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Non-Stationary Wireless Channel Modeling
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Abstract—A proper channel modeling methodology that char-
acterizes the statistics of extreme events is key in the design
of a system at an ultra-reliable regime of operation. The strict
constraint of ultra-reliability corresponds to the packet error
rate (PER) in the range of 10−9 − 10−5 within the acceptable
latency on the order of milliseconds. Extreme value theory (EVT)
is a robust framework for modeling the statistical behavior of
extreme events in the channel data. In this paper, we propose
a methodology based on EVT to model the extreme events of
a non-stationary wireless channel for the ultra-reliable regime
of operation. This methodology includes techniques for splitting
the channel data sequence into multiple groups concerning the
environmental factors causing non-stationarity, and fitting the
lower tail distribution of the received power in each group to the
generalized Pareto distribution (GPD). The proposed approach
also consists of optimally determining the time-varying threshold
over which the tail statistics are derived as a function of time,
and assessing the validity of the derived Pareto model. Finally,
the proposed approach chooses the best model with minimum
complexity that represents the time variation behavior of the non-
stationary channel data sequence. Based on the data collected
within the engine compartment of Fiat Linea under various
engine vibrations and driving scenarios, we demonstrate the
capability of the proposed methodology in providing the best fit to
the extremes of the non-stationary data. The proposed approach
significantly outperforms the channel modeling approach using
the stationary channel assumption in characterizing the extreme
events.

Index Terms—Extreme value theory, wireless channel model-
ing, non-stationary channel, ultra-reliable communication, 5G.

I. INTRODUCTION

Ultra-reliable and low latency communication (URLLC)

is one of the key features of beyond fifth-generation (5G)

networks, with the potential to support a vast set of mission-

critical applications in vehicular communications, remote surg-

eries, and virtual reality [1]-[2]. Under the constraints of a

URLLC service, the reliability is defined as achieving the

packet error rate (PER) in the range of 10−9 − 10−5 with

the latency on the order of milliseconds. An accurate channel

modeling quantifying the tail statistics produced by extreme

events is needed to satisfy the requirements of the URLLC

systems.
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Existing studies on channel modeling for URLLC can be

categorized into two folds: One provides an extrapolation-

based framework that extends the applicability of the available

practical channel models in the ultra-reliability relevant regime

[2]; The other proposes new performance measures for the

ultra-reliability of the channel [3]-[5]. However, none of

these frameworks propose a channel modeling methodology

to derive and verify ultra-reliability statistics. In [6], we

propose a novel channel modeling methodology for URLLC

based on extreme value theory (EVT) to statistically derive

the lower tail of the received power by characterizing the

probabilistic distribution of extreme events happening rarely.

However, the channel was assumed stationary, whereas, in

reality, the wireless channel statistics vary over time due to

the dynamic environment. Hereupon, the usage of techniques

for the estimation of the time-varying parameters of the non-

stationary channel data sequence is required.

EVT is a powerful framework characterizing the probabilis-

tic distribution of infrequent extreme events or equivalently

the tail distribution. EVT has been recently utilized at the

data link and network layers to model the tail statistics of

queue length and delay [7]-[8]. Additionally, EVT has been

employed to derive closed-form asymptotic expressions for

the throughput, bit error rate (BER), and PER over different

fading channels [9]-[11]. However, these data link and net-

work layer studies use the extrapolation of existing average

statistics-based channel models in the ultra-reliable region,

which have not yet been proven to be accurate experimentally.

EVT has also been utilized at physical layer for wireless

channel modeling to provide a fit to the whole distribution

of large/small-scale fading [12]-[16]. Nevertheless, EVT has

never been incorporated into wireless channel modeling to es-

timate the tail statistics and address the constraint in the ultra-

reliability region. This constraint requires the development of

methodologies for the determination of the optimum threshold

below/above which the samples correspond to the extreme

events, and acquiring a large number of samples to capture

the extreme events occurring rarely. [6] is the only existing

study focusing on modeling the statistics of the channel model

for URLLC by using the concept of EVT, however, stationary

channel assumption may not be realistic for channels with

time-varying characteristics.

The goal of this paper is to propose a novel channel model-

ing methodology based on EVT for the statistical characteri-

zation of the lower tail distribution of a non-stationary channel

data. We use received signal power at constant transmit power
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as channel data, since the received signal power is equivalent

to using the squared amplitude of the channel state information

[2], [6]. This paper extends the EVT based wireless channel

modeling methodology in [6] for non-stationary channel data

by determining the measurable external factors that cause

non-stationarity. Then, it models the parameters of fitting

distributions as a change-point function of time. First, the

wireless channel data sequence is split into smaller groups,

each of which corresponds to the same value of the external

factor causing non-stationarity. Then, the generalized Pareto

distribution is fitted to the lower tail of the received power

distribution in each group. The original contributions of this

work are listed as follows:

• We provide a novel methodology for determining the

measurable external factors that cause non-stationarity

in the channel data sequence. This methodology splits

the data sequence into smaller stationary groups, each

of which contains the samples collected under the same

factor.

• We provide a novel approach for modeling the extremes

of each group exceeding a given threshold by fitting the

generalized Pareto distribution (GPD) to the distribution

of the channel lower tail while the threshold is determined

optimally. Thereupon, we model the shape and scale

parameters of GPD as a change-point function of time.

• We demonstrate the superiority of the proposed channel

modeling methodology for deriving the tail statistics of a

non-stationary channel sequence in terms of the deviance

statistic, compared to the case in which the channel is

assumed stationary.

The rest of the paper is organized as follows: Section II

describes the basics of EVT for stationary and non-stationary

sequences. Section III presents the channel modeling method-

ology for characterizing the extremes of a non-stationary

sequence. Section IV provides the performance evaluation of

the proposed algorithm on the data collected within the engine

compartment of Fiat Linea under various engine vibrations and

driving scenarios. Finally, Section V concludes the paper.

II. BACKGROUND

A. Extreme Value Theory for Stationary Sequences

EVT provides a robust framework for analyzing the statis-

tics of extreme events happening rarely through modeling

the probabilistic distribution of the values exceeding a given

threshold by using the GPD. Assume that {G1, ..., G# } is an

independent and identically distributed stationary sequence,

where G8 denotes the 8Cℎ received power for 8 ∈ {1, ..., #}.

Then, according to the EVT, the tail distribution of the power

sequence, i.e., the probabilistic distribution of the power values

exceeding a given threshold D, can be expressed as

�D (H) = 1 −

[

1 +
bH

f̃D

]−1/b

,

where H is a non-negative value denoting the exceedance below

threshold D, i.e., (H = D−-), - denotes any G8 below threshold

D; �D (H) is in the form of the GPD; and b and f̃D = f+b (D−

`) are shape and scale parameters of the GPD, respectively.

Here, ` and f are the location and scale parameters of the

generalized extreme value (GEV) distribution fitted to the CDF

of <# = <8={G1, ..., G# }, respectively [6, Theorem 1], [17].

B. Extreme Value Theory for Non-Stationary Sequences

In a non-stationary sequence, the threshold, shape, and scale

parameters of the GPD model are time-varying. Therefore,

the distribution of the values exceeding a given threshold is

modeled by using a general Pareto model with time-varying

parameters given by
(
D (C ) − -C

��-C < D (C )

)
∼ �%�

(
f̃(D,C ) , b (C )

)
, (1)

where D (C ) , f̃(D,C ) , and b (C ) are the time-varying threshold,

scale and shape parameters of the generalized Pareto distribu-

tion, respectively.

Change-point approach is utilized to model the impact of

time on the extremes of a non-stationary sequence through

a time-varying factor. In change-point technique, the non-

stationary sequence is broken into smaller stationary groups,

each of which corresponds to the same external factor. In

this technique, the parameters of the GPD model fitted to

the extremes of the stationary groups are assumed to be fixed

as long as the external factor is constant. The time varying

parameters are then expressed as

\ (C ) =





\1, 0 < C ≤ C1
\2, C1 < C ≤ C2
. .

\" , C"−1 < C ≤ C"

(2)

for 0 < C ≤ C" , where \ (C ) is the time varying D (C ) , f̃(D,C ) ,

or b (C ) ; \< is the determined constant D, f̃(D) , or b for group

< ∈ {1, ..., "}; and " is the number of groups between times

0 and C" .

III. METHODOLOGY

The objective of the proposed methodology is to model a

non-stationary channel at an ultra-reliable regime of operation

based on EVT. The main features of the suggested algorithm

are as follows:

1) We perform the Augmented Dickey-Fuller (ADF) test on

the data to check if it is non-stationary. The test is based

on the fact that the mean and variance of a stationary

time series do not change over time [18].

2) If the channel data sequence is not stationary according

to the ADF test result, we determine the external factors

under which the parameters of the GPD are changing

and categorize the sequence into " different groups.

3) We model the tail distribution of the received power in

each group by using GPD.

4) We select the simplest GPD model with enough accuracy

by using the deviance statistic �.

The proposed approach starts by applying ADF test on the

channel data to check the stationarity. If the ADF test logical

result is 0, we do not have enough evidence to reject the null

hypothesis of non-stationary assumption. The logical result is 0

if ?-value is less than U, where ?-value is the index measuring
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Fig. 1. Flowchart of the proposed channel modeling framework for a non-stationary process.

the strength of the evidence against the null hypothesis �0, and

U is defined as the probability of rejecting the null hypothesis

when the null hypothesis is true, i.e., probability of making

a wrong decision. Then, the samples are categorized into "

groups based on the factors that cause non-stationarity. If the

ADF test logical result is 1, we reject the null hypothesis

and consider the channel as stationary. Afterwards, since the

input of EVT is necessarily a sequence of i.i.d. samples, we

remove the time-dependency between the samples of each

group by using declustering approach. Then, EVT is applied

to obtain the optimum threshold under which the received

powers are considered extremely low values. Hereupon, we

fit GPD with the associated shape and scale parameters to the

values below the threshold to model the tail of the receive

power channel data. Finally, we obtain the log-likelihoods of

the GPD models under different factors to select the model

with the lowest complexity, i.e., minimum total number of

scale and shape parameters, based on the deviance statistic.

The proposed algorithm is depicted in Fig. 1 and explained in

detail next.

A. Modeling of Tail Distribution by using GPD

To model the tail distribution of the received power in each

group, first, the sequence of measured samples is converted

into an i.i.d. sequence by removing their dependency. The

threshold exceedances in the observation sequence are inher-

ently time dependent since one extremely low power is likely

to be followed by another. On the other hand, since the input

of EVT needs to be a sequence of i.i.d random variables,

we use declustering approach to remove time dependencies

[6], [19]. Then, EVT is applied to the sequence of i.i.d.

samples for determining the optimum threshold and estimating

the parameters of the Pareto distribution by using the maxi-

mum likelihood estimator (MLE). The optimum threshold is

determined by applying two complementary methods, mean

residual life (MRL) and parameter stability methods, in EVT.

Next, the validity of the Pareto model corresponding to the

optimum threshold is assessed by using probability plots.

The time-dependency of the observed samples is removed

via the declustering approach, where the samples in each

individual group are divided into multiple clusters. Each

cluster includes consecutive dependent observations and the

clusters are separated by a certain sample gap to ensure the

independency between clusters [6]. In this method, first, we

assume a threshold D and look for the first sample G8 below

this threshold to initiate the first cluster. Upon observing the

first G8 < D, G8 and all its consecutive samples below D will be

assigned to the first cluster. Once a sample over D is detected,

we let the cluster to continue for A more successive values and

then, terminate the cluster, if no value below D is observed.

The next cluster starts with the next value below the threshold

D. In the second step of the declustering method, we extract

the minimum value of each cluster, apply EVT to the cluster

minima, and model their tail distribution by using GPD.

Optimum threshold determination is performed by using

MRL and parameter stability methods. MRL method states that

if we determine the mean value of samples exceeding a given

threshold D and then, plot mean excesses, i.e., � (D−- |- < D),

against the threshold, the optimum threshold is the highest

threshold below which, mean excess is a linear function of

D. Though the MRL method is applied to the data sequence

prior to the estimation of the Pareto model parameters with

less complexity than the parameter stability method, it is

sometimes difficult to obtain the optimum threshold explicitly.

Therefore, it is required to use the complementary parameter

stability method. Parameter stability method states that if we fit

GPD to the values exceeding a given threshold for a variety of

the thresholds and extract the corresponding Pareto parameters

and then plot parameters against the threshold D, the optimum

threshold is the highest threshold below which the estimated

shape and modified scale parameters are linear with respect to

D. Here, modified scale parameter is defined as f∗
= f̃D − bD

and the linearity relation is assessed by using the R-squared

statistical measure, denoted by '2 [6].

The validity of the GPD model is assessed by using

probability plots. Probability plots, consisting of Probabil-

ity/Probability (PP) plot and Quantile/Quantile (QQ) plot, are

graphical techniques used to assess the validity of the models

fitted to the empirical values. In the PP plot, we compare the

empirical probability of occurrence for an extreme value with

the corresponding probability obtained by the GPD, while in

the QQ plot, we compare the empirical extreme quantile with

the corresponding value obtained by the inverse of GPD. If

the GPD appropriately models the extreme values exceeding

threshold D, then, both PP and QQ plots fit the unit diagonal

line, i.e., the 45◦ line [19], [20]. PP plot consists of the pairs

{(
8

: + 1
), �D (H8)};�D (H8) = 1 −

(

1 −
bH8

f̃D

)−1/b

, (3)

where H8 , 8 ∈ {1, ..., :}, is the absolute value of the difference

between the threshold D and G8 sample exceeding the thresh-

old; : is the number of values exceeding threshold D; �D (.)

is the Pareto model fitted to the tail distribution; and b and

f̃D are the associated shape and scale parameters, respectively

[19]. On the other hand, QQ plot consists of the pairs

{G8 , (�
−1
D (

8

: + 1
)};�−1

D (I8) = D −
f̃D

b

[
1 − I

−b

8

]
, (4)
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where G8 , 8 ∈ {1, ..., :}, is the 8Cℎ extreme quantile exceeding

threshold D; �−1
D (.) is the inverse of the Pareto model fitted

to the tail distribution; I8 is the probability of occurrence

associated with the extreme quantile G8; and :, b and f̃D are

same as those defined in Eqn. (3).

B. Modeling Time-Varying Parameters of GPD

To model the extreme values in a non-stationary sequence,

upon determining the external factors that affect Pareto pa-

rameters, we determine an optimum threshold and the corre-

sponding Pareto model parameters for each group. The time-

varying parameters are modeled according to the change-point

expression given in Eqn. (2).

C. Final Model Selection

With the possibility of modeling any combination of the

GPD parameters as functions of time, there is a catalog of

models to choose from. The basic principle is parsimony,

obtaining the simplest model that explains as much of the

variation in the data as possible. In this regard, we obtain the

log-likelihood of the GPD associated with each external factor

in Section III-B as

;�%� = −
[ #∑

C=1

log f̃(D,C )+
(
1+

1

b (C )

)
log (1 +

b (C ) H (C )

f̃(D,C )

)
]
, (5)

where # is the maximum number of the samples; f̃(D,C ) and

b (C ) are the time varying scale and shape parameters at time

C, respectively; and H (C ) = D (C ) − G (C ) is the absolute value of

the difference between the threshold D (C ) and the sample G (C )
exceeding D (C ) at time C. Finally, we apply the deviance statistic

test � = 2{;�%�1
− ;�%�0

}, where ;�%�1
and ;�%�0

are the

log-likelihoods of �%�1 and �%�0 models, respectively. The

primarily model �%�0 is rejected by the test at the U-level

of significance if � > 2U, where 2U is the (1 − U) quantile of

the j2
:

distribution for a small U value between 0.01 and 0.1;

and : in j2
:

is the dimensionality difference, i.e., difference

between the total number of scale and shape parameters in

each model.

IV. PERFORMANCE EVALUATION

The goal of this section is to evaluate the performance of the

proposed methodology in modeling the non-stationary channel

for URLLC, and choosing the best GPD fitted to the non-

stationary sequence according to the deviance statistic test.

The measured channel data were collected within the engine

compartment of Fiat Linea at 60 GHz under different driving

scenarios and road conditions, including the static car, driving

on a smooth road, and ramp road. The antennas within the

engine compartment are located such that the effect of the

engine vibration is observed in the received power, as shown in

Fig. 2. A Vector Network Analyzer (VNA) (R & S® ZVA67) is

connected to the transmitter and receiver via the R & S® ZV-

Z196 port cables with maximum 4.8 dB transmission loss. The

horn transmitter and receiver antennas with a nominal 24 dBi

gain and 12◦ vertical beam-width operate at 50-75 GHz. We

have captured about 106 successive samples for 30 minutes

with a time resolution of 2 ms. We use MATLAB for the

implementation of the proposed algorithm.

Fig. 2. Measurement setup with the transmitter (TX) and receiver (RX)
antennas located in the engine compartment of Fiat Linea.

A. External Factors Causing Non-Stationarity

We have identified the dependence of the parameters that

cause non-stationarity on both the driving scenario and the

quality of the road assessed by the driver of the vehicle. There-

fore, for the collected channel data, we define the parameter

taking three discrete values corresponding to the following

three groups: static car, smooth road, and ramp road.

B. Modeling Time-Varying Parameters of GPD Within the

Engine Compartment

Fig. 3 shows the mean excess, shape and modified scale

parameters of the GPD fitted to the filtered i.i.d. received

power samples at different thresholds and minimum gaps

between the clusters, as well as the probability plots for the

group of ramp road. Fig. 3a illustrates the MRL plot, i.e.,

the mean of samples exceeding a given threshold, where the

threshold varies between −50 dBm and −10 dBm. When the

minimum gap between the clusters A is 0, the MRL plot

linearly increases as threshold increases at all threshold values,

thus, the optimum threshold cannot be recognized. However,

by choosing A > 0, the MRL changes linearly in D only

for D < −20 dBm, denoting that −20 dBm is the largest

threshold value for which '2 is greater than 0.95 for all

A > 0. On the other hand, Figs. 3b and 3c show the shape

and modified scale parameters of the fitted GPD model for

the parameter stability method. These figures illustrate that

by choosing A > 15, the estimated parameters of GPD are

linear in D for D < −32 dBm, where −32 dBm is the largest

threshold value for which '2 > 0.95 for all A > 15. As a result,

considering the intersection of the results obtained by Figs. 3a,

3b, and 3c, the optimum values of D and A are −32 dBm and

16, respectively. Additionally, Fig. 3d shows the probability

plots where the black line is the diagonal line to graphically

determine the goodness of fit of the GPD. Both PP and QQ

plots illustrate that the generalized Pareto model applied to the

received power properly follows the empirical results.

We summarize the specifications of Pareto models for other

groups in Table I, where D (C ) , b (C ) , f̃(D,C ) , and ;�%� denote the

optimum threshold in dBm, shape and scale parameters corre-

sponding to D (C ) , and the log likelihood of GPD, respectively.

C. Final Channel Model for the Engine Compartment

According to Section III-C, the deviance statistic between

the GPD models under non-stationary and stationary assump-

tions � = 2(−136.1−(−1343)) >> 13.28, where −136.1 is the
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Fig. 3. Mean excesses, shape, and modified scale parameters of GPD at
different thresholds and minimum gaps between the clusters for the ramp road
group: (a) Mean excess, (b) Modified scale parameter, (c) Shape parameter,
and (d) Probability plots where the black line is a diagonal line, i.e., H = G,
assessing the goodness of fit; G/H axes are empirical/modeled values.

TABLE I
ESTIMATED TIME-VARYING PARAMETERS OF GPD FOR DIFFERENT

GROUPS.

Group D (C ) b (C ) f̃(D,C ) ;�%�

Static car −6 0.126 0.63 −27.55

Smooth road −24 −0.457 9.21 −55.25

Ramp road −32 −0.284 8.08 −53.30

summation of log-likelihoods of Static car, Smooth road, and

Ramp road in Table I; −1343 is the log-likelihood of the GPD

fitted to the whole data sequence, assuming that the channel

is stationary [6]; 13.28 is the 0.99 quantile of the j2
4
, while

4 in j2
4

is the difference between the complexities of GPD

models under stationary and non-stationary channels which are

2 and 6, respectively. To minimize the probability of wrong

decision, we assume U as small as possible, i.e., 0.01, in D-

statistic formula. The � statistic result implies that the change-

point trend of the threshold, scale and shape parameters of

GPD explains a substantial amount of the variation in the

channel data sequence while outperforming the GPD model

under stationarity assumption.

V. CONCLUSIONS

In this paper, we introduce a novel framework based on

EVT with the goal of modeling the extremes of a non-

stationary channel for URLLC. The proposed methodology

for modeling a non-stationary channel achieves significantly

better fit to the empirical data than the modeling approach

for a stationary channel. In the future, we are planning to

extend the proposed framework for the EVT analysis of the

non-stationary processes to include a more extensive set of

parameters that affect stationarity, such as vehicle speed, road

material, and temperature. Also, the extension of this work for

deriving the mathematical expressions of the BER and PER

due to the outage based on the proposed model is subject to

future work.
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