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Abstract—Multi-sensor millimeter wave (mmWave) massive
multiple-input multiple-output (MIMO) wireless sensor networks
(WSNs) relying on both distributed (D-MIMO) and central-
ized (C-MIMO) configurations are conceived. Hybrid combining
based low complexity fusion rules are constructed for the fusion
center (FC) for both D-MIMO and C-MIMO systems employing
a partially connected structure (PCS) and a fully connected
structure (FCS), respectively. The decision rules are based on
the transmission of local binary sensor decisions and also take
into account the accuracy of local detection at the individual
sensors. Closed-form analytical expressions are derived for the
probabilities of false alarm and correct detection to analyze the
system’s performance. Furthermore, the asymptotic distributed
detection (DD) performance corresponding to both antenna archi-
tectures is analyzed in the large-scale antenna regime along with
the pertinent power scaling laws. Additionally, digital signaling
matrices are designed for enhancing the system performance. Our
simulation results quantify the performance gains of the proposed
architectures, which closely match the analytical results.

Index Terms—Millimeter wave, distributed detection, massive
multiple-input multiple-output, centralized, distribut ed, hybrid
combining, Neyman-Pearson criterion, wireless sensor networks.

I. I NTRODUCTION

NEXT GENERATION 5G systems are expected to integrate
wireless sensor networks (WSNs) relying on ultra-dense

sensor deployment for supporting the Internet of things (IoT)
and mission critical applications related to disaster man-
agement, surveillance, health care, vehicular communication,
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drones, and several others [2]. Millimeter-wave (mmWave)
carrier frequencies ranging from 30 to 300 GHz are eminently
suitable for meeting the growing throughput and connectivity
demands of such large scale sensor networks [3]. However,
the practical implementation of mmWave communication is
significantly more challenging than communications in the
sub-6 GHz bands because of the higher path losses and severe
signal blockages [4]. The problem is further aggravated by
the increased hardware complexity of sampling and processing
such high-bandwidth signals.

However, the mmWave band is still deemed appropriate,
because mmWave frequencies facilitate the deployment of
large antenna arrays, since the substantially reduced wave-
length enables close packing of a large number of antennas
within limited physical dimensions, which in turn helps in
compensating the increased propagation losses by the resultant
high array gains. Thus, massive MIMO technology, wherein
the base station (BS) is equipped with a very large antenna
array comprising of hundreds of antennas [5], is an excel-
lent candidate for overcoming the above impediments in the
practical realization of mmWave communication. Additionally,
massive MIMO technology has the attractive ability to enable
simultaneous connectivity and communication with a large
number of sensors using spatial multiplexing. Moreover, it
allows for a significant transmit power reduction of the sensors
[6], thereby extending the battery life of the sensors. Therefore,
mmWave massive MIMO systems are well-suited for sensing
and communication in ultra-dense sensor networks. A brief
review of the existing literature is presented next.

A. Review of the Literature

Efficient processing of signals in mmWave massive MIMO
systems is crucial for achieving the promised high data
rates. However, the conventional fully digital signal pro-
cessing architecture, wherein signal processing is performed
exclusively in the baseband, necessitates a dedicated radio
frequency (RF) chain for each antenna. Such a transceiver
architecture is both costly and power-thirsty owing to the high
power consumption of analog-to-digital converters (ADCs)
at mmWave frequencies. To reduce the complexity, hybrid
signal processing architectures, which process the signalin
a mixture of analog and digital domains, have emerged as
a popular choice for mmWave MIMO implementation [18],
[19]. Thus, by minimizing the number of RF chains and
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Table I
CONTRASTING OUR CONTRIBUTION TO THE LITERATURE

[7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] Proposed Work

Distributed Detection X X X X X X
MIMO WSN X X X X X X
mmWave Communication X X X X X
Massive MIMO X X X X X X X
Hybrid combining X X X
C-MIMO Architecture X X X X X X X X X X X X
D-MIMO Architecture X X X X X X X
Large array analysis X X X X X
Simplified test statistic X X X X X
Large-scale fading X X X X X X X
Power scaling analysis X X X X X
Signaling optimization X X
Practical BS/ FC selection algorithm X X

hence the power consumption, without significantly impacting
the spectral efficiency (SE), these transceiver designs have
significantly eased the practical realization of mmWave MIMO
systems. Low complexity hybrid analog-digital transmit and
receive beamforming/ equalizing techniques are proposed in
[11] for the uplink (UL) of mmWave massive MIMO HetNets
to alleviate the inter- and intra-tier interferences. Liet al. [20]
proposed a low complexity hybrid beamforming algorithm for
multiuser (MU) mmWave MIMO systems to reduce the inter-
user interference arising due to diffused scattering. Further-
more, Chenet al. [21] designed a hybrid transmit precoding al-
gorithm to cancel successive interference for generalizedsub-
array-connected architectures considering arbitrary RF chain
and antenna configurations to maximize the total achievable
rate. A distance-dependent beamforming gain based hybrid
beamformer is designed in [22] for MU mmWave systems,
where the RF chains are grouped together to serve a particular
cluster of users depending on the channel conditions. Caiet al.
[23] maximized the worst-case sum rate by jointly optimizing
the hybrid beamforming matrices at the relay stations and
the BS using the penalty dual decomposition method for MU
mmWave full-duplex MIMO relay systems.

Although, the implementation of the centralized antenna
architecture (C-MIMO) has a lower cost and complexity, the
close packing of a large number of antennas together with
the sparse nature of the multi-path wireless channel at the
mmWave frequencies leads to a high degree of spatial channel
correlation, which can in turn lead to poor performance in
the C-MIMO systems. An attractive technique of reducing
the channel correlation in such systems is to use distributed
MIMO (D-MIMO) configurations, where a massive antenna
array is distributed over dispersed geographical locations.
Employing the distributed antenna architecture helps to miti-
gate the channel correlation, reduce the radio access distance
and enhance the system performance. Interestingly, D-MIMO
systems have also been shown to improve the coverage quality
in indoor wireless networks [24]–[26]. Furthermore, the dis-
tributed architecture facilitates significant power and SEgains
over its centralized counterpart due to the reduced propagation
distance between the sensors and the BS [27]–[30]. The UL SE
of D-MIMO systems considering zero forcing (ZF) receivers
is examined and compared to that of C-MIMO systems in

[12], along with its analysis in the large-scale antenna regime.
The framework is further extended to a multicell D-MIMO
scenario, while also factoring in the impact of cochannel
interference. The SE of a hybrid precoding/ combining based
downlink (DL) MU mmWave massive MIMO system was
analyzed in [8] considering both centralized and distributed
architectures. Gimenezet al. [9] proposed a distributed hy-
brid precoding algorithm and analyzed the performance of
an indoor mmWave D-MIMO system. The treatise in [31]
exhaustively reviews the developments in symbol detection
for space division multiplexing (SDM)-based MIMO systems
considering various techniques such as linear MIMO detectors,
interference cancellation aided MIMO detectors, tree-search
based MIMO detectors, lattice-reduction aided detectors etc.
Yue and Nguyen [10] analyzed the multiplexing gain of a
mmWave massive MIMO system relying on a distributed
subarray architecture, when the number of antennas at the
subarrays grows large and the transmit power is kept con-
stant. Typically three dominant hardware architectures are
considered for implementation of hybrid signal processingin
mmWave massive MIMO systems, namely the fully connected
structure (FCS) [32], hybridly connected structure (HCS) [33]
and partially-connected structure (PCS) [34], [35]. Several
authors have shown [8], [34] that systems incorporating PCS
consume lower power as a benefit of its lower implementation
complexity in comparison to their FCS and HCS-based coun-
terparts. Explicitly, the former requires a much lower number
of phase shifters. Thus, due to its compelling advantages, the
PCS-based D-MIMO architecture is also considered in this
study in addition to the conventional C-MIMO configuration.

There are quiet a few contributions on attractive distributed
detection (DD) schemes [13]–[17], [36], [37]. Li and Dai
[36] presented a multiple access (MAC) framework for DD
in a WSN having correlated sensor observations. Banavaret
al. [14] investigated a fading MAC DD scenario, where the
sensors employ amplify-and-forward relaying for transmitting
their observations to a FC equipped with multiple antennas.
Furthermore, Ciuonzoet al. [15] proposed sub-optimal fu-
sion rules utilizing the decode-then-fuse as well as decode-
and-fuse principles for a MIMO channel. Authors in [38]
developed Neyman-Pearson (NP) and generalized likelihood
ratio test (GLRT)-based detectors at the fusion center (FC)
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for known and unknown parameter detection. Jianget al.
[39] investigated the estimation and detection performance of
a coherent amplify-and-forward massive MIMO WSN using
the linear minimum mean-squared error estimator (LMMSE),
NP and energy detectors. The large number of 5G IoT ap-
plications requires dense sensor deployment, which in turn
necessitates substantial time-bandwidth resources to support
data transmission from the large number of sensors in each
unit area. Needless to say, since 5G has to support thousands
of sensors [40], the transmission of raw measurements from
a large sensor sprawl to the FC may lead to congestion in
next generation wireless networks. Therefore, due to practical
power and bandwidth constraints, it is prudent to compress the
sensor measurements locally prior to transmission to the FC.
This can then be followed by efficient processing of the local
decisions at the FC to form a final decision with respect to
the signal/ phenomenon of interest [41]–[43]. Moreover, the
performance of MIMO sensor networks can be significantly
enhanced by the presence of a massive antenna array at the
FC. The performance benefits of using a massive antenna
array at the FC for DD has been analyzed in [13], [16], [17],
[37]. A collection of low-complexity decision rules have been
formulated in [16] for DD in massive MIMO systems. Chawla
et al. [37] have derived linear filtering based low-complexity
fusion rules for massive MIMO WSNs using antipodal sig-
naling, while also considering the reliabilities of the local
sensor decisions. This framework was then further extended
to the non-antipodal signaling format in [17], followed by
its asymptotic performance analysis relying on both perfect
and imperfect CSI. Jarrahet al. derived fusion rules for a
decode-and-forward relaying based cooperative WSN in [13].
The authors of [44] proposed energy detection-based rules for
decision fusion in WSNs. The analysis therein considers a
Gaussian mixture channel model between the sensors and the
FC for a non-massive MIMO system and specific results are
presented forRice, 2ZMandNZZ fading. However, due to the
absence of a massive antenna array, the framework of [44]
is unable to leverage the gains arising from a large number
of antennas at the FC. Moreover, the schemes proposed in
[44] are based on energy detection, which has suboptimal
performance in comparison to the coherent detector.

However, none of the existing treatises have utilized hy-
brid combining at the FC for exploiting the advantages of
mmWave massive MIMO technology for DD, hence their
fusion rules are unknown. To fill this knowledge-gap, we
analyse a mmWave massive MIMO system, where hybrid
combining based low-complexity fusion rules are conceived
for detecting the absence/ presence of a signal of interest.
In the early conference version of this paper [1], a decision
rule based on hybrid combining was used for the C-MIMO
architecture. This paper extends the framework to a distributed
MIMO topology along with its performance analysis in terms
of the closed-form analytical expressions derived for the
probabilities of correct detection and false alarm. Furthermore,
an efficient transmit signaling matrix is designed for the D-
MIMO system. Additionally, the asymptotic DD performance
is analyzed in the large-scale antenna regime for both D-
MIMO and C-MIMO scenarios, which is lacking in [1]. The

main contributions of this paper are summarized below, which
are boldly and explicitly contrasted to the relevant literature
in Table I.

B. Our Contributions

• This paper investigates a multiple-observation based vector
model for DD, wherein each sensor transmits a binary
decision vector over one or more signaling intervals cor-
responding to its local decision, which is prone to errors.
This is different from the systems in [14], [45], [46] that
consider the transmission of analog sensor observations.

• A low-complexity detection rule based on centralized hy-
brid combining, leveraging the antenna array response vec-
tors, is derived for the centralized (C-MIMO) architecture,
in contrast to [14], [38], [45] that focus on DD with analog
observations. The mmWave WSN framework is further
extended to a distributed antenna architecture, where the
antenna array is split among multiple spatially separated
FCs located on a circle. To reduce the radio access distance
and improve the system performance, a minimum dis-
tance based (D-selection) method is utilized for assigning
each sensor to a FC. Furthermore, a distributed hybrid
combining-based detection rule, which employs distributed
RF combining followed by centralized baseband combin-
ing, is conceived for a D-MIMO WSN relying on the D-
selection scheme. Explicitly, we go beyond the scope of
[15]–[17] which derive fusion rules only for a centralized
massive MIMO WSN.

• Analytical results are derived for characterizing the sys-
tem performance in terms of the probabilities of correct
detectionPD and false alarmPFA at the FC for both
antenna configurations. Furthermore, the transmit signaling
matrices are determined for both the C- and D-MIMO
sensor networks that achieve a significant performance
gain.

• The pertinent power-scaling laws are also determined
in the large-scale antenna regime based on closed-form
asymptotic expressions. It is explicitly demonstrated that
each sensor can reduce its transmit power in proportion
to 1/M and 1/Nf for the centralized and distributed
schemes, respectively, without degrading its performance.
This in turn results in prolonged battery life for the sensors,
ensuring reliable WSN operation. This is in contrast to
[16], [17] that characterize the asymptotic performance
only for centralized massive MIMO systems.

The rest of the paper is organized as follows. Section II
describes the system model of both C- and D-MIMO based
WSNs. Furthermore, hybrid combining based fusion rules and
the probabilities of false alarm and correct detection are de-
rived in Section III for both the above antenna configurations.
Section IV presents our large-scale antenna array analysis,
followed by the associated signaling matrix design in Section
V. Our probability of error expressions are derived in Section
VI, while Section VII describes our exhaustive simulation
study. Our conclusions are drawn in Section VIII.

The following notation is used throughout the paper: Bold-
face uppercase lettersY and boldface lowercase lettersy
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are utilized to represent matrices and vectors, respectively,
where [Y]i,j and yi denote their respective(i, j)th and ith
entries. The lettersY(i) and y(i) are used to represent
the matrix and the vector obtained during theith iteration.
Pr(C|D) and Pr(·) indicate the conditional probability of
event C given D and the probability of an event, respectively.
Further,p(·) denotes the probability density function (PDF).
The Gaussian Q-function, represented byQ , is expressed as
Q(x) = 1√

2π

∫∞
x exp(−m2

2 )dm. The matrixIL indicates an
L × L identity matrix. The notationCN (µ,C) is used to
represent the complex Gaussian distribution with meanµ

and covariance matrixC. The mathematical operators little-
o, real part, expectation operator, absolute value, conjugate
and exponential operator are represented byo(·), R{·}, E{·},
| · |, (·)∗ and exp(·), respectively. Furthermore, the operators
conjugate transpose, Euclidean norm, inverse vec operator,
transpose, weighted norm and vec operator are denoted by
(·)H , ‖ · ‖, vec−1(·), (·)T , ‖ · ‖Y and vec(·), respectively.

II. SYSTEM MODEL

Consider a distributed mmWave massive MIMO sensor
network, where multiple sensors observe a specific signal of
interest to differentiate between the binary hypotheses ofthe
setH = {H0,H1}. In this binary hypothesis testing problem,
the alternative hypothesisH1 and the null hypothesisH0 cor-
respond to the presence and absence of the signal of interest,
respectively. Thekth sensor,1 ≤ k ≤ K, makes a local
binary decision regarding the observed signal of interest.Sub-
sequently, it transmits this local decision by modulating it as
the signal vectorxk = [xk(1), xk(2), . . . , xk(N)]T ∈ C

N×1.
The symbolsxk(i) are transmitted overN signaling intervals
on the basis of the local binary decision. For instance, for
the standard antipodal signaling scheme, the transmitted local
binary decision vectors can belong to the setxk ∈ {uk,−uk},
whereuk and −uk encode the presence or absence of the
signal of interest, respectively. The local probabilitiesof false
alarmPF,k and correct detectionPD,k of the kth sensor are
defined as

PF,k = Pr(xk = uk|H0) ,

PD,k = Pr(xk = uk|H1) .
(1)

In a mmWave massive MIMO based WSN,K single-antenna
sensors are employed, wherein the sensors simultaneously
communicate with the FC over a flat-fading coherent MAC
whose carrier frequency is in the mmWave band. The termi-
nologies of sensors and FC are widely used in the existing
literature on distributed detection [1], [13]–[17], [36]–[38],
[41]–[43], [45]–[47]. The FC can employ different antenna
architectures, namely the centralized and distributed MIMO
configurations, denoted by C-MIMO and D-MIMO, respec-
tively. The C-MIMO employs FCS, where each RF chain
is connected to all the FC antennas, whereas the D-MIMO
utilizes PCS, where only a single RF chain can access the
antenna sub-array at each FC. In the C-MIMO WSN, all
the K sensors are associated with a single FC deployed at
the cell center, whereas in the D-MIMO WSN, one sensor
is assigned to a single FC based on the minimum distance
criterion. Finally, the C-MIMO WSN employs a centralized

RF and baseband combining at the FC located at the cell
center, whereas in the D-MIMO WSN, the RF combining is
carried out individually at each FC, followed by a centralized
baseband combining of the RF combiner outputs fromK FCs
at the baseband processing unit (BPU). Both the architectures
are described in detail in the following subsections.

A. C-MIMO Based FC

In the C-MIMO system based on FCS, the FC located at the
cell center is equipped with a massive co-located antenna array
comprised ofM antennas, such thatM ≫ K, as illustrated
in Fig. 1a. Additionally, the total number of RF chainsNRF

is assumed to beNRF = K, which implies that the FC uses
only a single data stream to communicate with each sensor.
The signaly(n) ∈ CM×1 received at the FC during thenth,
1 ≤ n ≤ N , signaling interval can be expressed as

y(n) =
√
puGx(n) +w(n), (2)

where pu is the average transmit power of each sensor,
x(n) = [x1(n), x2(n), . . . , xK(n)]T ∈ CK×1 is the trans-
mit signal vector obtained by concatenating the symbols
of all the K sensors during thenth signaling interval and
w(n) ∈ CM×1 denotes the additive white Gaussian noise
(AWGN) vector distributed asCN

(

0, σ2
wIM

)

. The matrix
G = [g1,g2, . . . ,gK ] ∈ CM×K represents the mmWave
channel between theK sensors and the FC for the central-
ized antenna configuration. The channel vectorgk ∈ C

M×1

between the FC and thekth sensor can be formulated as
gk =

√
βkhk, where the large-scale fading coefficientβk

between the FC and thekth sensor accounts for the log-normal
shadowing and pathloss effects that are assumed to be constant
acrossm, 1 ≤ m ≤ M . Adopting the narrowband channel
model based on the extended Saleh-Valenzuela model, which
accurately captures the characteristics of mmWave channels
[48], the small-scale fading vectorhk ∈ C

M×1 between the
kth sensor and the FC can be modeled as

hk =

√

M

Lk

Lk
∑

l=1

αl
kar

(

θlk
)

, (3)

whereαl
k ∼ CN (0, 1) denotes the complex gain of thelth

path. The quantityLk is the number of propagation paths
for the channel of thekth sensor and follows the discrete
uniform distributionLk ∼ DU [1, Lm], whereLm represents
the maximum number of propagation paths, which is known
at the FC. The angleθlk represents the angle of arrival (AoA)
of the lth multipath from thekth sensor, which is assumed
to be uniformly distributed in the interval[0, 2π]. Considering
a standard uniform linear array (ULA) at the FC, the receive
array response vector corresponding to the AoAθlk, denoted
by ar

(

θlk
)

∈ CM×1, is expressed as

ar
(

θlk
)

=
1√
M

[

1, ejv sin(θl
k), . . . , ejv(M−1) sin(θl

k)
]T

, (4)

where v = 2π
λ d, λ is the carrier wavelength andd is the

inter-element spacing. Hence, the resultant channel matrix G

can be modeled asG = HD1/2, where D is the large-
scale fading diagonal matrix withβk, 1 ≤ k ≤ K, along
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Figure 1. MmWave massive MIMO WSN antenna architectures (a)Central-
ized (b) Distributed with circular layout.

its principal diagonal andH = [h1,h2, . . . ,hK ] ∈ CM×K

is the small-scale fading matrix. Using (2), the composite
signalY ∈ CM×N received at the FC corresponding to the
transmissions of all the sensors can be expressed as

Y =
√
puGX+W, (5)

whereW = [w(1), . . . ,w(N)] ∈ CM×N is the noise matrix
obtained via concatenation of theN AWGN vectorsw(n), so
that its elementsws,t(n) are independent and identically dis-
tributed (i.i.d.) and obey the distributionws,t(n) ∼ CN (0, σ2

w)
andX ∈ CK×N is the transmitted signal matrix.

B. D-MIMO Based FC

In a distributed mmWave massive MIMO WSN, multiple
FCs with separate antenna arrays are spatially separated and
are connected together by a high capacity backhaul, such as a
fiber optic link, as demonstrated in Fig. 1b. This employs the
PCS, where only a single RF chain is connected to the antenna
sub array at each FC through an RF combiner. Furthermore,
the RF combiner outputs of all the FCs are fed to a central
BPU. A total of J FCs, each equipped with an antenna
array comprised ofNf antennas, communicate withK single-
antenna sensors. Under the assumption thatJ = K, i.e. the
total number of sensors is restricted to the number of FCs, the
total number of antennas at all the FCs isNtot = KNf . It
should be noted that in order to make a fair comparison, the
total number of RF chainsNRF as well as the total number
of antennas at the FCNtot are kept identical to that of the
centralized system, i.e.,NRF = K andNtot = M . For this
scenario, the signalyj(n) ∈ CNf×1, 1 ≤ j ≤ K, received at
the jth FC during thenth signaling instant corresponding to
the transmitted signal vectorx(n), can be represented as

yj(n) =
√
puGjx(n) +wj(n), (6)

wherewj(n) ∈ C
Nf×1 is the AWGN vector at thejth FC with

its elements obeyingwf,j(n) ∼ CN (0, σ2
w), 1 ≤ f ≤ Nf

and Gj = [g1,j ,g2,j, . . . ,gK,j] ∈ CNf×K is the composite
mmWave channel between theK sensors and thejth FC.
ConsideringN signaling instants, the signalYj ∈ CNf×N

received at thejth FC, 1 ≤ j ≤ K, can be expressed as

Yj =
√
puGjX+Wj , (7)

where Wj = [wj(1), . . . ,wj(N)] ∈ CNf×N denotes the
receiver noise matrix at thejth FC with its elementsws,t,j(n)
distributed asws,t,j(n) ∼ CN (0, σ2

w). Similar to the C-MIMO
system, the channel vectorgk,j ∈ CNf×1 between thejth FC
and thekth sensor can be expressed asgk,j =

√

βk,jhk,j ,
whereβk,j andhk,j denote the large-scale fading coefficient
and the small-scale fading vector between thejth FC and the
kth sensor. Using the narrowband channel model, the small-
scale fading vectorhk,j can be characterized as

hk,j =

√

Nf

Lk,j

Lk,j
∑

l=1

αl
k,jar

(

θlk,j
)

, (8)

whereθlk,j ∈ [0, 2π] andαl
k,j ∼ CN (0, 1) represent the AoA

and the complex gain corresponding to thekth sensor,lth path
and thejth FC, respectively. The parameterLk,j indicates
the number of propagation paths between thejth FC and the
kth sensor that is distributed as a discrete uniform random
variable in the interval[1, Lm], whereLm is the maximum
number of propagation paths. The receive array response
vectorar

(

θlk,j
)

∈ C
Nf×1 at thejth FC corresponding to the

kth sensor can be modeled as

ar
(

θlk,j
)

=
1

√

Nf

[

1, ejv sin(θl
k,j), . . . , ejv(Nf−1) sin(θl

k,j)
]T

.

Hence, the resultant mmWave massive MIMO channel matrix
Gj corresponding to thejth FC can be expressed as

Gj = HjD
1/2
j , (9)

whereHj = [h1,j ,h2,j , . . . ,hK,j ] ∈ CNf×K represents the
small-scale fading matrix obtained using (8) andDj is the
large-scale fading matrix with the principal diagonal elements
of βk,j , 1 ≤ k ≤ K, for the jth FC. Utilizing the above
framework, our fusion rules are derived next for the mmWave
massive MIMO WSN, under different antenna configurations.

III. F USION RULE WITH HYBRID COMBINING

This section develops the fusion rules for the FC considering
both centralized and distributed antenna configurations.

A. Fusion Rule for C-MIMO Based WSN

Utilizing the NP criterion [49], which aims for maximizing
the probability of correct detection for a given probability of
false alarm, the log likelihood ratio (LLR) test for the received
signalY in (5), considering a centralized antenna topology can
be formulated as

T (Y) = ln

[

p(Y|H1)

p(Y|H0)

] H1

≷
H0

γ, (10)

where p(Y|H0), p(Y|H1) are the PDFs of the observation
matrix Y under the hypotheses ofH0 and H1, respectively
and γ denotes the detection threshold. The LLR test in
(10) evaluates the sum ofp[y(n)|x(n)]Pr[x(n)|Hi], where
i = {0, 1}, over2K combinations of the transmit vectorx(n),
which can be simplified to obtain

T (Y) =
N
∑

n=1

ln

[
∑

x(n) p(y(n)|x(n))Pr(x(n)|H1)
∑

x(n) p(y(n)|x(n))Pr(x(n)|H0)

]

(11)
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=
N
∑

n=1

ln









∑

x(n)

exp
(

−‖y(n)−√
puGx(n)‖2

σ2
w

)

Pr(x(n)|H1)

∑

x(n)

exp
(

−‖y(n)−√
puGx(n)‖2

σ2
w

)

Pr(x(n)|H0)









,

(12)

where the expression in (11) follows from the independence
of the transmitted signal vectorsx(n) across theN signaling
intervals and (12) is arrived at by substituting the PDF
p(y(n)|x(n)), that is given as

p(y(n)|x(n)) = 1

(πσ2
w)

M
exp

[−1

σ2
w

‖y(n)−√
puGx(n)‖2

]

.

To reduce the complexity of its practical implementation, the
LLR test T (Y) is approximated by the two-step solution
outlined below. In the first step, the observation matrixY is
processed using a hybrid combiner, which is the combination
of an analog combinerFRF ∈ CM×K and a digital combiner
FBB ∈ CK×K , to obtain the soft decisions of the sensors,
as shown in Fig. 2. It should be noted that the number of
RF chains required for hybrid combining isNRF = K,
which is much lower in comparison to fully digital combining,
which requires one RF chain per antenna, i.e. a total ofM
RF chains at the FC, whereM ≫ K. The output matrix
Z = [z(1), . . . , z(N)] ∈ CK×N , obtained from the hybrid
combiner, can be expressed as

Z = FH
BBF

H
RFY =

√
puF

H
BBF

H
RFGX+ FH

BBF
H
RFW. (13)

Similar to [19], the analog combinerFRF of mmWave mas-
sive MIMO systems is constructed by stacking the optimal
combining vectors equal to the receive array response vectors
corresponding to their maximum path gains of the individual
sensors, which has the structure of

FRF =
[

ar
(

θl11
)

, , . . . , ar
(

θlKK
)]

, (14)

where lk is the path of thekth sensor with the maximum
gain

∣

∣

∣
αlk
k

∣

∣

∣
and θlkk , 1 ≤ k ≤ K, denotes the corresponding

AoA. The digital combinerFBB derived using the equivalent
baseband channel matrix can be expressed asFBB = FH

RFG.
Invoking the asymptotic orthogonality property of mmWave
massive MIMO channels [50] leads to

aHr
(

θluk
)

ar
(

θlvs
)

=

{

1, u = v andk = s
0, u 6= v or k 6= s

, (15)

as M tends to infinity andLk ≪ M , i.e, Lk = o(M),
∀k. Thus, we can employ a diagonal baseband combinerFBB

with its kth diagonal element set as[FBB]k,k =
√

Mβk

Lk
αlk
k .

Substituting the above choice ofFRF and FBB in (13) and
using the result derived in (15), the hybrid combiner output
vectorzk ∈ C

N×1, of thekth sensor, can be derived as

zk =
√
pu
Mβk
Lk

∣

∣

∣
αlk
k

∣

∣

∣

2

xk + w̃k, (16)

where w̃k =
√

Mβk

Lk
(αlk

k )∗(aHr (θlkk )W)T ∈ CN×1 is the
equivalent AWGN vector that is distributed as̃wk ∼
CN (0,Cw̃k

). The covariance matrixCw̃k
∈ CN×N and

the constantdk are defined asCw̃k
= Mσ2

wdkIN and

Figure 2. System model for distributed detection in a centralized configuration
based mmWave massive MIMO WSN.

dk , βk

Lk
E{|αlk

k |2}, respectively. Using (16), the distribu-
tion of the output vectorzk can be determined aszk ∼
CN

(√
puMdkxk,C

′
k

)

, where the covariance matrix obeys

C′
k =

puM
2β2

k

L2
k

xkx
H
k var{|αlk

k |2} + Cw̃k
. Leveraging the in-

dependence of the output vectors across different sensors,the
LLR based test statisticTC(Z) for DD can be formulated as

TC(Z) = ln

[

p(Z|H1)

p(Z|H0)

]

= ln

[ K
∏

k=1

p(zk|H1)

p(zk|H0)

]

, (17)

where p(zk|H1) and p(zk|H0) are the PDFs of the hybrid
combiner output vectorzk under the hypothesesH1 andH0,
respectively. For the antipodal signaling scheme having trans-
mit signal vectors ofuk and−uk representing the presence
and absence of the signal of interest, respectively, the test
statistic above can be simplified as shown in (18). Upon substi-
tuting the PDFsp(zk|xk) for xk ∈ {uk,−uk}, determined in
(19) and (20), respectively, with the covariance matrixC̃k =
puM

2β2
k

L2
k

uku
H
k var{|αlk

k |2} +Cw̃k
= MCk, where the matrix

Ck is defined asCk =
puMβ2

k

L2
k

uku
H
k var{|αlk

k |2} + σ2
wdkIN

and the local sensor performance metrics from (1), the test
statistic in (18) reduces to the expression below

TC(Z) =
K
∑

k=1

ln

[

PD,k + (1− PD,k) exp(−4
√
pudkR(zHk C−1

k uk))

PF,k + (1− PF,k) exp(−4
√
pudkR(zHk C−1

k uk))

]

.

(21)

The detailed derivation of the above expression is given in the
technical report [51]. At low SNRs1, using the approximations
ln (1 + x) ≈ x ande−x ≈ (1− x), the test statistic is further
reduced to the compact form of

TC(Z) =

K
∑

k=1

akdkR
(

zHk C−1
k uk

)
H1

≷
H0

γ′, (22)

where we haveak , PD,k − PF,k, for the kth sensor. It
is readily seen that the fusion rule obtained in (22) has a
significantly reduced complexity as a benefit of its efficient
linear combiner structure. For the special case of sensors re-
lying on identical local performance metrics, i.e.,PD,k = Pd,

1The low SNR regime is frequently encountered in sensor networks, as
the sensor nodes typically operate at a very low transmit power levels due to
battery constraints [42], [47]. Additionally, this minimizes the probability of
unauthorized detection/ interception [41].
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TC(Z) =

K
∑

k=1

ln

[

p(zk|xk = uk)Pr(xk = uk|H1) + p(zk|xk = −uk)Pr(xk = −uk|H1)

p(zk|xk = uk)Pr(xk = uk|H0) + p(zk|xk = −uk)Pr(xk = −uk|H0)

]

(18)

p (zk|xk = uk) =
1

|πC̃k|
exp

(

− (zk −√
puMdkuk)

HC̃−1
k (zk −√

puMdkuk)
)

(19)

p (zk|xk = −uk) =
1

|πC̃k|
exp

(

− (zk +
√
puMdkuk)

HC̃−1
k (zk +

√
puMdkuk)

)

(20)

PF,k = Pf , ∀k, the test statistic in (22) is reduced toTC,I(Z) =
∑K

k=1 dkR(zHk C−1
k uk). The analytical performance of the

detector in (22) can be characterized as shown below.

Theorem 1. The probabilities of false alarm(PFA) and
correct detection(PD) of the fusion ruleTC(Z) in (22) for
DD in the mmWave massive MIMO WSN with a centralized
antenna topology are

PFA = Q

(

γ′ − µTC|H0

σTC|H0

)

, PD = Q

(

γ′ − µTC|H1

σTC|H1

)

, (23)

where µTC|H0
, µTC|H1

are the means andσ2
TC|H0

, σ2
TC|H1

denote the variances under the hypotheses ofH0 and H1,
respectively, which are obtained as

µTC|H0
=

K
∑

k=1

√
puMakckd

2
ku

H
k C−1

k uk, (24)

µTC|H1
=

K
∑

k=1

√
puMakbkd

2
ku

H
k C−1

k uk, (25)

σ2
TC|H0

=
K
∑

k=1

Md2ka
2
k

(

Mpuξk +
σ2
w

2
dku

H
k C−2

k uk

)

, (26)

σ2
TC|H1

=

K
∑

k=1

Md2ka
2
k

(

Mpuζk +
σ2
w

2
dku

H
k C−2

k uk

)

, (27)

where ξk =
(

β2
k

L2
k

E{|αlk
k |4} − d2kc

2
k

)

(

uH
k C−1

k uk

)2
, ζk =

(

β2
k

L2
k

E{|αlk
k |4} − d2kb

2
k

)

(

uH
k C−1

k uk

)2
, bk = 2PD,k − 1 and

ck = 2PF,k − 1.

Proof. Given in Appendix A in [1].

B. Fusion Rule for D-MIMO Based WSN

For the subsequent analysis, a distributed mmWave massive
MIMO WSN is considered with a circular layout. This is moti-
vated by the fact that compared to other antenna array layouts,
the circular topology requires less optical backhaul installation
[8] and is also compatible with the existing infrastructure[7].
All the K FCs are assumed to be uniformly distributed on a
circle of radiusr such thatr0 ≪ r < R, whereR represents
the cell radius andr0 denotes the minimum distance of the
FCs from the cell center [52]. Therefore, the polar coordinates
of the jth FC, 1 ≤ j ≤ K, can be expressed as

(dj , ϕj) =

(

r,
2π(j − 1)

K

)

. (28)

TheK sensors having polar coordinates of(ρk, ψk), 1 ≤ k ≤
K, are assumed to be uniformly and randomly distributed

Figure 3. System model for distributed detection in a distributed configuration
based mmWave massive MIMO WSN.

within the cell. The distance of thekth sensor from thejth
FC, denoted byδk,j , can be expressed as [52]

δk,j =
√

d2j + ρ2k − 2ρkdj cos(ψk − ϕj). (29)

To further enhance the system performance, one can exploit
the SINR- and D-selection methods for FC association [52].
Explicitly, the sensor selects the FC having the maximum
SINR in the former, while in the latter it chooses the closest
FC, i.e. the one with the minimum distance. However, typically
D-selection is preferred due to its analytical tractability [52].

For D-selection, we can begin by constructing the distance
matrix ∆ ∈ CK×K , where[∆]k,j = δk,j , 1 ≤ k ≤ K, 1 ≤
j ≤ K. In each step, D-selection assigns sensork to FC j, so
that [∆]k,j is the minimum among the remaining entries of
∆. Post assignment, the entries[∆]k,j corresponding to sensor
k and FCj are removed from the matrix and the process is
repeated until all the sensors become associated. A correction
matrix P is employed to keep track of the associations, with
[P]k,j = 1, when thekth sensor is connected to thejth FC,
and0 otherwise. Furthermore,P has the property ofPHP =
IK , since each sensor is associated with a single FC and vice-
versa.

Consider now the composite observation matrix,Ỹ =
[Y1,Y2, . . . ,YK ] ∈ CNf×KN , constructed by concatenating
the signal matrixYj in (7) for all the K FCs. Exploiting
the conditional independence of the observation matricesYj ,
1 ≤ j ≤ K, corresponding to different FCs, the NP criterion
based LLR testTD(Ỹ) for DD in the massive D-MIMO sensor
network can be formulated as

TD(Ỹ) = ln

[

p(Ỹ|H1)

p(Ỹ|H0)

]

= ln











K
∏

j=1

p(Yj |H1)

K
∏

j=1

p(Yj |H0)











H1

≷
H0

γ, (30)
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wherep(Yj |H1), p(Yj |H0) denote the PDFs ofYj under the
hypotheses ofH1 andH0, respectively andγ represents the
detection threshold. Exploiting the independence ofx(n), ∀n,
conditioned on the hypothesesH1 andH0, the LLR test in
(30) can be simplified to

TD(Ỹ)=

K
∑

j=1

N
∑

n=1

ln







∑

x(n)

p(yj(n)|x(n))Pr(x(n)|H1)

∑

x(n)

p(yj(n)|x(n))Pr(x(n)|H0)






(31)

=
K
∑

j=1

N
∑

n=1

ln









∑

x(n)

exp
(

−‖yj(n)−
√
puGjx(n)‖2

σ2
w

)

Pr(x(n)|H1)

∑

x(n)

exp
(

−‖yj(n)−
√
puGjx(n)‖2

σ2
w

)

Pr(x(n)|H0)









The above expression is obtained by substituting the PDF of

p(yj(n)|x(n))=
1

(πσ2
w)

Nf
exp

(−‖yj(n)−√
puGjx(n)‖2

σ2
w

)

into (31). Similar to the C-MIMO setup, the test statistic
above can be simplified as follows. In the first step, the
observation matrixYj is pre-processed at each FC using the
RF combiner. The hybrid combining using the D-selection
method first assigns thejth FC to thekj-th sensor following
the minimum distance criterion and then selects thelkj

-th
path of the channel between thejth FC and thekj-th sensor
by leveraging the small scale channel gain. Hence, the RF
combinerfRF,j ∈ CNf×1 can be formulated as

fRF,j = ar(θ
lkj
kj ,j

), (32)

wherear(θ
lkj
kj ,j

) is the array response vector of thekj th sensor,
1 ≤ kj ≤ K, for the lkj

path with the maximum path gain
∣

∣

∣
α
lkj
kj ,j

∣

∣

∣
andθ

lkj
kj ,j

is the corresponding AoA. The RF combiner
outputs of all theK FCs are reordered using the correction
matrix P and subsequently processed at the BPU using the
digital combinerFBB,D ∈ CK×K to recover the soft decisions
of each sensor, as demonstrated in Fig. 3. In the second step,
all the sensor decisions are combined to arrive at the final
decision. Utilizing the system model in (7), the RF combiner
output y̆T

j ∈ C1×N for the jth FC can be expressed as

y̆T
j =

√
puf

H
RF,jGjX+ fHRF,jWj . (33)

The stacked RF combiner output̆Y = [y̆1, y̆2, . . . , y̆K ]T ∈
CK×N corresponding to theK FCs is given in (34). Therefore,
the equivalent system model obtained after applying the RF
combiner can be formulated as

Y̆ =
√
puF

H
RF,DGDX+ FH

RF,DWD, (35)

where FRF,D = diag{fRF,1, fRF,2, . . . , fRF,K} ∈
C

KNf×K denotes the equivalent RF combiner
and GD = [GT

1 ,G
T
2 , . . . ,G

T
K ]T ∈ CKNf×K ,

WD = [WT
1 ,W

T
2 , . . . ,W

T
K ]T ∈ CKNf×N represent

the stacked mmWave channel and noise matrices,
respectively. The rearranged RF combiner output matrix
YD = [y̆j1 , y̆j2 , . . . , y̆jK ]T ∈ CK×N can be expressed as

YD =
√
puPFH

RF,DGDX+PFH
RF,DWD, (36)

wherey̆T
jk

, 1 ≤ jk ≤ K, denotes the signal vector received at
the jkth FC associated with thekth sensor. Subsequently, the
digital combinerFBB,D = PFH

RF,DGD ∈ CK×K is employed
to extract the outputs corresponding to each sensor. The
resultant output matrixZD ∈ CK×N can be expressed as

ZD =
√
puF

H
BB,DPFH

RF,DGDX+ FH
BB,DPFH

RF,DWD. (37)

It can be noted that the asymptotic orthogonality property of
mmWave massive MIMO channels holds true also for the D-
MIMO system [52], under the conditionLk,j = o(Nf ), 1 ≤
k, j ≤ K, and can be expressed as

aHr
(

θluk,j
)

ar
(

θlvs,t
)

=

{

1, j = t andk = s andu = v
0, j 6= t or k 6= s or u 6= v

.

(38)

Leveraging the above property and choosing the digital com-
biner matrixFBB,D to be diagonal [52] with itskth principal

diagonal element given by[FBB,D]k,k =
√

Nfβk,jk

Lk,jk

αlk
k,jk

, the

hybrid combiner outputzD,k ∈ CN×1 of the kth sensor can
be determined as

zD,k =
√
pu
βk,jkNf

Lk,jk

∣

∣

∣
αlk
k,jk

∣

∣

∣

2

xk + w̃D,k, (39)

wherew̃D,k =
√

Nfβk,jk

Lk,jk

(αlk
k,jk

)∗(aHr (θlkk,jk )Wjk)
T ∈ CN×1

represents the equivalent noise vector of thekth sensor,
which obeys the complex Gaussian distributioñwD,k ∼
CN (0, dk,jkσ

2
wNfIN ) and dk,jk ,

βk,jk

Lk,jk

E{|αlk
k,jk

|2}. Fur-
thermore, the hybrid combiner output of thekth sensor
zD,k is also complex Normal distributed obeyingzD,k ∼
CN (

√
puNfdk,jkxk,C

′
D,k). Furthermore, the covariance ma-

trix C′
D,k ∈ CN×N of zD,k can be formulated asC′

D,k =
puN

2
fβ

2
k,jk

L2
k,jk

var{|αlk
k,jk

|2}xkx
H
k +dk,jkσ

2
wNfIN . Leveraging the

conditional independence of the hybrid combiner outputszD,k

across different sensors, the NP criterion based test statistic
TD(Z) for DD in mmWave massive MIMO WSNs, relying
on a distributed antenna topology can be formulated as

TD(ZD) = ln

[

p(ZD|H1)

p(ZD|H0)

]

= ln

[ K
∏

k=1

p(zD,k|H1)

p(zD,k|H0)

]

. (40)

The above test can be further simplified to the test statisticseen
in (43), where (42) exploits the independence of the hybrid
combiner outputszD,k of different sensors, given the transmit
vectors ofxk ∈ {uk,−uk} for the antipodal signaling scheme.
Substituting the PDFs ofzD,k corresponding to the local sensor
decisions, which are given as

p(zD,k|xk = uk) ∼ CN (
√
pudk,jkNfuk, C̃D,k),

p(zD,k|xk = −uk) ∼ CN (−√
pudk,jkNfuk, C̃D,k),

(41)

into (40) yields the expression of the test statistic in

(43), where C̃D,k =
puN

2
fβ

2
k,jk

L2
k,jk

var{|αlk
k,jk

|2}uku
H
k +

Nfdk,jkσ
2
wIN = NfCD,k and CD,k = dk,jkσ

2
wIN +

puNfβ
2
k,jk

L2
k,jk

var{|αlk
k,jk

|2}uku
H
k . Once again, at low SNR, the



9











y̆T
1

y̆T
2
...

y̆T
K











=
√
pu











fHRF,1 0 . . . 0

0 fHRF,2 . . . 0
...

...
. ..

...
0 0 . . . fHRF,K





















G1

G2

...
GK











X+











fHRF,1 0 . . . 0

0 fHRF,2 . . . 0
...

...
. . .

...
0 0 . . . fHRF,K





















W1

W2

...
WK











, (34)

TD(ZD) =

K
∑

k=1

ln

[

p(zD,k|xk = uk)Pr(xk = uk|H1) + p(zD,k|xk = −uk)Pr(xk = −uk|H1)

p(zD,k|xk = uk)Pr(xk = uk|H0) + p(zD,k|xk = −uk)Pr(xk = −uk|H0)

]

(42)

=

K
∑

k=1

ln

[

PD,k + (1 − PD,k) exp
(

− 4
√
pudk,jkR(zHD,kC

−1
D,kuk)

)

PF,k + (1 − PF,k) exp
(

− 4
√
pudk,jkR(zHD,kC

−1
D,kuk)

)

]

, (43)

above expression ofTD(ZD) can be simplified to

TD(ZD) =

K
∑

k=1

akdk,jkR
(

zHD,kC
−1
D,kuk

) H1

≷
H0

γ̃. (44)

WhenPD,k = PD, PF,k = PF , ∀k, the test statistic in (44)
further reduces toTD,I(ZD) =

∑K
k=1 dk,jkR

(

zHD,kC
−1
D,kuk

)

.
The theorem given below summarizes the performance of the
testTD(ZD) for the null and alternative hypotheses.

Theorem 2. The probabilities of false alarm(PFA) and
correct detection(PD) of the detector in(44), using DD in
our massive D-MIMO configuration, are formulated as

PFA = Q

(

γ̃ − µTD|H0

σTD|H0

)

, PD = Q

(

γ̃ − µTD|H1

σTD|H1

)

, (45)

whereµTD|H0
, µTD|H1

andσ2
TD|H0

, σ2
TD|H1

represent the means
and the variances ofTD(ZD) corresponding to the hypotheses
of H0 andH1, respectively. The quantitiesµTD|H1

andσ2
TD|H1

are given by

µTD|H1
=

K
∑

k=1

√
puNfakbkd

2
k,jku

H
k C−1

D,kuk, (46)

σ2
TD|H1

=

K
∑

k=1

a2kd
2
k,jkNf

(

puζD,kNf +
σ2
w

2
dk,jku

H
k C−2

D,kuk

)

,

(47)

where bk = 2PD,k − 1 and ζD,k =
(

β2
k,jk

L2
k,jk

E{|αlk
k,jk

|4} −

b2kd
2
k,jk

)

(

uH
k C−1

D,kuk

)2
. Similarly, the expressions ofµTD|H0

and σ2
TD|H0

are

µTD|H0
=

K
∑

k=1

√
puNfakckd

2
k,jku

H
k C−1

D,kuk, (48)

σ2
TD|H0

=

K
∑

k=1

a2kd
2
k,jkNf

(

puξD,kNf +
σ2
w

2
dk,jku

H
k C−2

D,kuk

)

,

(49)

where ck = 2PF,k − 1 and ξD,k =
(

β2
k,jk

L2
k,jk

E{|αlk
k,jk

|4} −

d2k,jkc
2
k

)

(

uH
k C−1

D,kuk

)2
.

Proof. Given in Appendix A.

IV. L ARGE-SCALE ANTENNA ARRAY ANALYSIS

Analytical expressions of the asymptotic probabilities of
false alarm and correct detection are now obtained using an
appropriate sensor power scaling law in the large-scale antenna
regime to provide additional insights.

A. Large-Scale Antenna Array Analysis for a mmWave Mas-
sive C-MIMO WSN

For a C-MIMO WSN, consider the power scaling law
pu = p̃u

M . The corresponding analytical expressions of the
asymptotic detection performance of the fusion rule in (22)
are now derived below forpu = p̃u

M .

Theorem 3. The asymptotic probabilities of false alarm
(P a

FA) and correct detection(P a
D) of the proposed detector in

(22) for a centralized mmWave massive MIMO WSN, under
the power scalingpu = p̃u

M are formulated as

P a
FA = lim

M→∞
Q

(

γ′ − µTC|H0

σTC|H0

)∣

∣

∣

∣

pu=
p̃u
M

= Q
(

γ′ − µa
TC|H0

)

,

P a
D = lim

M→∞
Q

(

γ′ − µTC|H1

σTC|H1

)
∣

∣

∣

∣

pu=
p̃u
M

= Q
(

γ′ − µa
TC|H1

)

,

where the normalized means under the null and alternative
hypotheses, denoted byµa

TC|H0
and µa

TC|H1
, respectively, are

expressed as

µa
TC|H0

=

∑K
k=1

√
p̃uakckd

2
ku

H
k (Ca

k)
−1uk

√

∑K
k=1 d

2
ka

2
k

(

p̃uξak +
σ2
w

2 dku
H
k (Ca

k)
−2uk

)

,

(50)

µa
TC|H1

=

∑K
k=1

√
p̃uakbkd

2
ku

H
k (Ca

k)
−1uk

√

∑K
k=1 d

2
ka

2
k

(

p̃uζak +
σ2
w

2 dku
H
k (Ca

k)
−2uk

)

,

(51)

where we haveζak =
(

β2
k

L2
k

E{|αlk
k |4}−d2kb2k

)

(

uH
k (Ca

k)
−1uk

)2
,

ξak =
(

β2
k

L2
k

E{|αlk
k |4} − d2kc

2
k

)

(

uH
k (Ca

k)
−1uk

)2
and Ca

k =

p̃uβ
2
k

L2
k

var{|αlk
k |2}uku

H
k + σ2

wdkIN .

Proof. Given in Appendix B.

The asymptotic performance of a D-MIMO based WSN is
discussed next.



10

B. Large-Scale Antenna Array Analysis for a mmWave Mas-
sive D-MIMO WSN

For the D-MIMO configuration, consider the power scaling
law pu = p̃u

Nf
. The asymptotic probabilities of false alarm

(P a
FA) and correct detection(P a

D) under this scaling law are
presented in the following theorem.

Theorem 4. The asymptoticP a
FA andP a

D of the test statistic
in (44) for a mmWave massive D-MIMO WSN, under the
power scalingpu = p̃u

Nf
, are given as

P a
FA = lim

Nf→∞
Q

(

γ̃ − µTD|H0

σTD|H0

)∣

∣

∣

∣

pu=
p̃u
Nf

= Q(γ̃ − µa
TD|H0

),

P a
D = lim

Nf→∞
Q

(

γ̃ − µTD|H1

σTD|H1

)∣

∣

∣

∣

pu=
p̃u
Nf

= Q(γ̃ − µa
TD|H1

),

where the quantitiesµa
TD|H0

andµa
TD|H1

represent the normal-
ized means pertaining to the null and alternative hypotheses,
respectively, which are derived as

µa
TD|H0

=

∑K
k=1

√
p̃uakckd

2
k,jk

uH
k (Ca

D,k)
−1uk

√

K
∑

k=1

d2k,jka
2
k

(

p̃uξaD,k +
σ2
w

2 dk,jku
H
k (Ca

D,k)
−2uk

)

,

(52)

µa
TD|H1

=

∑K
k=1

√
p̃uakbkd

2
k,jk

uH
k (Ca

D,k)
−1uk

√

K
∑

k=1

d2k,jka
2
k

(

p̃uζaD,k+
σ2
w

2 dk,jku
H
k (Ca

D,k)
−2uk

)

.

(53)

The various quantities used above are defined asζaD,k =
(

β2
k,jk

L2
k,jk

E{|αlk
k,jk

|4}−d2k,jkb2k
)

(

uH
k (Ca

D,k)
−1uk

)2
and ξaD,k =

(

β2
k,jk

L2
k,jk

E{|αlk
k,jk

|4}−d2k,jkc2k
)

(

uH
k (Ca

D,k)
−1uk

)2
with Ca

D,k =

p̃uβ
2
k,jk

L2
k,jk

var{|αlk
k,jk

|2}uku
H
k + σ2

wdk,jkIN .

Proof. Follows similar lines to that of Theorem 3 in Appendix
B.

The results in Theorem 3 and Theorem 4 have significant
implications for the practical deployment of mmWave mas-
sive MIMO sensor networks, since they demonstrate that the
sensors may significantly reduce their energy consumption,
proportional to1/M and1/Nf for the C- and D-MIMO con-
figurations, respectively, without any performance degradation.
This in turn results in prolonged battery life of the sensors,
ensuring reliable WSN operation.

V. TRANSMIT SIGNALING MATRICES

This section develops an optimization framework for finding
the optimal signaling matricesX = [x1,x2, . . . ,xK ]T ∈
CK×N , that enhance the detection performance of the fusion
rules proposed in Section III. Consider a column wise stacking
of the matrix UT = [u1,u2, . . . ,uK ] to obtain the vector

u ∈ CKL×1, described asu = vec(UT ). The detection per-
formance of the sensor network can be boosted by maximizing
the deflection coefficientd2 (u) [49], expressed as

d2 (u) =

(

µT |H1
− µT |H0

)2

σ2
T |H0

, (54)

whereµT |H1
, µT |H0

denote the means of the testT (Z) under
the alternative and null hypotheses, respectively, andσ2

T |H0
is

the variance under the null hypothesis. The signaling matrices
of the centralized and distributed antenna configurations are
determined next.

A. Signaling Matrix Design for a C-MIMO System

Using (54) and the expressions ofµTC|H0
, µTC|H1

and
σ2
TC|H0

given in Theorem 1, the deflection coefficientd2C (u)
for the C-MIMO system can be formulated as

d2C(u) =

(

µTC|H1
− µTC|H0

)2

σ2
TC|H0

=

(

∑K
k=1

√
puMd2kak(bk − ck)u

H
k C−1

k uk

)2

∑K
k=1Md2ka

2
k

(

Mpuξk +
σ2
w

2 dku
H
k C−2

k uk

) , (55)

where ξk is defined in Theorem 1. To simplify the above
expression, one can define the block-diagonal matrices of
ΛN ∈ CKN×KN , ΩN ∈ CKN×KN and ΓN ∈ CKN×KN

with block diagonal elements of[ΛN ]k = [Λ]k,kC
−1
k ,

[ΩN ]k = [Ω]k,kC
−1
k and [ΓN ]k = [Γ]k,kC

−2
k , respectively,

where we have

[Λ]k,k =
√
puMd2kak (bk − ck) , [Γ]k,k =

σ2
w

2
Md3ka

2
k,

[Ω]k,k =
√
puMdkak

√

β2
k

L2
k

E{|αlk
k |4} − c2kd

2
k. (56)

Using the above quantities, the deflection coefficient expres-
sion in (55) can be closely approximated as

d2(u) ≈ (uHΛNu)2

(uHΩNu)2 + uHΓNu
. (57)

Since the expression in (57) is non-convex, direct maximiza-
tion of the deflection coefficient is challenging. Hence, for
obtaining a tractable solution, the original objective function
can be recast as

max.
uH

(

ΛNuuHΛN

)

u

uH (ΩNuuHΩN + ΓN )u
= max.

uHΨu

uHΞu
, (58)

where Ξ = ΩNuuHΩN + ΓN and Ψ = ΛNuuHΛN .
Using the standard form of the Rayleigh quotient of [53], the
objective function in (58) can be similarly modified as

max.
uHΨu

uHΞ1/2Ξ1/2u
= max.

vHΞ−1/2ΨΞ−1/2v

vHv

= max.
vHAv

vHv
, (59)

where v = Ξ1/2u and A = Ξ−1/2ΨΞ−1/2. The above
optimization problem can be solved iteratively for determining



11

the optimal signal vectoru and the solution for thelth iteration
is determined below.

Theorem 5. For a centralized antenna topology, the transmit
signaling matrix U(l) in the lth iteration can be derived
as U(l) =

(

vec−1
(

u(l)
))T

=
(

vec−1
((

Ξ(l−1)
)−1/2

v(l)
))T

,
wherev(l) is the solution of the optimization problem below

max.
v(l)

v(l)HA(l−1)v(l)

v(l)Hv(l)
, (60)

with A(l−1) =
(

Ξ(l−1)
)−1/2

Ψ(l−1)
(

Ξ(l−1)
)−1/2

, v(l) =
(

Ξ(l−1)
)1/2

u(l). The matricesΞ(l−1) and Ψ(l−1) are deter-
mined upon replacingu by u(l−1) in (58).

It can be readily seen that the solutionv(l) of the op-
timization problem in (60) is given byv(l) = αν

(l−1)
m ,

whereα denotes the scaling factor for the total power and
ν
(l−1)
m is the eigenvector of the matrixA(l−1) corresponding

to its maximum eigenvalue. The vectoru is initialized as
u(0) = vec

(

(U(0))T
)

, where the transmit signaling matrix
U(0) at the0th iteration is chosen as a semi-unitary matrix
defined in [17]. Consequently, the transmit signaling ma-
trix during the lth iteration can be formulated asU(l) =
(

vec−1
((

Ξ(l−1)
)−1/2

v(l)
))T

, which further enhances the per-
formance of the detector proposed in (22) for a mmWave
massive MIMO based WSN relying on centralized antenna
configuration.

B. Signaling Matrix Design for a D-MIMO System

For a D-MIMO topology, the deflection coefficientd2D (uD)
[49] of the test statistic in (44) can be approximated as

d2 (uD) =

(

µTD|H1
− µTD|H0

)2

σ2
TD|H0

=

(

∑K
k=1

√
puNfd

2
k,jk

ak(bk − ck)u
H
k C−1

D,kuk

)2

∑K
k=1Nfd2k,jka

2
k

(

NfpuξD,k +
σ2
w

2 dk,jku
H
k C−2

D,kuk

)

≈ (uH
D ΛD,NuD)

2

(uH
D ΩD,NuD)2 + uH

D ΓD,NuD
, (61)

where the expressions ofµTD|H1
, µTD|H0

and σ2
TD|H0

are
given in (46), (48) and (49), respectively. The block diagonal
components of the matricesΛD,N , ΩD,N andΓD,N are defined
as [ΛD,N ]k = [ΛD]k,kC

−1
D,k, [ΩD,N ]k = [ΩD]k,kC

−1
D,k and

[ΓD,N ]k = [ΘD]k,kC
−2
D,k, respectively. Furthermore,[ΛD]k,k,

[ΩD]k,k and[ΘD]k,k can be derived from (56) upon replacing
M and dk by Nf and dk,jk , respectively. Following similar
lines to those of Theorem 5, the objective function in (61) can
be equivalently expressed as

max.
uH

D ΨDuD

uH
D ΞDuD

= max.
vH

D ADvD

vH
D vD

, (62)

where the matrices obeyAD = Ξ
−1/2
D ΨDΞ

−1/2
D , ΨD =

ΛD,NuDu
H
D ΛD,N , ΞD = ΩD,NuDu

H
D ΩD,N +ΓD,N andvD =

Ξ
1/2
D uD. The optimization problem in (62) can be solved

iteratively and the transmit signaling matrixU(l)
D during thelth

Table II
SPECIFICATION OFNUMERICAL PARAMETERS

Parameters Values

A priori probability ofH1: Pr(H1) 1/2
A priori probability ofH0: Pr(H0) 1/2
Carrier frequency:fc 28 GHz
Inter-antenna spacing:d 0.5λ
Noise variance:σ2

w 1
Number of sensors:K 12
Maximum no. of propagation paths:Lm 10
Minimum distance between sensor and FC:r0 1m
Cell radius and Path loss exponent:R, ν 200 m, 2
Mean and standard deviation of
shadowing factor:µq , σq 4 dB, 2 dB
Radius of all the FCs:r 0.6R

iteration is given byU(l)
D =

(

vec−1
[

η
(

Ξ
(l−1)
D

)−1/2
ν̄
(l−1)
m

])T
,

where ν̄(l−1)
m is the eigenvector of the matrixA(l−1)

D corre-
sponding to the maximum eigenvalue andη denotes the scaling
coefficient used for meeting the total power constraint. The
probability of error of the proposed detectors is derived next.

VI. A NALYSIS OF ERROR PROBABILITY

This section characterizes the probability of error of the
detectors proposed in (22) and (44). Consider thea priori
probabilities of both the hypotheses Pr(H1), Pr(H0) to be
given as Pr(H1) = ǫ and Pr(H0) = 1 − ǫ, respectively. The
conditional probabilities Pr(H1|H0) and Pr(H0|H1) are given
as PFA and 1 − PD, respectively. Hence, the probability of
errorPe can in turn be determined as [49],

Pe = Pr(H0|H1)Pr(H1) + Pr(H1|H0)Pr(H0)

= (1 − PD)ǫ + PFA(1− ǫ). (63)

Upon substituting the expressions ofPD andPFA, from (23),
into (63), the expression ofPe for the C-MIMO configuration
can be formulated as

Pe = ǫ

(

1−Q

(

γ′ − µTC|H1

σTC|H1

))

+ (1− ǫ)Q

(

γ′ − µTC|H0

σTC|H0

)

,

(64)
where µTC|H1

, µTC|H0
, σTC|H1

and σTC|H0
are defined in

Theorem 1. Similarly, upon substitutingPD andPFA, from
(45), into (63), the expression ofPe for the D-MIMO system,
can be derived as

Pe = ǫ

(

1−Q

(

γ̃ − µTD|H1

σTD|H1

))

+ (1− ǫ)Q

(

γ̃ − µTD|H0

σTD|H0

)

,

(65)
where µTD|H1

, µTD|H0
, σTD|H1

and σTD|H0
are given in

Theorem 2. Our simulation results are presented next for
quantifying the performance of the proposed detectors.

VII. S IMULATION RESULTS

In our simulations,K sensors are assumed to be uniformly
and randomly distributed in an annular region with maximum
distance ofR and minimum distance ofr0 for the C-MIMO
system. For the D-MIMO system, the sensors are uniformly
and randomly distributed within the range ofΣ = [0, r−r0]∪
[r+r0, R], wherer is the radius of a circle on which multiple
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Figure 4. PD vs. PFA plot for M = 250 and pu = −18 dB for comparing (a) simulated and analytical performance of the testTC(Z) in (22) for
N ∈ {1, 2, 4}, (b) the detection performance of the test in (22) forN ∈ {1, 2} with Max-log detector, (c) the C-MIMO detector employing the orthogonal
signaling matrix and improved signaling matrix derived in Theorem 5 forN ∈ {2, 4}.
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Figure 5. For parameterspu = −18 dB, Nf = 40, Ntot = M = 480, (a) PD vs. PFA plot for verifying the analytical results of the testTD(ZD) in (44)
for N ∈ {1, 2, 4}, (b) PD vs. normalized sensor radiusρ

R
for C- and D-MIMO systems withPFA = 0.1 andN ∈ {2, 4}, (c) PD vs. PFA plot for D-

and C-MIMO systems with the sensors distributed uniformly in the range[0.5R,R] with Nf = 40, K = 12, N ∈ {2, 4} andNf = 160, K = 3, N = 2.

FCs are deployed, similar to the model in [52]. Furthermore,
it is assumed that the local detection metrics are distributed as
PD,k ∼ U [0.40, 0.95] andPF,k ∼ U [0.01, 0.12], respectively.

Similar to [6], the large-scale fading coefficientsβk, βk,j for
the centralized and distributed configurations are generated as
βk = qk

(rk/r0)ν
andβk,j =

qk,j

(δk,j/r0)ν
, respectively, whereqk,

qk,j are log-normal random variables having a mean ofµq

and standard deviation ofσq, rk is the distance of thekth
sensor from the FC for the centralized antenna topology, while
δk,j denotes its counterpart in the distributed antenna topology.
Furthermore,ν is the path-loss exponent. The various param-
eters utilized for generating the simulation results alongwith
their numerical values are specified in Table II.

Fig. 4a portrays thePD vs.PFA performance of the detector
proposed in (22) along with the corresponding analytical
values obtained using the expressions determined in Theorem
1 for the C-MIMO configuration. The ROC curves are given
for various values of the transmit durationN ∈ {1, 2, 4}. It
can be observed that the plots obtained via simulation are
in close agreement with their analytical counterparts, thus

validating the theoretical expression in Theorem 1. Further-
more, the performance improves upon increasingN . Fig. 4b
examines the detection performance of the simplified fusion
rule of (22) for N ∈ {1, 2} and compares it to the Max-
Log detector that applies hybrid combining to the received
signal and subsequently employs the Max-Log principle [16].
It is evident that the proposed detector outperforms the near-
optimal Max-Log detector. Fig. 4c also demonstrates the
impact of employing the improved signaling matrix derived
in Theorem 5 for the C-MIMO configuration, which can be
seen to lead to a considerably improved detection performance
in comparison to a conventional orthogonal transmit signaling
matrix. Further, Fig. 7 demonstrates the convergence of‖ul‖2
to a constant value for increasingl.

Fig. 5a presents a similar comparison of the detector in
(44) for the D-MIMO setup with the corresponding analytical
results obtained in Theorem 2, which are seen to be in close
agreement. In Fig. 5b, Fig. 6b, Fig. 8 and Fig. 9, we analyze
the effect of varying other parameters, such as the normalized
radius ρ/R of all sensors, total number of antennasNtot,
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Figure 6. For the C- and D-MIMO detectors in (22) and (44), respectively, when the sensors are uniformly distributed in the range[0.5R,R], (a) PD vs.
PFA large-scale antenna array results forNtot = M ∈ {120, 480, 1440}, pu = −10 dB andN = 4 (b) PD vs. total number of FC antennasNtot for
pu = −18 dB, PFA = 0.1 andN ∈ {2, 4}, (c) Probability of errorPe vs. SNRpu for Ntot = 600, PFA = 0.1 andN = 2.
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Figure 7. Normalized norm‖ul‖2 vs. number of iterationsl to demonstrate
the convergence of Theorem 5.

total number of sensorsK and path loss exponentν, respec-
tively, on the probability of detectionPD while maintaining
a fixed probability of false alarmPFA. Fig. 5b shows the
probability of correct detection versus the normalized radius
of all the sensorsρR for the detectors proposed in (22) and
(44) corresponding to the centralized and distributed antenna
architectures, respectively. The other parameters are chosen
as PFA = 0.1, N ∈ {2, 4} andNtot = M = 480. All K
sensors are assumed to be randomly and uniformly distributed
on a circle of radiusρ, such thatrk = ρk = ρ, ∀ k. It can be
observed that the D-MIMO detector of (44) yields an improved
performance compared to the C-MIMO detector of (22) forρ

R
in the range0.5 ≤ ρ

R ≤ 0.8, which peaks atρ = 0.6R. This
interesting observation can be attributed to the fact that sensors
are closest to their allocated FCs forρ = 0.6R in the D-MIMO
setup, thus resulting in a significantly higher performancegain
for ρ

R around0.6. Fig. 5c compares thePD vs. PFA plots
of the D-MIMO and C-MIMO detectors forN ∈ {2, 4},
when the sensors are uniformly and randomly distributed in
the range[0.5R,R]. This clearly demonstrates the fact that
the D-MIMO performance is improved in comparison to that
of C-MIMO detectors, when the sensors are located closer

to the cell edge and farther from the cell centre, which is
in conformance with the trend seen in Fig. 5b. Furthermore,
it should be noted that the distributed antenna architecture
performs better than the centralized architecture even for
K = 3.

Fig. 6a visualizes the analytical outcomes of the large-
scale antenna array analysis of Section IV for the detectors
proposed for the different antenna configurations, when the
sensors are uniformly distributed in the range[0.5R,R]. The
PD vs PFA plots of both the systems converge to their
corresponding asymptotic bounds, determined in Theorem 3
and Theorem 4, respectively, when the sensor transmit power
is scaled aspu = p̃u

M and pu = p̃u

Nf
, respectively, for

Ntot ∈ {120, 480, 1440}. Fig. 6b investigates the impact of
increasing the total number of antennasNtot or M at the
FC on the performance of the detectors for both the central-
ized and distributed configurations. The detection performance
improves as the number of antennas deployed at the FC
increases. The performance further improves upon increasing
the transmit durationN . The probability of errorPe gleaned
from our simulations is plotted as a function of SNRpu in Fig.
6c for both antenna configurations along with the analytical
expressions of (64) and (65). It is evident that the probability
of error decreases as the SNR increases, and that the analytical
results are in close agreement with the simulatedPe plots.

Fig. 8 studies the impact of increasing the density of sensors
in the range of[0.5R,R] on the detection performance of the
proposed schemes. The trend demonstrates the performance
improvement of increasing the number of sensorsK. Morever,
the D-MIMO scheme outperforms the C-MIMO detector, with
the performance gap widening upon increasing the sensor
density. The probability of detectionPD is plotted against
the path loss exponentν in Fig. 9 for the D-MIMO detector
usingNtot ∈ {360, 720, 1440}. It is evident that the detection
performance degrades upon increasing the path loss exponent,
which can be compensated to a certain extent by employing a
larger number of antennas at the FC.
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Figure 8. PD vs. the number of sensorsK for the detectors in (22) and (44)
with sensors distributed in the range[0.5R,R] for Ntot = 1024, pu = −18
dB, N = 2 andPFA = 0.1.
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Figure 9. PD vs. the path loss exponentν for D-MIMO scheme withNtot ∈
{360, 720, 1440}, pu = −18 dB, N = 2 andPFA = 0.1.

VIII. C ONCLUSION

This paper developed distributed parameter detection
schemes for a mmWave massive MIMO sensor network
relying on both centralized and distributed antenna topolo-
gies, with FCS and PCS, respectively. Hybrid combining
exploiting the antenna array response vectors was utilized
to derive low-complexity fusion rules that also incorporate
the local detection performance of the individual sensors.
Furthermore, closed-form analytical expressions were obtained
for the probabilities of false alarmPFA and correct detection
PD. Moreover, the power scaling laws of the various detectors
were determined in the large-scale antenna array regime for
quantifying the sensor transmit power reduction that can be
achieved as a function of the number of antennas at the FC.
Additionally, the deflection coefficient maximization principle
was exploited for deriving efficient transmit signaling matrices,
which lead to verifiably improved detection performance.
Our simulation results demonstrated that the D-MIMO WSN
using the D-selection scheme outperforms the C-MIMO WSN.
Based on the results obtained, it is clear that the distributed
antenna architecture yields significant benefits in short-range
communication and sensing in next generation WSNs. This
framework can also be extended to a scenario where multiple

sensors can be assigned per FC in the distributed antenna
configuration. Finally, the multi-cell scenario can also be
explored, with special attention to the effects of pilot reuse.

APPENDIX A
PROOF OFTHEOREM 2

The simplified test statisticTD(ZD) obtained upon substi-
tuting zD,k from (39) into (44), can be expressed as

TD(ZD)=
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.
Upon using the above expression, the meanµTD|H1

under
hypothesisH1 can be expressed as
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=

K
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H
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D,kuk). (66)

The meanµTD|H0
under hypothesisH0 and the variances

σ2
TD|H1

, σ2
TD|H0

, under hypothesesH1 and H0, respectively,
can be determined along similar lines to those in Appendix A
of [1].

APPENDIX B
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The normalized meanµa
TC|H1

corresponding to the test
statistic in (22) under hypothesisH1 can be expressed as

µa
TC|H1

= lim
M→∞

µTC|H1

σTC|H1

∣

∣

∣
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∣

pu=
p̃u
M

. (67)

Upon substituting the expressions ofµTC|H1
and σTC|H1

, in
(25) and (27), respectively, into (67), the above expression
can be simplified to
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where the equivalent covariance matrixCa
k can be defined as

Ca
k = Ck

∣

∣

pu=
p̃u
M

=
p̃uβ

2
k

L2
k

uku
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larly, the quantityζak can be expressed asζak = ζk|pu=
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. Following a similar

procedure determines the normalized meanµa
TC|H0

under
hypothesisH0.
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