of the system sum rate expression forms a telescoping product.

Remark 1: The system sum rate in (6) is independent of

the decoding order. However, different decoding orders result

in different achievable rates of each BDs and different feasible

regions of the power reflection coefficients.

Thus, the system sum rate maximization problem in (5) is

reduced to

max
θq,wk

log2

(
1 +

∑K

k=1 wkPTHk

σ2

)
, (7a)
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s.t. log2

(
1 +

wkPTHk∑K

j=k+1 wjPTHj + σ2

)
> Rmin

k , (7b)

Hk > Hj , if j > k, (7c)

(5d), (5e). (7d)

Problem (7) is a non-convex optimization problem. To make

it tractable, we first decouple it into two sub-problems, i.e.,

power reflection coefficients optimization and phase shifts

optimization. Then, we solve them alternatively.

A. Power Reflection Coefficients Optimization

First, we focus our attention on the power reflec-

tion coefficients optimization problem. Since the log

function is a monotonic increasing function, maximiz-

ing log2

(
1 +

∑K
k=1

wkPTHk

σ2

)
is equivalent to maximizing

∑K

k=1 wkHk. Then, the power reflection coefficients opti-

mization problem with fixed phase shifts {θq} in (7) can be

expressed as follows

max
wk

K∑

k=1

wkHk, (8a)

s.t. wk >

rmin
k

(
PT

∑K

j=k+1 wjHj + σ2
)

PtHk

, (8b)

(5d). (8c)

Clearly, the above problem is convex, and can be solved

using standard convex algorithms. However, the standard ap-

proach does not exploit the specific structure of problem (8).

In the following, we derive the closed-form optimal solution

of the power reflection coefficients for problem (8).

Since the last BD K suffers no inference generated from

the other BDs, therefore the minimum QoS constraint in (8b)

for BD K is given by:

wK >
rmin
K σ2

PTHK

= wLB
K (9)

According to the definition of the achievable data rate in (4),

the lower bound power reflection coefficient wLB
K should be

utilized to reduce the interference from BD K to the other

BDs. Therefore, for user K − 1, we have

wK−1 >
rmin
K−1

(
wKPTHK + σ2

)

PTHK−1

>
σ2rmin

K−1

(
rmin
K + 1

)

PTHK−1
= wLB

K−1

(10)

Likewise, it is easy to extend the above inequality to all

BDs. According to [14], we have

wk >
σ2rmin

k

PTHk

K∏

j=k+1

(
rmin
j + 1

)
= wLB

k (11)

where
∏K

j=K+1

(
rmin
j + 1

)
= 1.

Theorem 1: For BD 1, the optimal power reflection co-

efficient w∗
1 = 1. For BD k (k > 2), if the optimal power

reflection coefficient for BD m (m < k) are all equal to 1,

i.e., wm = 1, then the optimal solution of power reflection

coefficient for BD K is

w∗
k = min

{
1, wUB

k

}
(12)

with the upper bound wUB
k of wk is defined as

wUB
k = min

m

{
1

Hk

(
Hm

rmin
k

− H̃k −
σ2

PT

)}
, (13)

where H̃k =
∑k−1

n=m+1 Hn +
∑K

j=k+1 w
LB
j Hj .

If w∗
k = wUB

k , the optimal power reflection coefficient of

the other BDs are w∗
j = wLB

j for j > k.

Proof: Similar proof can be found in [14].

B. Phase Shifts Optimization

Define bk =
[
hkg

H
R,BRdiag (fk,R) hkh̃k

]H
and let v =

[
ejθ1 · · · ejθQRIS 1

]T
be the passive beamforming vector, then

the phase shifts optimization problem with fixed {wk} in (7)

can be written as

max
v

K∑

k=1

wk

∣∣bH
k v
∣∣2, (14a)

s.t. wk

∣∣bH
k v
∣∣2 > rmin

k




K∑

j=k+1

wj

∣∣bH
j v
∣∣2 + σ2

PT


 , (14b)

∣∣bH
k v
∣∣2 >

∣∣bH
j v
∣∣2 , if j > k, (14c)∣∣∣[v]q

∣∣∣ = 1, q = 1, 2, · · · , QRIS + 1. (14d)

The non-convex constraints (14b), (14c), and (14d) make

the solving problem (14) difficult. In the following subsections,

we propose a suboptimal algorithm to solve problem (14).

First, we introduce the auxiliary variables {ak}, which satisfy

ak = bH
k v (15)

Substituting (15) into problem (14), then we have

max
v,ak

K∑

k=1

wk |ak|
2
, (16a)

s.t. wk |ak|
2
> rmin

k




K∑

j=k+1

wj |aj |
2
+

σ2

PT



 , (16b)

|ak|
2
> |aj |

2
, if j > k, (16c)

ak = bH
k v, (16d)∣∣∣[v]q

∣∣∣ = 1. (16e)

By utilizing the penalty-based method, we first convert the

equality constraints in (16d) into quadratic functions and then

add them as a penalty term in the objective function of (16).

Thus, we have

min
v,ak

−
K∑

k=1

wk |ak|
2 + µ

(
K∑

k=1

∣∣ak − bH
k v
∣∣2
)
, (17a)

s.t. (16b), (16c), (16e). (17b)

where µ denotes the penalty coefficient used for penalizing

the violation of equality constraints (16d).

Problem (17) is still a non-convex optimization problem due

to the non-convex objective function as well as non-convex

constraints. In the following, we solve the auxiliary variables

{ak} and passive beamforming vector v respectively.
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1) Auxiliary variables {ak} optimization: With given {wk}
and v, the auxiliary variables optimization problem is formu-

lated as

min
ak

−
K∑

k=1

wk |ak|
2
+ µ

(
K∑

k=1

∣∣ak − bH
k v
∣∣2
)
, (18a)

s.t. (16b), (16c) (18b)

Problem (18) is a non-convex problem, due to the non-

convex constraints (16b) and (16c). To deal with the non-

convexity, the SCA method can be used. At the point a
(t1)
k ,

the first order approximation of |ak|
2

is

|ak|
2
> 2R

((
a
(t1)
k

)†
ak

)
−
∣∣∣a(t1)k

∣∣∣
2

= fSCA

(
ak, a

(t1)
k

)

(19)

By substituting the above approximation into problem (18),

then we have

min
ak

−
K∑

k=1

wkfSCA

(
ak, a

(t1)
k

)
+ µ

(
K∑

k=1

∣∣ak − bH
k v
∣∣2
)
,

(20a)

s.t. wkfSCA

(
ak, a

(t1)
k

)
> rmin

k




K∑

j=k+1

wj |aj |
2
+

σ2

PT


 ,

(20b)

fSCA

(
ak, a

(t1)
k

)
> |aj |

2
, if j > k. (20c)

It is noted that problem (20) is a convex problem, which can

be efficiently solved via standard convex problem solvers such

as CVX [15]. Algorithm 1 summarizes the proposed SCA-

based algoirthm to solve problem (18). According to [16], the

proposed SCA-based algorithm converges to a stationary point

that satisfies the Karush-Kuhn-Tucker (KKT) conditions.

Algorithm 1 The proposed SCA-based algorithm to solve

problem (18)

1: Initialize feasible a
(0)
k and set the iteration index t1 = 0.

2: repeat

3: Update a
(t1+1)
k by solving problem (20) with a

(t1)
k ;

4: Update t1 = t1 + 1;

5: until the objective function of problem (20) converges

6: Output: optimal {ak}.

In Algorithm 1, the initial feasible points a
(0)
k are needed.

Usually, it is difficult to find the feasible points. In the follow-

ing, we formulate a feasibility problem and propose a novel

feasible initial points searching algorithm. By introducing an

infeasibility indicator x ≥ 0, the feasibility problem in the

t2-th iteration is given as

min
ak,x

x, (21a)

s.t. wkfSCA

(
ak, a

(t2)
k

)
+ x > rmin

k




K∑

j=k+1

wj |aj |
2
+

σ2

PT


 ,

(21b)

fSCA

(
ak, a

(t2)
k

)
+ x > |aj |

2 , (21c)

x > 0, (21d)

where x denotes how far the corresponding constrains in

problem (20) are from being satisfied.

Problem (21) is also a convex optimization problem and the

proposed feasible initial points searching algorithm to solve

problem (21) is similarly as Algorithm 1. Due to the space

limit, we omit the details of the proposed feasible initial points

searching algorithm

2) Passive beamforming vector v optimizaiton: With given

{wk} and {ak}, the passive beamforming vector optimization

problem can be written as

min
v

K∑

k=1

∣∣ak − bH
k v
∣∣2, (22a)

s.t.
∣∣∣[v]q

∣∣∣ = 1, q = 1, 2, · · · , QRIS. (22b)

The main difficulty to solve problem (22) is the non-convex

unit modulus constraint (22b). To the best of our knowledge,

there is no general approach to solve such optimization prob-

lem optimally. In the following, the manifold optimization

approach [17] is utilized to solve problem (22). We first define

the manifold space for the constraint (22b) in problem (22) as

V =
{
v ∈ C

QRIS×1| |[v]1| = · · · =
∣∣∣[v]QRIS

∣∣∣ = 1
}

(23)

According to the notion of manifold optimization, prob-

lem (22) can be reformulated as:

min
v∈V

f (v) =

K∑

k=1

∣∣ak − bH
k v
∣∣2 (24)

The main idea of the manifold optimization approach is to

apply the gradient descent algorithm in the manifold space.

In particular, the main steps of the manifold optimization

approach is composed of the following steps at the t3-th

iteration:

1) Calculate the Euclidean gradient: the Euclidean gradient

of f
(
v(t3)

)
at v(t3) can be computed by

∇vf
(
v(t3)

)
= 2

(
K∑

k=1

bkb
H
k

)
v(t3) − 2

K∑

k=1

akbk

(25)

2) Calculate the Riemannian gradient: The Riemannian gra-

dient is one tangent vector (direction) with the decrease

of the objective function over the manifold space. For

manifold space V, the tangent space at v(t3) is given by:

T

(
v(t3+1)

)
=

{
z ∈ C

QRIS×1|R

(
z⊙

(
v(t3)

)†)
= 0

}

(26)

Then, the Riemannian gradient of f
(
v(t3)

)
at v(t3)

can be obtained by orthogonally projecting the

Eculidean gradient ∇vf
(
v(t3)

)
on to the tangent space

T
(
v(t3+1)

)
given by

∇Vf
(
v(t3)

)

= ∇vf
(
v(t3)

)
−R

((
∇vf

(
v(t3)

))†
⊙ v(t3)

)
⊙ v(t3)

(27)

3) Update the current point ṽ(t3): After we obtain the

Riemannian gradient, the current ṽ(t3) in the tangent

space T
(
v(t3+1)

)
is updated as

ṽ(t3) = v(t3) − λ∇Vf
(
v(t3)

)
(28)
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where λ > 0 is a constant step size, which

is selected to satisfy λ 6 1

λmax(
∑

K
k=1

bkb
H
k )

with

λmax

(∑K

k=1 bkb
H
k

)
be the largest eigenvalue of the

matrix
∑K

k=1 bkb
H
k . It should be noticed that the update

point ṽ(t3) is still in the tangent space T
(
v(t3+1)

)
and

it leaves the manifold space.

4) Retraction mapping: To map the updated point ṽ(t3) onto

the manifold space V, a Retraction mapping operator is

needed. Finally, the point v(t3+1) updated by using the

Retraction mapping operator is given by

v(t3+1) = RM

(
−λ∇Vf

(
v(t3)

))

=
v(t3) − λ∇Vf

(
v(t3)

)
∥∥v(t3) − λ∇Vf

(
v(t3)

)∥∥ = ṽ(t3) ⊙
1

ṽ(t3)

(29)

The proposed manifold optimization algorithm to solve

problem (22) is summarized in Algorithm 2 and is also

illustrated geometrically in Fig. 2. According to [17, 18],

Algorithm 2 is guaranteed to converge to the point where

the gradient of the objective function is zero.

Algorithm 2 The proposed manifold optimization algorithm

to solve problem (22)

1: Initialize v(0) and set the iteration index t3 = 0.

2: repeat

3: t3 = t3 + 1;

4: Calculate the Euclidean gradient ∇vf
(
v(t3)

)
at v(t3)

using (25);

5: Calculate the Riemannian gradient ∇Vf
(
v(t3)

)
us-

ing (27);

6: Update the current point ṽ(t3) using (28);

7: Update v(t3+1) ) using the Retraction mapping operator

according to (29);

8: until
∣∣f
(
v(t3+1)

)
− f

(
v(t3)

)∣∣ converges

9: Output: optimal v.

C. Proposed Algorithm, Convergence and Complexity

To facilitate the understanding of the proposed algorithm

to solve problem (7), we summarize it in Algorithm 3.

The objective value of problem (7) is monotonically non-

decreasing after each iteration and the system sum rate is upper

bounded. Therefore, the proposed algorithm is guaranteed to

converge. The complexity of Algorithm 3 mainly depends on

Algorithm 1 and Algorithm 2 with complexities O
(
tmax
1 K3

)

Fig. 2: The geometric interpretation of the manifold

optimization algorithm

and O
(
tmax
3 (QRIS + 1)

2
)

, respectively, where tmax
1 and tmax

3

are the iteration numbers of Algorithm 1 and Algorithm 2

required for convergence.

Algorithm 3 The proposed algorithm to solve problem (7)

1: Initialize
{
θ
(0)
q

}
and set the iteration index t4 = 0.

2: repeat

3: update w
(t4+1)
k according to Theorem 1 with θ

(t4)
q ;

4: update a
(t4+1)
k by Algorithm 1 with w

(t4+1)
k and θ

(t4)
q ;

5: update v(t4+1) by Algorithm 2 with w
(t4+1)
k and

a
(t4+1)
k ;

6: caculate θ
(t4+1)
q = ∠

[
v(t4+1)

]
q
;

7: t4 = t4 + 1;

8: until the objective value of problem (7) converges.

9: Output: optimal {wk} and {θq}.

IV. NUMERICAL RESULTS

Here, the performance of the proposed algorithm is evalu-

ated through numerical simulations. Assume that the CT, RIS

and BR are located at coordinates (0 m, 10 m), (65 m, 10

m) and (70 m, 10 m), respectively. The BDs are randomly

and uniformly placed in the area between coordinates (40m,

0m) and (50m, 0m). The distance-dependent path loss is

modeled as P (d) = ρ (d)
−α

, where d is the link distance,

α is the path loss exponent, ρ = −30 dB is the path loss

at the reference distance of 1 m. The path loss exponents of

the CT-BD, BD-BR, BD-RIS, and RIS-BR links are set as

2.5, 2.5, 2.1 and 2.1, respectively. To model the small-scale

fading for all channnels involved, we adopt Rician fading,

which is given by fRician =
√

κ
1+κ

fLoS
Rician +

√
1

1+κ
fNLoS
Rician,

where κ is the Rician factor, fLos
Rician and fNLoS

Rician are the line-

of-signt (LoS) component and non-LoS (NLoS) component,

respectively. We set the Rician factor κ = 3 for BD-RIS and

RIS-BR links and κ = 0 for other communication links. We

assume that the number of BDs is K = 3 and the noise power

is σ2 = −114 dBm.

In order to validate the effectiveness of our proposed algo-

rithm, two benchmark schemes are considered, namely, PSDP-

RIS algorithm and Random-RIS algorithm. For the PSDP-

RIS algorithm, the phase shifts optimization problem (14) is

solved by the penalty function based semidefinate program-

ming (PSDP) algorithm [19]. For the Random-RIS algorithm,

the phase shifts are selected randomly. The optimal power re-

flection coefficients for both algorithms are obtained according

to Thereom 1. Fig. 3 depicts the impact of the number of RIS

reflecting elements on the system sum rate. As expected, we

can see from Fig. 3 that the system sum rate achieved by the

three algorithms increases as the number of reflecting elements

increase because a larger number of RIS reflecting elements

leads to a higher passive array gains. In addition, we observe

that our proposed algorithm has the best performance.
Fig. 4 shows the system sum rate versus the transmit power

PT. We observe that the achieved system sum rate of all

schemes increases with PT. In particular, the NOMA-based

systems outperform the OMA assisted backscatter communi-

cation without RIS (OMABC-noRIS) system, since all users

can be served simultaneously in the NOMA-based systems.

Furthermore, our proposed RIS-NOMABC system with large
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Fig. 3: System sum rate versus the number of reflecting

elements QRIS, PT = 35 dBm

number of RIS reflecting elements significantly outperforms

the NOMABC without RIS (NOMABC-noRIS) system, which

reveals that the application of RIS to the NOMABC system

can further improve the system sum rate.
In Fig 5, we present the system sum rate versus the mini-

mum QoS requirement Rmin
k . It is observed that our proposed

algorithm has the best performance than the other schemes,

which can also be observed in Fig. 3 and Fig. 4. In addition, the

schemes for the proposed RIS-NOMABC system significantly

outperforms the scheme for NOMABC-noRIS system.

V. CONCLUSION

This paper proposed an RIS enhanced NOMA backscatter

assisted communication system. The joint power reflection

coefficients and phase shifts optimization was investigated.

The non-convex problem was solved by the alternative op-

timization, successive convex approximation and manifold

optimization. Our numerical results showed that the proposed

algorithm has a better performance than benchmark algo-

rithms. Furthermore, our results revealed that the proposed

RIS-NOMABC system with a large number of RIS reflect-

ing elements can achieve significantly system sum rate gain

compared with conventional NOMABC and OMABC systems.

This insight provides useful guidelines for the practical RIS

implementation.
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