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Joint Optimization of Beamforming, Phase-Shifting
and Power Allocation in a Multi-cluster

IRS-NOMA Network
Ximing Xie, Fang Fang, Member, IEEE, and Zhiguo Ding, Fellow, IEEE

Abstract—The combination of non-orthogonal multiple access
(NOMA) and intelligent reflecting surface (IRS) is an efficient so-
lution to significantly enhance the energy efficiency of the wireless
communication system. In this paper, a downlink multi-cluster
NOMA network is considered, where each cluster is supported
by one IRS. This paper aims to minimize the transmit power
by jointly optimizing the beamforming, the power allocation
and the phase shift of each IRS. The formulated problem is
non-convex and challenging to be solved due to the coupled
variables, i.e., the beamforming vector, the power allocation
coefficient and the phase shift matrix. To address this non-
convex problem, an alternating optimization based algorithm is
proposed. Specifically, the primal problem is divided into two
subproblems for beamforming optimization and phase shifting
feasiblity, where the two subproblems are solved iteratively.
Moreover, to guarantee the feasibility of the beamforming op-
timization problem, an iterative algorithm is proposed to search
the feasible initial points. To reduce the complexity, a simplified
algorithm based on partial exhaustive search for this system
model is also proposed. Simulation results demonstrate that the
proposed alternating algorithm can yield a better performance
gain than the partial exhaustive search algorithm, NOMA with
random IRS phase shift scheme and OMA-IRS scheme.

Index Terms—Intelligent reflective surface (IRS), non-
orthogonal multiple access (NOMA), transmit power optimiza-
tion.

I. INTRODUCTION

The 5G communication system has been commercialized
world-widely, and the beyond 5G (B5G) system starts at-
tracting more and more researchers’ attention due to its
low energy consumption, high spectrum efficiency and mas-
sive multi-device interconnections [1]–[3]. In order to satisfy
the increasing demand caused by the fast-growing number
of users, various techniques, including millimetre wave [4],
massive multi-inputs and multi-outputs (MIMO) system [5],
and small cell [6], have been investigated and extensively
used in practice. As a potential technique of B5G, non-
orthogonal multiple access (NOMA) has received widespread
attention due to its high spectral efficiency [7], [8]. Differ-
ent from conventional orthogonal multiply access (OMA),
such as frequency division multiple access (FDMA), time
division multiple access (TDMA), code division multiple
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access (CDMA), and orthogonal frequency-division multiple
access (OFDMA), NOMA allows multiple users to share the
same time slot, frequency block and channel code, which
dramatically increases the spectral efficiency. In particular, the
users in a NOMA network usually adopt successive inference
cancellation (SIC) to remove the inference from other NOMA
users, which can efficiently improve the signal to interference
and noise ratio (SINR) and reception reliability [9]. Recently,
intelligent reflective surface (IRS) has also been proposed
as a potential solution to further improve the performance
of wireless networks, including enlarging the communication
coverage, and improving transmission robustness. Specifically,
the IRS can reflect the electromagnetic wave to extend the
cover rage of the base station (BS). It also has the ability
to tune the channel by adjusting the phase shift of each
element, which will greatly improve the quality of users’
received signal [10]. The typical architecture of IRS consists
of a reflecting panel and a smart controller. The reflecting
panel is composed of many reflecting elements and a control
circuit. The control circuit is responsible for tuning the phase
shift of each reflecting element. Moreover, the smart controller
determines the reflection adaptation and also performs as a
gateway to communicate with the BS. The smart controller
can receive the control signal from the BS and then adjust the
phase shift of each reflecting element [11].

A. Related Works
In literature, extensive research has been carried out for the

NOMA technique, which has been combined with various
state-of-the-art techniques such as MIMO and orthogonal
time-frequency space modulation (OTFS) [12]–[16]. Recently,
IRS has emerged as a kind of powerful equipment for wireless
communication networks [17]–[19]. Among these works, IRS
was proved as a perfect solution for a wireless communication
network, where the channel will be intelligently reconfigured
by the IRS [15], [20]–[22].

Motivated by the benefits from NOMA and IRS, the com-
bination of NOMA and IRS has been recently proposed as
a promising solution to improve the communication systems.
There have been some ongoing works studying the combina-
tion of NOMA and IRS. Some recent research works such as
[23], [24] considered a simple scenario where a single IRS
serves two users in a downlink NOMA network. In [23], the
authors minimized the transmit power at the BS by optimizing
beanforming and IRS phase shift and also considered an im-
proved quasi-degradation condition to guarantee that NOMA
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can achieve the capacity region with high possibility. In [24],
the authors analysed two kinds of phase shift designs, namely
random phase shifting and coherent phase shifting.

Moreover, there are many works considering an IRS-
assisted NOMA network where a signal IRS serves multiple
users [25]–[29]. The problems which have been researched can
be divided into two categories, one is about the transmit power
minimization [25], [26] and the other is about the the sum-rate
maximization [27]–[29]. For the transmit power minimization
problem, the authors in [27] minimized the total transmit
power by optimizing beamforming vectors of each user and
the phase shift design of the IRS in an IRS-empowered
downlink NOMA network. [26] considered a single IRS
assisted downlink NOMA network and adopted reinforcement
learning to design the beamforming vectors which minimized
the transmit power at the BS. Regarding to the sum rate
maximization problem, the authors of [27] optimized the
beamforming design to maximize the sum rate in a downlink
MISO IRS aided NOMA system. [28] discussed a multi-
channel downlink communications IRS-NOMA framework,
where the sum rate of multiple NOMA users served by one
IRS was maximized by optimizing resource allocation to each
user and jointly considering channel assignment and decoding
order. [29] considered an IRS-assisted uplink NOMA system
where multiple NOMA users can only transmit data through
an IRS to the BS.

There are also some works considering a multi-cluster
system mode, i.e., users are divided into different clusters [30],
[31]. In [30], the authors discussed a downlink IRS-assisted
NOMA network where two types of users named the central
user and the cell edge user were assigned to different clusters.
Each cluster had one central user, one cell edge user and one
IRS serving all users. The authors minimized the transmit
power at the BS by jointly optimizing the beamforming vectors
of each user and the phase shift design of the IRS. In [31],
the authors considered a multi-cluster and multi-BS IRS-
aided NOMA network, where each cluster is served by its
associated BS and one IRS serves all clusters. The sum rate
was minimized by jointly optimizing power allocation and
phase shift.

B. Motivation and Challenges
All the above works only consider one IRS. However

the channel state of each user is related to its particular
surrounding environment. Therefore, one single IRS might not
be enough to reconfigure all users’ channels simultaneously.
Thus, multiple IRSs are deployed to assist the users whose
channel conditions are bad. One IRS can adjust its phase
shift dedicatedly for its associated user to generate a better
channel condition. This paper considers a multi-cluster NOMA
network, where each cluster has one IRS and the BS generates
an unique beam for each cluster to serve all users located in
this cluster.

With the considered scenario, there are a few challenges
which need to be overcome. We consider a multi-user and
multi-IRS scenario which increases the number of optimiza-
tion variables and hence make the optimization more compli-
cated than the case with a single IRS in the network. The joint

optimization problem contains three coupled variables, which
is a non-convex problem and highly intractable. Therefore,
the primal problem is divided into subproblems. Those sub-
problems are approximately transformed to the convex form
but the feasibility of these subproblems cannot be guaranteed
during the transformation. Moreover, due to the high quality of
variables, the computing time of algorithms will be extensive.

C. Contributions
Different from the above mentioned works [30], [31], a new

system model assisted with multiple IRSs is adopted in this
paper. Then, a power minimization problem is formulated,
which is non-convex and highly intractable. A novel alternat-
ing algorithm is proposed to solve this non-convex problem ef-
ficiently. Finally, a low-complexity algorithm, which achieves
a reasonable performance, is also provided. The contributions
are summarized as follows:
• A multi-cluster IRS-NOMA system is considered, where

each cluster contains two users served by one IRS. The
transmit power minimization problem with respect to the
beamforming vector, the phase shifting matrix of IRSs
and the power allocation coefficient of each cluster is
formulated. Each IRS can accomplish channel reconfigu-
ration according to the channel condition between the BS
and the cell edge user it serves, which intuitively yields a
better performance than the scenario with the single IRS
serving the whole system.

• The formulated problem is non-convex because three
variables are highly coupled together. To solve the pro-
posed optimization problem, a novel alternating algorithm
is proposed, where the primal problem is divided into
the beamforming optimization problem and the phase
shift feasibility problem. However, the beamforming opti-
mization problem still has two variables coupled together,
which causes the intractability. To address this challenge,
the arithmetic and geometric means inequality is utilized
to approximately transform the non-convex set to its con-
vex upper bound. Then, the equivalence between Schur
complement larger than zero and the positive semidefinite
matrix and successive convex approximation (SCA) are
applied to transfer another non-convex constraint to a
convex form. Finally, the proposed alternating algorithm
is ultilized to iteratively solve those two subproblems.

• Some fixed points are introduced during the approxima-
tion. It is essential to obtain the initial choice of the fixed
points to guarantee the feasibility of the beamforming
optimization problem. Therefore, a feasible initial points
search algorithm is proposed, where an auxiliary variable
forces all constraints to be feasible. Minimizing this
auxiliary variable until it equals to zero will find the
feasible fixed points. The values of the fixed points when
this auxiliary variable equals to zero can be the initial
choice of the fixed points for the proposed alternating
algorithm.

• The complexity of the proposed alternating algorithm
is high. To reduce the complexity, a simplified system
model, where each cluster shares the same power allo-
cation coefficient, is considered. With this assumption,
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the previous problem will be degraded into a simpler
one with two coupled variables. A partial exhaustive
search algorithm is proposed to solve this new problem.
Compared with the alternating algorithm, the complexity
is reduced but the performance is still reasonable.

D. Organization

The rest of paper is organized as follows. In Section
II, a multi-cluster IRS-assisted NOMA downlink network is
introduced and a power minimization problem is formulated.
In Section III, the solution to solve the formulated problem is
introduced. In Section IV, the simplified optimization problem
and the partial exhaustive search based algorithm are intro-
duced. In Section V, the convergence analysis of the algorithms
and the simulation results are provided. Finally, a conclusion
is summarised in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

CU1

EU1

CU2

EU2

CU3

EU3

CU4

EU4

central user link cell edge user link

Fig. 1: An IRS NOMA sytem model.

As shown in Fig.1, the multi-user downlink network con-
tains two types of users, namely the central user and the
cell edge user. They are served by the BS simultaneously.
Generally, the central users are much closer to the base station
than the cell edge users. It is assumed that there are K clusters
and each cluster contains a central user, a cell edge user and an
IRS. We use CUk, EUk and IRSk to represent the central user,
the cell edge user and the IRS in the k-th cluster, respectively.
Each IRS is equipped with N passive reflecting elements and
assists the cell edge user receiving signal from the BS. The BS
is equipped with M (K ≤M ≤ 2K) antennas and generates
K beams to serve K clusters. It is assumed that the direct links
between the BS and all the cell edge users are not available
due to blockage, and the IRSs are implemented to reflect the
signals sent by the BS to the cell edge users. Each cluster is
far from others so the interference caused by the IRSs serving
the other clusters can be reasonably ignored. In practice, the
surface area of the IRS hardware is very limited, which can
only reflect partial electromagnetic waves sent by the BS. The
energy of the reflected signal will be greatly attenuated if there
is severe path loss or fading attenuation [11]. In each cluster,

an IRS can be deployed carefully to ensure that it has strong
connection to the cell edge user which does not have line-of-
sight with the base station . As such, it is very likely that this
IRS also has weak connections to those central users due to
potential blockages [32]. The study for the case with direct
links to those central users will be beyond the scope of this
paper, but it will be an important direction for future research.
The locations of each IRS and each user will also affect the
total transmit power. For simplicity, the system model will be
presented by assuming that the distances between the IRSs
and the BS are the same. In Section V, simulation results will
be presented to demonstrate the impact on the performance of
the proposed algorithm with different BS-IRS distances. We
note that the locations of the IRSs provide another dimension
of system optimization, which is beyond the scope of this
paper and will be treated as an important direction for future
research.

To improve the spectrum efficiency, each cluster will use
the same frequency-time resource block but with different
beams, which is similar to the principle of spatial division
multiple access (SDMA). NOMA is adopted within each
mean to further improve the spectrum efficiency. The BS
assigns different power levels to the signals being sent to
the users in each cluster. The base station broadcasts the
superposition signal

∑K
i=1 wi(

√
αisi,c +

√
1− αisi,e), where

wi ∈ CM denotes the beamforming vector in the i-th cluster
and i ∈ 1, 2, ...,K. si,c and si,e denote the signals to be sent
to the central user and the cell edge user in the i-th cluster,
respectively, and αi is the power allocation coefficient of CUi,
thus 1− αi is the power coefficient of EUi.

Without loss of generality, it is assumed that the channel
between the IRS to the cell edge user follows Rayleigh fading
in each cluster. Rician fading channel is adopted for the
channel between the BS and the IRS and the channel between
the BS and the central user in each cluster, which can be
modelled as follows:

f =

√
κ

1 + κ
fLoS +

√
1

1 + κ
fnLoS, (1)

where κ is the Rician factor, fLoS is the line-of-sight (LoS)
component and fnLoS is the non-Los (nLoS) component fol-
lowing the Rayleigh distribution.

Channel estimation is crucial for an IRS-assisted network
to realize the beamforming design and phase shift design. If
perfect channel information (CSI) is available, IRS is able
to properly adjust the phase shift under the aid of a smart
controller and the BS can generate the proper beams. In
an IRS-assisted network, there are two types of channels,
namely the BS-IRS channel and the IRS-user channel. These
two channels are always coupled together at the receiver
end. Individually estimating these two channels is the main
challenge for IRS channel estimation. Typically, an IRS is
implemented two operational modes, which are the estimation
mode and the reflecting mode [25]. The IRS can be switched
between these two modes. On the estimation mode, the IRS
will adjust each reflecting element to a particular phase and
then IRS channel estimation algorithms, e.g. passive channel
estimation based on machine learning [33], are applied to
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acquire CSI. On the reflecting mode, the IRS performs like a
mirror to reflect the signal sent by the BS. This paper mainly
focuses on the beamforming, power allocation and phase shift
design, and it is assumed that the perfect CSI is available at
every node. Therefore, the signal received at CUk is given by

yk,c = hHk,cwk
√
αksk,c︸ ︷︷ ︸

signal

+ hHk,cwk

√
1− αksk,e︸ ︷︷ ︸

intra-cluster interference

+ hHk,c

K∑
i=1
i 6=k

wi(
√
αisi,c +

√
1− αisi,e)

︸ ︷︷ ︸
inter-cluster interference

+wk,c, (2)

where hk,c ∈ CM×1 denotes the channel vector between
the base station and CUk, and wk,c ∼ CN (0, σ2) is the
additive white Gaussian noise (AWGN). Meanwhile, the signal
received at EUk is given by

yk,e = (hHk,eΘkGk)wk

√
1− αksk,e︸ ︷︷ ︸

signal

+ (hHk,eΘkGk)wk
√
αksk,c︸ ︷︷ ︸

intra-cluster interference

+ (hHk,eΘkGk)

K∑
i=1
i 6=k

wi(
√
αisi,c +

√
1− αisi,e)

︸ ︷︷ ︸
inter-cluster interference

+wk,e,

(3)

where Gk ∈ CN×M denotes the channel matrix between the
BS and IRSk, wk,e ∼ CN (0, σ2) denotes AWGN, hk,e ∈
CN×1 denotes the channel vector between IRSk and EUk and
Θk = diag(βejθ

k
1 , ..., βejθ

k
n) is the phase shift matrix of IRSk,

where θkn ∈ [0, 2π), n ∈ {1, ..., N} and β ∈ [0, 1] denote
the phase shift of each reflecting element n and amplitude
coefficient on the signal, respectively. It is assumed that β = 1
given the fact that each reflecting element can only change
the phase but not the amplitude of the reflected signal [26].
It is worth to point out that the IRS with β = 1 may not
be the optimal choice in some scenarios which are related to
physical layer security. Therefore, the design of amplitudes
is still crucial. More detailed discussions about the choices
of the reflecting amplitude and the phase shift can be found
in [34]. Due to path loss, we consider that the signal can be
only efficiently reflected by the IRS once. Moreover, the long
distance that geographically separates each cluster justifies the
assumption that the IRS in one cluster will not infect other
clusters. SIC strategies will directly affect the power allocation
level. Since the cell edge user is far from the BS whose signal
will suffer severe large scale path loss, the strategy that SIC is
only performed at the central user to eliminate the interference
from its intra-cluster edge user and the cell edge user decodes
its data directly is adopted. In this case, the cell edge user
will be allocated more power. It is necessary to point out that
other SIC strategies will result in different power allocation,

which will be studied in the future research. Hence, the SINR
of EUk is given by

SINRk,e =
|hHk,eΘkGkwk|2(1− αk)

|hHk,eΘkGkwk|2αk +
K∑
i=1
i6=k

|hHk,eΘkGkwi|2 + σ2

,

(4)

where |hHk,eΘkGkwk|2αk is intra-cluster interference and∑K
i=1
i 6=k
|hHk,eΘkGkwi|2 is inter-cluster interference. For the

central users, they need to apply SIC to decode sk,e first and
then remove it. Thus, the SINR of signal sk,e observed at CUk
can be expressed as follows:

SINRk,c→e =
|hHk,cwk|2(1− αk)

|hHk,cwk|2αk +
K∑
i=1
i6=k

|hHk,cwi|2 + σ2

. (5)

The SINR of CUk to decode its own signal is given by

SINRk,c =
|hHk,cwk|2αk

K∑
i=1
i 6=k

|hHk,cwi|2 + σ2

. (6)

The design of beamforming vector is critical. Some existing
works adopted block-diagonalization-based beamforming, e.g.
using vectors from a FFT matrix, to cancel the inter-cluster
interference [30]. However, in this paper, beamforming vectors
are deigned by applying convex optimization directly, thus,
the inter-cluster interference exists as noise which cannot be
ignored.

B. Problem Formulation

In this section, a transmit power minimization prob-
lem is formulated by jointly optimizing the beam-
forming vector (wk, k ∈ {1, ...K}), power allocation co-
efficients (αk, k ∈ {1, ...K}) and phase shifting matrix
(Θk, k ∈ {1, ...K}), while considering the quality of service
(QoS) requirement and the constraints of reflecting elements.
The considered transmit power minimization problem can be
formulated as follows:

P0 : min
α,w,Θ

K∑
k=1

||wk||2 (7a)

s.t. log2(1 + SINRk,c) ≥ Rk,c, ∀k (7b)
log2(1 + min(SINRk,e,SINRk,c→e)) ≥ Rk,e,∀k (7c)
0 ≤ θk,n ≤ 2π, ∀ k, n (7d)
|Θk,n,n| ≤ 1, ∀ k, n (7e)

where ||wk||2 is the transmit power allocated to the cluster
k, Rk,c and Rk,e denote the required minimum data rate of
CUk and EUk, respectively. The constraints (7b) and (7c)
indicate the QoS requirements of the central users and the cell
edge users, (7d) defines the phase shift range of the reflecting
elements and (7e) ensures that the IRS is a passive component.
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Note that for many important applications for IRS, such
as the next-generaiton Internet of Things (IoT), users, such
as IoT sensors, can be severely energy constrained, which
motivates the formulated power minimization problem. In
particular, this formulated optimization problem can reduce
the energy consumption at the IoT sensors, while guaranteeing
their communication requirements [25], [30]. Alternatively, the
energy efficiency optimization problem can also be formulated
for the addressed IRS-NOMA network, which is beyond the
scope of this paper but is an important direction for future
research.

However, problem P0 is highly intractable due to the non-
convex constraints (7b) and (7c). The non-convexity is caused
by three highly coupled variables (i.e. w, α and Θ). To
efficiently solve this problem, SCA, SDR and the inequality
approximation are adopted to develop an alternating algorithm
to iteratively solve it.

III. OPTIMIZATION SOLUTION

As discussed in the previous section, it is difficult to find the
optimal solution of P0 due to its non-convexity. In this section,
an alternating optimization algorithm is proposed to solve
P0 efficiently. The main idea of this algorithm is to divide
the primal problem into two subproblems and solve them
alternatively. In particular, P0 is divided to a beamforming
optimization subproblem and a feasible phase shifting matrix
search subproblem. As shown later, each of the two sub-
problems is non-convex, and we will approximately transform
them into the convex form, which can be solved efficiently by
convex solvers, e.g., CVX in Matlab.

A. Beamforming Optimization
For a given phase shifting matrix Θ, the concatenated

channel respond hHk,eΘkGk ∈ C1×M is fixed. Thus, the
beamforming optimization problem can be formulated as

P1 : min
α,w

K∑
k=1

||wk||2 (8a)

s.t. log2(1 + SINRk,c) ≥ Rk,c, ∀k (8b)
log2(1 + SINRk,e) ≥ Rk,e, ∀k (8c)
log2(1 + SINRk,c→e) ≥ Rk,e, ∀k (8d)
0 ≤ αk ≤ 1, ∀k. (8e)

P1 is non-convex because the beamforming vector and the
power allocation coefficient are still coupled together in all
constraints except (8e), which is challenging to be solved. It
is noted that the rank-constrained semidefinite programming
(SDP) problem can be approximated to a convex form. There-
fore, after converting P1 into a SDP form, SDR can be applied
to solve this problem.

First, the constraint (8c) needs to be approximately trans-
formed into a convex form. According to (4), the constraint
(8c) can be rewritten as follows:

|eHk Dk,eGkwk|2(1− αk)

|eHk Dk,eGkwk|2α+
K∑
i=1
i6=k

|eHk Dk,eGkwi|2 + σ2

≥ rk,e, (9)

where rk,e = 2Rk,e − 1, ek is an N × 1 vector containing
all the diagonal elements of ΘH

k , and Dk,e is a diagonal
matrix, whose main diagonal elements are from the channel
vector hHk,e. After some algebraic transformations, (9) can be
equivalently expressed as follows:

|eHk Dk,eGkwk|2(1 + rk,e)αk ≤

|eHk Dk,eGkwk|2 −
K∑
i=1
i 6=k

|eHk Dk,eGkwi|2rk,e − σ2rk,e.
(10)

Since the CSI is perfectly known by the BS, the channel
eHk Dk,eGk is fixed with a given phase shifting matrix. For
simply notation, we replace eHk Dk,eGk with zHk,e and rewrite
(10) as follows:

αk|zHk,ewk|2 ≤
|zHk,ewk|2

1 + rk,e
− (

K∑
i=1
i6=k

|zHk,ewi|2 + σ2)
rk,e

1 + rk.e
,

(11)
where zHk,e = eHk Dk,eGk. The quadratic form |zHk,ewk|2 in
(11) can be rewritten as wH

k Zk,ewk, where Zk,e = zk,ez
H
k,e.

A slack matrix Wk = wkw
H
k is introduced, which is a

rank-one positive semidefinite (PSD) matrix. It is known that
wH
k Zk,ewk = Tr(Zk,eWk) from SDR. Moreover, the rank of

Wk has to be 1 and Wk is a PSD because of Wk = wkw
H
k .

Then the constraint (11) can be equivalently rewritten as
follows:

αkTr(Zk,eWk) ≤

Tr(Zk,eWk)

1 + rk,e
− (

K∑
i=1
i 6=k

Tr(Zk,eWi) + σ2)
rk,e

1 + rk.e
(12)

Wk < 0 (13)
Rank(Wk) = 1. (14)

From (12), it is noted that the right hand side of (12) is a
liner combination of two convex terms with respect to Wk,
which is convex. The only obstacle is the left hand side, which
is a bilinear term constructed by αk and Tr(Zk,eWk). To
make this constraint a convex set, we need to approximately
transform the non-convexity function αkTr(Zk,eWk) to a
convex form. Inspired by the inequality of arithmetic and
geometric means 2ab ≤ a2 + b2, where a and b are both
non-negative numbers, we have the inequality that

2αkTr(Zk,eWk) ≤ (αkck)2 +

(
(Tr(Zk,eWk)

ck

)2

, (15)

where ck is a fixed point. From (15), it is noted that (αkck)2+(
(Tr(Zk,eWk)

ck

)2
is an upper bound of 2αkTr(Zk,eWk) and is

a liner combination of two convex terms. Therefore, the non-
convex feasible set of the left hand side term can be upper
bounded by a convex set 1

2 (α2
k + Tr(Zk,eWk)2). To tighten

this upper bound in each iteration of the proposed iterative
algorithm, updating rule of ck in each iteration needs to be
defined.
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Lemma 1 The fixed point ck at the m-th iteration can be
updated by:

c
(m)
k =

√√√√Tr(Zk,eW
(m−1)
k )

α
(m−1)
k

(16)

Proof: A difference function of the original function
2αkTr(Zk,eWk) and its approximated upper bound is defined
as follows:

F(ck) = 2αkTr(Zk,eWk)− (αkck)2 −
(

(Tr(Zk,eWk)

ck

)2

.

(17)

When the function (17) equals to 0, the equality of (15) holds,
which tightens the upper bound. From (15), it is noted that the
maximum value of function F(ck) is 0. Since

∂2F(ck)

∂c2k
= −2αk −

6Tr(Zk,eWk)

c4k
≤ 0, (18)

when αk ≥ 0 and Tr(Zk,eWk) ≥ 0, the function F(ck)
is a concave function with respect to ck. According to the
Karush–Kuhn–Tucker (KKT) conditions, the maximum value
of a concave function is obtained by letting the first order
derivative equal to 0. Thus, the optimal value of ck, defined
as c∗k, can be obtained by ∂F(ck)

∂ck
= 0, then c∗k can be given

by

c∗k =

√
Tr(Zk,eWk)

αk
. (19)

Hence, the constraint (12) can be approximated as follows:

(αkck)2 +

(
(Tr(Zk,eWk)

ck

)2

≤

2
Tr(Zk,eWk)

1 + rk,e
− 2(

K∑
i=1
i 6=k

Tr(Zk,eWi) + σ2)
rk,e

1 + rk.e
. (20)

It is noted that the left hand side of (20) is convex and the
right hand side of (20) is an affine function, which means that
the constraint (20) is a convex set. Eventually, (8c) can be
approximated by (13), (14) and (20).

For handling with the next non-convex constraint (8d),
after some algebraic manipulations, (8d) can be rewritten as
follows:

αk|hHk,cwk|2 ≤
|hHk,cwk|2

1 + rk,e
− (

K∑
i=1
i6=k

|hHk,cwi|2 + σ2)
rk,e

1 + rk.e
.

(21)

It is worth to point out that (21) has the same form as
(11). Similarly, the method allied to (11) can be efficiently

applied to (21) to yield a convex form. Therefore, (21) can be
approximately transformed to

(αkdk)2 +

(
(Tr(Hk,cWk)

dk

)2

≤

2
Tr(Hk,cWk)

1 + rk,e
− 2(

K∑
i=1
i 6=k

Tr(Hk,cWi) + σ2)
rk,e

1 + rk.e
, (22)

(13), (14),

where Hk,c = hk,ch
H
k,c, and dk is a fixed point. At the m-th

iteration, dk can be updated as follows:

d
(m)
k =

√√√√Tr(Hk,cW
(m−1)
k )

α
(m−1)
k

. (23)

Eventually, (8d) can be approximated by (13), (14) and (22).
Now, we focus on the last non-convex constraint (8b). First,

it can be rewritten as follows:

αkTr(Hk,cWk) ≥
K∑
i=1
i 6=k

Tr(Hk,cWi)rk,c + σ2rk,c (24)

where rk,c = 2Rk,c − 1. Though (24) also has a bilinear
term αkTr(Hk,cWk), the method which has been successfully
applied to the constraint (8c) and (8d) cannot be straight-
forwardly applied. Replacing αkTr(Hk,cWk) with the upper
bound through the inequality of arithmetic and geometric
means does not work because it is located at the left hand
side of ≥ sign, which causes this inequality to be concave not
convex. Hence, another method is proposed to deal with this
constraint. First, we introduce a slack variable tk and (8b) can
be transformed to

αkTr(Hk,cWk) ≥ t2k (25)

t2k ≥
K∑
i=1
i 6=k

Tr(Hk,cWi)rk,c + σ2rk,c. (26)

It can be straightforwardly shown that neither of (25) and
(26) is convex. According to the Schur complement theory
[35], it is known that the sufficient and necessary condition for
a matrix to be PSD is that its Schur complement is greater than
zero. Moreover, a PSD matrix is a convex constraint. After a
simple transformation, (25) can be rewritten as follows:

αk −
t2k

Tr(Hk,cWk)
≥ 0, (27)

which is equivalent to[
αk tk
tk Tr(Hk,cWi)

]
< 0. (28)

Constraints (27) and (28) are mutually sufficient, and con-
straint (28) is convex. Now, we deal with the constraint (26).
It is noted that t2k is on the left hand side of the greater sign,
which makes the whole constraint a non-convex set. SCA is
utilized to deal with this, where the first order Taylor series
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Algorithm 1 Initial Point Search Algorithm

1: Initialize: c(0)k , d(0)k , t(0)k,0 ∀k, ε = 0.00001, i = 0, q(0) =
100.

2: while q(i) > ε do
3: i = i+ 1.
4: Update W

(i)
k , α(i)

k and q(i) with fixed c
(i−1)
k , d(i−1)k ,

t
(i−1)
k,0 by solving P3.

5: Update c(i)k , d(i)k , and t(i)k,0 based on (16), (23) and (30)
respectively.

6: end while
7: Output c(i)k , d(i)k , and t(i)k,0.

approximation is adopted to approximate the quadratic form
(26) as

t2k,0 + 2tk,0(tk − tk,0) ≥
K∑
i=1
i 6=k

Tr(Hk,cWi)rk,c + σ2rk,c

(29)

where tk,0 is a fixed point introduced by SCA. The updating
rule of tk,0 at the m-th iteration is given by

t
(m)
k,0 = t

(m−1)
k . (30)

The final obstacle to deal with this problem arises from the
rank-one constraint (14). By applying SDR, the rank-one
constraint is omitted to make the whole problem tractable.
Thus, P1 is eventually transformed to

P2 : min
α,W,t

K∑
k=1

Tr(Wk) (31a)

s.t. (αkck)2 +

(
(Tr(Zk,eWk)

ck

)2

≤

2
Tr(Zk,eWk)

1 + rk,e
− 2(

K∑
i=1
i 6=k

Tr(Zk,eWi) + σ2)
rk,e

1 + rk.e
,∀k

(31b)

(αkdk)2 +

(
(Tr(Hk,cWk)

dk

)2

≤

2
Tr(Hk,cWk)

1 + rk,e
− 2(

K∑
i=1
i 6=k

Tr(Hk,cWi) + σ2)
rk,e

1 + rk.e
,∀k

(31c)[
αk tk
tk Tr(Hk,cWi)

]
< 0,∀k (31d)

t2k,0 + 2tk,0(tk − tk,0) ≥
K∑
i=1
i 6=k

Tr(Hk,cWi)rk,c + σ2rk,c,∀k

(31e)
0 ≤ αk ≤ 1,∀k. (31f)

Since the restriction of rank one is removed, P2 is a convex
problem and can be efficiently solved by convex optimization

toolboxes, for instance, CVX. It is noted that P1 and P2 have
different optimization valuables. It is crucial to extract the
optimal solution of P1 from the optimal solution of P2. We
define the optimal solution of P2 as W∗

k,∀k, and each W∗
k is

a positive semidefinite matrix. However, the optimal solution
of P1 will not be obtained from the optimal solution of P2
unless the rank of W∗

k,∀k is 1. If the rank of W∗
k is not 1,

Gaussian randomization [36] is applied to alternatively obtain
a suboptimal solution of P1. Specifically, several random
vectors ξk ∼ N (0,W∗

k) will be generated and stored in a
vector set. The one from this set which can satisfy all the
constraints in P1 and also yield the best objective of P1 will
be the suboptimal solution of P1.

Before solving P2, three fixed points, ck, dk and tk,0,∀k
need to be initialized. It is noted that initializing them ran-
domly will make the formulated problem infeasible. Hence,
a feasible initial points search algorithm is proposed to find
the feasible fixed points to make P2 solvable. From P2, it
is noted that the fixed points ck. dk and tk,0 must satisfy
the constraints (31b), (31c) and (31d). An auxiliary variable
q, which intentionally relaxes the constraints to enlarge the
feasible set, is introduced to address this problem. The initial
point search problem can be formulated as follows:

P3 : min
α,W,t,q

q (32a)

s.t. (αkck)2 +

(
(Tr(Zk,eWk)

ck

)2

− q ≤

2
Tr(Zk,eWk)

1 + rk,e
− 2(

K∑
i=1
i 6=k

Tr(Zk,eWi) + σ2)
rk,e

1 + rk.e
,∀k

(32b)

(αkdk)2 +

(
(Tr(Hk,cWk)

dk

)2

− q ≤

2
Tr(Hk,cWk)

1 + rk,e
− 2(

K∑
i=1
i 6=k

Tr(Hk,cWi) + σ2)
rk,e

1 + rk.e
,∀k

(32c)[
αk tk
tk Tr(Hk,cWi)

]
< 0,∀k (32d)

t2k,0 + 2tk,0(tk − tk,0) + q ≥
K∑
i=1
i 6=k

Tr(Hk,cWi)rk,c + σ2rk,c,∀k

(32e)
0 ≤ αk ≤ 1,∀k (32f)
q ≥ 0. (32g)

Specifically, when q equals to 0, all constraints in P3 are
exactly the same as the constraints in P2 and the obtained
values of ck, dk and tk,0 can be the initial points of P2, which
will guarantee the feasibility. It is noted that the objective
function is an affine function and all constraints are convex
so it can be solved easily by CVX. To solve P3 efficiently,
an iterative algorithm shown as Algorithm 1 is proposed. It
is worth to point out that, unlike P2, the initial points c(0)k ,
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Algorithm 2 The Beamforming Optimization Algorithm

1: Initialize: fixed feasible points {c∗(0)k , d∗(0)k , t∗(0)k,0 ,} ∀k,
ε = 0.001, m = 0.

2: while
K∑
k=1

Tr(W
(m−1)
k )−

K∑
k=1

Tr(W
(m)
k ) ≥ ε do

3: Update beamforming matrix {W(m)
k , α

(m)
k }, ∀k by

solving P2 with the fixed feasible point{c∗(m)
k , d∗(m)

k ,
t
∗(m)
k,0 }, ∀k.

4: Update {c∗(m)
k , d∗(m)

k , t∗(m)
k,0 }, ∀k based on (16), (23)

and (30) respectively.
5: m = m+ 1.
6: end while
7: Update α∗k = α

(m)
k ,∀k

8: Update beamforming vector w∗k,∀k by decomposing
W

(m)
k ,∀k based on Gaussian Randomization method.

9: Output {w∗k, α∗k}, ∀k

d
(0)
k and t

(0)
k,0 in P3 can be generated randomly because the

feasibility of P3 can be always guaranteed by q.
After deciding the fixed points, the last challenge for solving

the beamforming optimization problem has been removed.
To solve this problem efficiently, an iterative algorithm is
designed to solve P2 iteratively. The details of the algorithm
are shown in Algorithm 2. Specifically, the fixed initial points
{c∗(0)k , d∗(0)k , t∗(0)k,0 } ∀k are obtained from Algorithm 1.

B. Phase Shifting Optimization

In this section, we focus on the phase shifting optimization.
The phase shifting optimization can be transformed to a
feasibility problem since the objective function in the primal
problem does not contain the phase shifting parameter Θk,∀k.
Only the constraints (7c), (7d) and (7e) in the primal problem
contain the phase shifting parameter and (7c) can be equiva-
lently divided into (8c) and (8d), where only (8c) contains the
phase shifting parameter. Therefore, given the beamforming
vectors, the phase shift feasibility problem can be written as
follows:

P4 : find Θ (33a)
s.t. log2(1 + SINRk,e) ≥ Rk,e,∀k (33b)

0 ≤ θk,n ≤ 2π,∀k, n (33c)
|Θk,n,n| = 1,∀k, n. (33d)

It is straighforward to find out that the non-convexity arises
from the constraint (33b). The first step is to transform this
non-convex constraint to be a convex constraint. Thus, (33b)
can be rewritten as follows:

|hHk,eΓpk
ek|2(1 + rk,e)αk ≤

|hHk,eΓpk
ek|2 −

K∑
i=1
i 6=k

|hHk,eΓpiek|2 − σ2rk,e, (34)

where Γpi is a diagonal matrix whose main diagonal elements
are from pi = Gkwi and ek is the phase shifting vector. How-
ever, with Wk, αk,∀k already obtained from the beamforming

Algorithm 3 The Proposed Alternating Algorithm

1: Initialize: ε = 0.001, j = 0.

2: while
K∑
k=1

Tr(W
∗(j−1)
k )−

K∑
k=1

Tr(W
∗(j)
k ) ≥ ε do

3: Searching initial fixed feasible point {c∗(j)k , d
∗(j)
k ,

t
∗(j)
k,0 }, ∀k based on Algorithm 1.

4: Update {W∗(j)
k ,w∗(j)k , α∗(j)k }, ∀k based on Algorithm

2.
5: Update V

∗(j)
k ,∀k by solving P5 with {w∗(j)k , α∗(j)k },

∀k
6: Update phase shift vector e

∗(j)
k ,∀k by decomposing

V
∗(j)
k ,∀k based on Gaussian Randomization method.

7: j = j + 1
8: end while
9: Output {w∗(j)k , α∗(j)k , e

∗(j)
k }, ∀k.

optimization problem, the constraint (34) is a quartic form with
respect to ek. For simplicity, we substitute hHk,eΓpi

with riHk,e.
From [36], it is known that a quartic form can be equivalently
transformed to a linear form with a rank-one constraint. Thus,
(34) can be expressed as follows:

Tr(Rk
k,eVk)(1 + rk,e)αk ≤

Tr(Rk
k,eVk)−

K∑
i=1
i 6=k

Tr(Ri
k,eVi)− σ2rk,e (35)

Vk < 0 (36)
Rank(Vk) = 1, (37)

where Ri
k,e = rik,er

iH
k,e and Vi = eie

H
i . Given wk, αk,∀k,

(35) is an affine constraint. The rank-one constraint will make
the whole problem intractable, thus SDR is adopted again to
remove this rank-one constraint. Then, P4 can be transformed
as follows:

P5 : find Vk, ∀k (38a)
s.t. (35), ∀k (38b)

Vk < 0, ∀k (38c)
Vk,n,n = 1, ∀k, n. (38d)

P5 is a convex problem, which can be solved by CVX
efficiently. Since the rank-one constraint is removed, the
optimal solution of P5 may not be the optimal solution of P4.
Therefore, Gaussian randomization will be applied to achieve
a suboptimal solution for P4.

C. Algorithm Design

The detail of the proposed alternating algorithm are il-
lustrated in Algorithm 3, where P2 and P5 are alternately
solved until the convergence metric is satisfied. At the i-th
iteration of Algorithm 3, first, the initial points are obtained
by Algorithm 1. Then, the algorithm begins to solve the
beamforming optimization problem by solving P2 through
Algorithm 2. Then, the algorithm starts to solve phase shifting
feasibility problem by solving P5 (step 5 and step 6) to obtain a
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feasible phase shift vector e
∗(i)
k ,∀k. The feasible phase shifting

vector of this current iteration will be used as a given phase
shift for the beamforming optimization in the next iteration.
It is worth to point out that after each iteration, the channel
state will change with the new obtained phase shifting vector
ek,∀k, so it is critical to search new feasible fixed points (step
3) before solving P2, which necessarily guarantees that P2 is
always feasible.

It is worth to point out that there are three optimization
variables coupled together in constraints (7b) and (7c), which
are non-convex as well. Therefore, P0 is a NP-hard problem ,
i.e., it is difficult to solve it in polynomial time. It is difficult
to find the global optimal solution of P0 by applying convex
optimization. In Algorithm 3, the alternating algorithm and a
few approximations are adopted to transform P0 to a solvable
convex problem. Therefore, Algorithm 3 only provides a
suboptimal solution for P0.

D. Complexity analysis

The worst complexity of solving a SDR problem through
CVX provided by [36] is

O(max{m,n}4n1/2 log(1/εc)), (39)

where n is the problem size, and m is the number of
constraints and εc is the accuracy of the algorithm that CVX
adopts. It is assumed that the problem size is greater than the
number of constraints, then the complexity of CVX to solve
a SDR problem can be expressed as

O(n4.5 log(1/εc)). (40)

Algorithm 1 is essentially to solve a SDR problem multiple
times until the accuracy is satisfied. Thus, the complexity of
Algorithm 1 is

O
(
n4.51 log

(
1

εc

)
log

(
1

ε1

))
, (41)

where n1 is the problem size of P3 and ε1 is the accuracy of
Algorithm 1. Algorithm 2 is similar to Algorithm 1, which is
also to solve a SDR problem multiple times and hence P2 has
the same size as P3. Thus, the complexity of Algorithm 2 can
be expressed as follows:

O
(
n4.51 log

(
1

εc

)
log

(
1

ε2

))
, (42)

where ε2 is the accuracy of Algorithm 2. Now, we have the
complexities of step 3 and step 4 in Algorithm 3. The last one
is the complexity of step 5. It is easy to find out that a single
SDR problem is solved in the step 5, so the complexity is

O(n4.52 log(1/εc), (43)

where n2 is the problem size of P5. Finally, the complexity
of the proposed algorithm is given by

O(O1 log(1/ε3)), (44)

where

O1 = n4.51

(
log

(
1

εc

)
log

(
1

ε1

)
+ log

(
1

εc

)
log

(
1

ε2

))
+

n4.52 log(1/εc).

IV. PARTIAL EXHAUSTIVE SEARCH ALGORITHM

In this section, a simple algorithm based on partial ex-
haustive search is proposed, which can significantly reduce
computation complexity. The main idea of this partial exhaus-
tive search algorithm is to assume that all the clusters share
the same power allocation coefficient, of which the optimal
value can be obtained by an exhaustive search within the
range [0, 1]. The primal problem can also be divided into
the beamforming optimization problem and the phase shifting
feasibility problem.

Since each cluster shares the same power coefficient, the
power coefficient is first fixed in each searching progress so
only the beamforming vector and the phase shifting vector
need to be optimized in these two subproblems. It is noted that
these two subproblems can be reduced to the QCQP problem,
which is a classic form in convex optimization theory. SDR is
widely used as one of the most common methods to efficiently
solve the QCQP problem. Two subprobelms are formulated as
P6 and P7. P6 and P7 can be obtained through the basic SDR
theory and some simple algebraic transformations, where the
derivation is omitted in this paper due to space limitations.

P6 : min
w

K∑
k=1

Tr(Wk) (45a)

s.t. αTr(Hk,cWk) ≥
K∑
i=1
i 6=k

Tr(Hk,cWi)rk,c + σ2rk,c,∀k

(45b)
αTr(Zk,eWk) ≤

Tr(Zk,eWk)

1 + rk,e
− (

K∑
i=1
i 6=k

Tr(Zk,eWi) + σ2)
rk,e

1 + rk.e
,∀k (45c)

αTr(Hk,cWk) ≤

Tr(Zk,eWk)

1 + rk,e
− (

K∑
i=1
i 6=k

Tr(Hk,cWi) + σ2)
rk,e

1 + rk.e
,∀k (45d)

Wk < 0,∀k (45e)

where Zk,e,Wk,∀k in P6 are the same as those in P2.

P7 : find Vk, ∀k (46a)

s.t. Tr(Rk
k,eVk)(1 + rk,e)α ≤

Tr(Rk
k,eVk)−

K∑
i=1
i 6=k

Tr(Ri
k,eVi)− σ2rk,e,∀k (46b)

Vk < 0, ∀k (46c)
Vk,n,n = 1, ∀k, n (46d)

where Ri
k,e,∀i, k and Vk,∀k are the same as those in P5. The

detail of the partial exhaustive search algorithm is illustrated
in Algorithm 4.

In each search progress, the algorithm will solve two SDR
problems with different sizes n1 and n2, which are the problem
sizes of P6 and P7. Therefore, the complexity of Algorithm 4
can be expressed as follows:

O
(
I
(
n4.51 log(1/εc) + n4.52 log(1/εc)

))
. (47)
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Algorithm 4 The Partial Exhaustive Search Algorithm

1: Initialization Popt = 10000, αopt = 0,w∗k, e
∗
k,∀k

2: for α = 0.1 : 0.1 : 0.9 do
3: Initialization ε = 0.001, i = 0, e

(0)
k

4: while
K∑
k=1

Tr(W
(i−1)
k )−

K∑
k=1

Tr(W
(i)
k ) > ε do

5: Update W
(i)
k ,∀k by solving P6.

6: Update w
(i)
k ,∀k by decomposing W

(i)
k ,∀k based on

Gaussian Randomization method.
7: Update V

(i)
k ,∀k by solving P7 based on given

w
(i)
k ,∀k.

8: Update e
(i)
k ,∀k by decomposing V

(i)
k ,∀k based on

Gaussian Randomization method.
9: i = i+ 1.

10: end while
11: if Popt >

K∑
k=1

Tr(W
(i)
k ) then

12: Popt =
K∑
k=1

Tr(W
(i)
k ).

13: αopt = α, w∗k = w
(i)
k , e∗k = e

(i)
k , ∀k.

14: end if
15: end for
16: Output αopt,w∗k, e∗k,∀k.

I is the number of searches, which depends on the search
step α. Obviously, the partial exhaustive search algorithm has
a lower complexity than the complexity of the proposed alter-
nating algorithm. It is worth to point out that the performance
of this partial exhaustive search algorithm is related to the step
size ∆α. A smaller step size will yield a better performance.
However, according to (47), when the step size decreases,
the complexity of the algorithm will increase. It is important
to find a balance between performance and complexity. In
numerical results, the performance of the partial exhaustive
search algorithm with different step sizes is provided.

V. NUMERICAL RESULTS

In this section, we evaluate all simulation results of the pro-
posed algorithms. In simulations, channel gains are generated
by

hk,e =
h∗k,e√
dα0
0

Gk =
G∗k√
dα1
1

hk,c =
h∗k,c√
dα2
2

(48)

where k = 1, 2, ...K, h∗k,e and h∗k,c are complex Reyleigh
channel coefficients and G∗k is complex Rician channel coef-
ficient based on (1). d0 = 10 m, d1 = 50 m, d2 = 10 m,
respectively denote the distances between the IRS and the cell
edge user, the distance between the BS and the IRS, and the
distance between the BS and the cell center user. α0, α1, α2

are the path loss exponents of the corresponding links. It is
assumed that all the cell central users are at the same distance
from the BS, all the cell edge users are at the same distance
from the related IRS and all the IRSs are at the same distance
from the BS. We set α0 = α2 = 1.8 and α1 = 2. The noise
power is σ2 = BN0, where the bandwidth B = 100 MHz
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Fig. 2: The transmit power versus the number of reflecting elements
at the IRS.

and the noise power spectral density is N0 = −80 dBm. The
number of clusters is K = 4, which means there are 8 users
in the system. For the OMA benchmark scheme, OFDM is
adopted where each user will occupy a specific spectrum and
will not cause interference to other users. It is assumed that
the channel bandwidth is normalized, thus each user in the
OFDM scheme can occupy 1/2K bandwidth.

Fig. 2 shows the transmit power at the BS versus the number
of each IRS’s reflecting elements. We provide the performance
of the proposed schemes compared with the random phase
scheme in NOMA and OFDM. In Fig. 2, the number of
antennas at the BS is M = 6, and the date rate requirement
of all the users is 1 bps/Hz. Obviously, the transmit power
at the BS of all schemes decreases with the increasing of the
number of IRS’s reflecting elements. From Fig. 2, we can
see that both proposed algorithms requires a less transmit
power than the benchmarks. Comparing the two proposed
algorithms, the performance gap is very small and this gap
will get smaller if the step size of the partial exhaustive search
algorithm decreases. The result in Fig. 2 demonstrates that the
alternating algorithm can yield the best performance among all
the schemes but the partial exhaustive search can also yield
competitive performance.

Fig. 3 shows the transmit power at the BS versus the
minimum data rate of the central users. In this figure, it
is assumed that each central user has the same date rate
requirement, and all the cell edge users’ date rate requirement
is 1bps/Hz. In this figure, we set the number of antennas at the
BS as M = 6 and the number of reflecting elements at each
IRS as N = 32, respectively. According to the Shannon’s
capacity formula, it is well known that a higher date rate
requires a higher transmit power at the BS. All schemes in
Fig. 3 have the same trend, where the transmit power at the
BS increases with the increasing of the central users’ minimum
date rate requirement. From Fig. 3, it is noted that the proposed
alternating algorithm needs less power consumption under the
same date rate requirement. Although, the partial exhaustive
search algorithm cannot achieve the same performance as the
proposed alternating algorithm, it has low complexity and still
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central users.
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Fig. 4: The transmit power versus the number of antennas at the BS.

yields a better performance than NOMA with random IRS
scheme and OFDM scheme.

Fig. 4 shows the transmit power versus the number of
antennas at the BS. In this simulation, the relationship between
the algorithm performance and the number of antennas at
the BS is illustrated. Fig. 4 shows the performances of two
proposed algorithms with NOMA and OFDM with random
phase IRS. In Fig. 4, we set the number of reflecting elements
at each IRS as N = 32 and the date rate requirement of
all the users as 1 bps/Hz. From Fig. 4, it is noted that the
alternating algorithm achieves better performance gain than
other algorithms with the number of antennas at the BS
increasing.

Fig. 5 shows the transmit power versus the distance between
the IRS and the BS in each cluster. In Fig. 5, we set the
number of antennas at the BS as M = 6, the number of each
IRS’s reflecting elements as N = 32. Each user’s date rate
requirement is 1bps/Hz. It has assumed that the IRS will not
cause interference to the central user in each cluster. Since the
central user in each cluster is close to the BS, thus the distance
between the IRS and the BS cannot be short. Therefore, the
starting point of the simulation is set as 40m. As expected,
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Fig. 5: The transmit power versus the distance between the IRS and
the BS.
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the transmit power of all schemes increases when the distance
between the IRS in each cluster and the BS gets large. Similar
to Fig. 4, the proposed alternating algorithm consumes less
energy compared with all other schemes.

Fig. 6 shows the the value of q in the initial point search
algorithm versus the iterative number. As previous discussion,
the q represents the distance between the current problem and
a feasible problem and q can enforce the current problem to be
a feasible one. Rc denotes the data rate requirement of all the
central users. Fig. 6 also shows that the value of q in the Rc =
1.4 bps/Hz scheme is larger than that in the Rc = 1 bps/Hz
and Rc = 1.2 bps/Hz schemes at each iteration. Moreover,
the scheme with Rc = 1.4 bps/Hz needs more iterations to
converge, which indicates that a higher date rate requirement
makes all constraints more difficult to be fulfilled.

Fig. 7 shows the transmit power at the BS versus the
iterative number in Algorithm 2. Rc denotes the data rate
requirement of all the central users. We evaluate the trans-
mit power in different scenarios with the different data rate
requirements of the central user. The data rate of all the cell
edge users is 1 bps/Hz, the number of antennas at the BS
is M = 6 and the number of each IRS is N = 32. From
Fig. 7, we notice that the transmit power at the BS decreases
with the number of iterations increasing, which also means
this algorithm can converge with the algorithm proceeding.

VI. CONCLUSION

The joint optimization of beamforiming, power allocation
and IRS phase shift in a NOMA-IRS assisted multi-cluster
network is investigated in this paper. By introducing inequal-
ity approximation, SCA and SDR, an alternating algorithm
is proposed to minimize the transmit power by iteratively
solving beamforming optimization and phase shifting feasi-
bility until the algorithm converges. Furthermore, an initial
point search algorithm is proposed to guarantee the feasibility
of the beamforming optimization subproblem. Moreover, a
low-complexity solution is also provided for this scenario
based on the partial exhaustive search. The simulation results
demonstrated the alternating algorithm outperforms the partial
exhaustive search algorithm but has a higher complexity. In
the future research, the scenario that the IRS reconfigures
the imperfect channel will be studied and the inter-cluster
interference caused by IRS will also be considered.
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