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Abstract—In this paper, a novel beam alignment algorithm
based on the sparse graph coding theory is proposed for mil-
limeter wave (mmWave) time-varying channels. Firstly, a pilot
design method is introduced to transform the mmWave time-
varying beam alignment into a sparse-graph design and detection
problem. Inspired by Low-Density-Parity-Check (LDPC) codes
and fountain codes, a multi-stage sparse coding method is
proposed for the design of the measurement matrix and the
theoretical bound of the probability of success is derived to guide
the design of the sparse-graph. A beam alignment algorithm is
subsequently proposed to detect the beam index and estimate the
carrier frequency offset (CFO). Then, the Carmeŕ-Rao Lower
Bound (CRLB) is derived. Simulation results demonstrate that
the proposed beam alignment algorithm achieves significant
performance improvements over the conventional counterparts
in both the noiseless and noise cases.

Index Terms—Beam alignment, time-varying channels, sparse-
graph codes, Massive MIMO.

I. INTRODUCTION

Millimeter wave(mmWave) communication is considered as
a key technology of the fifth-generation (5G) networks to
dramatically scale up the system capacity by exploiting the
abundant frequency spectrum (30-300GHz) [1]. However, due
to the the higher propagation loss compared with the lower
frequency bands [1], large antenna arrays are required to
provide sufficient beamforming gain. This brings difficulties
to obtain the information of mmWave channels.

Recently, by leveraging the sparse nature of mmWave chan-
nels, some compressed sensing (CS)-based channel estimation
algorithms are proposed [2], [3]. Nevertheless, those schemes
always have a high computational complexity due to the large-
dimension matrix operations. To reduce the complexity, a class
of beam scanning and searching schemes have been exten-
sively studied, e.g., [4]–[7]. However, those schemes require
either searching for all candidate beams [4], feedback links
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[5], or sending long PN sequences [6]. More importantly, most
of the existing beam alignment (BA) algorithms [4]–[7] only
consider the static channel model or low mobility scenarios,
while the time-varying channels need to be considered for
practical mmWave applications. In [7], a sparse coding based
beam alignment algorithm is proposed for mmWave beam
alignment in time-varying channels. However, in mobility
scenario, it is necessary to obtain the Doppler shift of each path
to compensate its effect rather than simple beam alignment.
Furthermore, the algorithm only obtains the amplitude infor-
mation, and the encoding construction and decoding algorithm
are based on idealized assumption, the performance degrades
significantly with short pilot sequence length.

Against the above background, the contributes of this paper
can be summarized as follows:

1) A beam alignment algorithm framework based on sparse-
graph coding and decoding is proposed. Firstly, we divide
the measurement matrix into two parts, i.e., the sparse
coding matrix and the detection matrix. Then, inspired
by the erasure-correcting codes, e.g., fountain codes
[8] and Low-Density-Parity Check (LDPC) codes [9],
which both have low computational complexity, a similar
coding matrix is designed. Furthermore, by utilizing the
density evolution analysis method [10], we derive the
theoretical bound as a benchmark to chose the optimal
parameter of the designed coding matrix. In addition,
the minimum probability of success of our algorithm
is analytically determined by this theory bound, while
the previous algorithm [7] can only determine a loose
upper bound.Consequently, the minimum pilot overhead
can be achieved by our proposed algorithm and which
outperforms the similar algorithm [7], although the latter
is based on the sparse coding.

2) A time-varying channel beam alignment algorithm is
proposed to detect the defined single-ton and estimate the
carrier frequency offset (CFO). Compared with the exist-
ing iterative sparse message passing algorithm [3], our
proposed algorithm has a lower computational complex-
ity. Furthermore, by modeling a successful bin detection
as a three dimensional tensor, we derive the theoretical
Carmér-Rao Lower Bound (CRLB) of the time-varying
channel parameters.

Finally, simulation results show that the proposed sparse
coding based algorithm outperforms the existing beam align-
ment algorithms [6], [7]. Furthermore, in some cases, our
algorithm approaches the CRLB for both the success rate and
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the CFO estimation.

II. SYSTEM MODEL

This paper considers a typical downlink mmWave massive
MIMO system, where the BS is equipped with NT antennas
and NRF radio frequency (RF) chains, and the mobile station
(MS) utilizes MR antennas and MRF radio RF chains. To
incorporate the oscillator frequency offset (OFO) and the
Doppler frequency offset (DFO) with conventional mmWave
channels, the mmWave time-varying channel can be expressed
as [11]

H(t) =

L∑
l=1

alαααMS(θl)ααα
H
BS(ϕl)e

j2πfcl Tst, (1)

where {al, θl, ϕl} denote the complex gain, the AoA, and the
AoD of the l-th path, respectively. In addition, f cl = fdl + ε is
the CFO for the l-th path, where fdl denotes the DFO and ε is
the OFO between the transceiver and the receiver. And Ts is
the sampling period. Furthermore, without loss of generality,
we consider utilizing the uniform linear array (ULA) at the BS
and the UE, and αααBS(.) and αααMS(.) denote the array response
vectors.

Different from the traditional beam alignment algorithms,
which only emit a single beam at a time, in our pilot design,
the BS probes the channel with multiple beams and transmits
constant signal in one training period. The transmitted beam-
forming vector can thus be written as

f(t) = FBSψψψ(t), (2)

where FBS∈ CNT×NT denotes the Discrete Fourier Transform
(DFT) matrix, and ψψψ(t)∈ CNT×1 is the beamcoding vector.
Similarly, the UE can locally customize its own beamforming
codebook, such as w(t) = FMSv(t)∈ CMR×MRF . Specially,
the UE utilizes MUE ≤ MRF beams to exhaust the whole
beam index. Thus, after the standard time synchronization and
carrier recovery, the received signal can be expressed as

r(t) = wH(t)H(t)f(t) + n(t)

= vH(t)FHMSFMSĤ(t)FHBSFBSψ(t) + n(t)

= vH(t)IMSĤ(t)IBSψ(t) + n(t)

= vH(t)Ĥ(t)ψ(t) + n(t)

(3)

where Ĥ(t)∈ CMR×NT denotes the virtual angle domain
representation, FHMSFMS = IMS∈ CMR×MR and FHBSFBS =
IBS∈ CNT×NT denote the identity matrices, n(t)∈ CNRF×1 is
the stacked noise vector with i.i.d CN (0, σ2

n) entries.
Suppose the UE can obtain NRF projections per time slot,

thus, by utilizing a suitable signal splitter, the received signal
of the j-th RF chain can be given by

rj(t) = ĥs(t)ψψψ(t) + nj(t), (4)

where ĥs(t) denotes the s-th row of the virtual channel Ĥ(t).
Since data from each RF link can be received separately
and processed separately, then we only consider the data
from a single RF chain. Here, we simplify each row of the
beam channel as ĥs(t) = ĥ(t). Furthermore, by collecting T
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Fig. 1: A conceptual diagram of the sparse beamcoding
matrix ψψψ and the emitted beam, where different color denotes
different bin detection beam.

received pilot signals and taking into account the time-varying
channel, we obtain

r =


ψψψT (1)× ĥ(1)

ψψψT (2)× ĥ(2)
...

ψψψT (T )× ĥ(T )

+ n, (5)

where ĥ(t) = vec(ĥ(t))∈ CMT×1 denotes the vectorized
virtual angular domain representation, and n is the noise. Since
the follow analysis is based on the single RF chain, we define
rj = r and n = nj for simplicity whenever no ambiguity
arises. In the sequel, we will discuss how to effectively design
the beamcoding matrix ψψψ∈ CT×NT and extract the beam index
ĥ(t)(t = 1, .., T ) from the received signal without the index
feedback mechanism. Due to the sparsity of millimeter-wave
channels, we only need to obtain a few channel parameters,
channel support

∣∣∣ĥ(t)
∣∣∣ (t = 1...T ), complex gain al, and

Doppler frequency shift fdl of each path l.

III. PROPOSED BEAM ALIGNMENT SCHEME

A. Proposed Algorithm Framework Based on Sparse Coding
and Decoding

In our scheme, the sparse beamcoding matrix ψψψ∈ CNM×NT

is divided into two parts, the sparse coding matrix
G∈ CM×NT and the bin detection matrix S∈ CN×NT . The
measurement matrix ψψψ can thus be given by

ψψψ=G� S, (6)

where � denotes the row-tensor operator. Mathematically, we
rewrite the measurement matrix ψψψ as follows:

ψψψ= [G1 ⊗ S1 · · ·GMT ⊗ SMT ], (7)

where Gi and Si represent the i column of the matrix G
and the matrix S, respectively, and ⊗ denotes the Kronecker
product. Our design philosophy is depicted in Fig. 1 as a
cartoon illustration, where the non-zero positions in the matrix
represent different beam angles and different colors represent
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Fig. 2: An illustration of the regular bipartite graph with its
associated sparse codes, while the left degree b = 2.

different beam identification vectors. Next, we will discuss
how to design these two matrices separately.

Since these two parts target at different functions of the
decoding algorithm, the sparse coding matrix G can be
designed independently from the bin matrix S. Inspired by the
traditional LDPC coding method [9], we construct a regular
bipartite graph ΓMT (R, b) with NT left nodes and R right
nodes for the sparse coding matrix, where each left nodes
is connected to b right nodes at random [10], as shown in
Fig. 2. Specifically, the design of the coding matrix G follows
the “beams-and-bins” philosophy, where each non-zero entry
(Gi,j = 1) denotes that the j-th bin sends the i-th preset beam.
Then, according to the distribution of multipath direction of
mmWave channels, we can classify the observation detections
based on its edge degree as follows:

1) zero-ton: A right node is a zero-ton if it is not connected
any non-zero entry of the angle domain channel ĥ.

2) single-ton: A right node is a single-ton if it is connected
to only one non-zero entry of the angle domain channel
ĥ.

3) multi-ton: A right node is a multi-ton if it is connected
to more than one non-zero entry of the angle domain
channel ĥ.

To be specific, these three types represent the cases that
the transmitting beams are aligned with zero path, one path,
and multiple paths in the mmWave time-varying channel,
respectively. In particular, it is unreasonable to assume that the
multi-ton node will not appears, which is different from the
conclusion in [7]. Then, we propose a more general decoding
method compared with the phaseless decoding method [9].
Specially, if all the types of the node can be determine, similar
to the message passing algorithm [9], a peeling decoder can
be applied to peel off all the single-ton in the bipartite graph
and the parameters of the channel can be obtained from the
single-ton.

Finally, we carry out a probability analysis of the proposed
peeling-decoder, over a graph which is randomly chosen from
the regular graph ensemble <K(F,m). In this ensemble, the
m-th detection is divided into d stages, with each left node
connected to one right node per stage randomly. The set F is
defined as F = {f1 · · · fd}, where the number of right nodes
at stage i is fi. In particular, fi = µK +O(1). Then, we can
design the coding matrix G so that each stage has a circularly-
shifted subsampling pattern.

In the previous algorithm [7], the authors only deduce the

TABLE I: The Minimum Threshold Value of η of the Number
of Stage d

d 3 4 5 6 7 8

µ 0.407 0.323 0.285 0.261 0.245 0.233

dµ 1.221 1.292 1.425 1.566 1.715 1.864
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Fig. 3: An illustration of the sparse codes with its associated
measurement matrix. Note that Di[x] denotes the x-th column
of the bin matrix Di.

upper bound of the beam alignemtn algorithm based on sparse
coding.By utilizing the Doob martingale in [9], we show
that the 2l-depth neighborhood of the edges of our proposed
ensemble <K(F,m) is cycle-free. Then, using the density
evolution analysis in [10], our proposed peeling decoder can
recover K sparse ĥ with a probability given as follows:

Theorem 1: If the proposed peeling decoder over a random
graph from the ensemble <K(F,m) , satisfies the stages of d ≥
3 and fi = µK+O(1) with the constant µ being chosen from
Table I, then it can successfully recover K non-zero entries
with probability 1−O(1/m).

Proof: See Appendix A.

B. Proposed Beam Alignment Algorithm Using Sparse-Graph
Codes

In this subsection, a beam alignment algorithm using sparse-
graph codes is proposed. Firstly, we can utilize the same
regular graph ΓMT (R, b) as mentioned in Section III-A to
ensure high success beam detection probability. Then, we
propose a new bin detection matrix D which contains part
of the previous bin detection matrix S.

Since only a few beams are transmitted at each time, we
can also design the bin detection matrix D to be sparse, i.e.,
the beams in different directions have different weights each
time. In particular, an example is shown in Fig. 3, each stage
have Mi modulation vector Di∈ CP×1. Furthermore, in the
presence of noise, each entry of the matrix Di is randomly
selected from a i.i.d Gaussian entries N (0, 1).

Next, we propose a detection scheme for each bin. Consider
the phase rotation introduced by the CFO, the mmWave
channel gain varies in time. In the meantime, the magnitude
of single path remains constant. Thus, we can utilize the
magnitude information to detect the type of each bin. Firstly,
we simple check if the received vector is zero-ton as follows:

|ri,j [1]|2 ≤ (δ2minε1 + σ2
min), (8)

where δ2min denotes the minimum signal power, σ2
min is the

minimum noise power, and ε1 is the zero-ton detection
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threshold. Consequently, the right-hand side of the equation
represents the smallest signal power associated with the noise.
If the equation holds, then it is proved that the received data
is less than all known signal powers.

We then assume that the received bin vector is a single-ton
and then estimate the index pair

〈
b̃, h̃[̃b]

〉
. Specifically, for bin

j of stage i, a maximum likelihood (ML) method is utilized
to obtain the possible absolute value of the coefficient for the
k-th column of the bin matrix Di as follows:

|αk| = DH
i [k] |ri,j |

/
‖Di[k]‖22. (9)

The estimated k̃ is the one which minimizes the residual, i.e.,

k̃ = arg min
1<k<Mi

‖|ri,j | − |αk|Di[k]‖22 , (10)

To be specific, if the difference between the assumed value
and the real value is less than a minimum signal power, then
the type of the node is determined.

Furthermore, a check procedure is proposed to determine if
it is a single-ton, according to the following criterion∥∥∥|ri,j | − ∣∣α̃k̃∣∣Di[k̃]

∥∥∥2
2

/
Mi ≤ (δ2minε2 + σ2

min), (11)

where δ2min denotes the minimum single power, σ2
min is the

minimum noise power, and ε2 is the single-ton detection
threshold.

Different from the pervious beam alignment algorithm [7],
which cannot obtain the Doppler shift parameters of the
channel, in our scheme, a ML method is utilized to estimate
the CFO of a single-ton bin as follows:

f̃ cl = arg max
fk

∣∣FH(fk)ri,j
∣∣/∥∥FH(fk)

∥∥2
2

‖ri,j‖22 , (12)

where F(.)∈ CN×1 denotes the CFO steering vector, and fk ∈
[0, fmax] is the CFO of the candidate. Thus, the real complex
gains can be given by

α̃k = FH(f̃ cl )ri,j

/∥∥∥FH(f̃ cl )
∥∥∥2
2
, (13)

Subsequently, by utilizing the Peeling Off method, we can
obtain all the non-zero entries of the virtual angular domain
representation. In addition, we can use multiple iterations
to improve the success rate of detection. Unlike traditional
iteration-based messaging method [3], which relies algorithm
convergence, our algorithm solves this problem by single hard
decision. Finally, the detail steps of our proposed method are
listed in Algorithm 1.

C. Performance Analysis

We now discuss the performance of our proposed scheme,
including the computational complexity and the CRLB. Firstly,
the computational complexity order of the proposed algorithm
mainly arises from ML algorithm in (9) and (12). Thus, the
complexity order of the proposed beam alignment algorithm is
O(MmaxN +JN), where Mmax denotes the maximum num-
ber of non-zeros entries in each row of the coding matrix G,

Algorithm 1 Beam Alignment Algorithm Using Sparse-Graph
Codes
Input: Received signals r, sparse coding matrix G and bin

detection matrix Di for all stages, number of iterations
O, preset CFO estimation accuracy J , error threshold ε1,
and error threshold ε2

Output: The estimated index of beam channel b̃ and CFO f̃ c.
for iteration 1 < o < O do

for stage 1 < i < d do
for bin 1 < j < fi do

if |ri,j [1]|2 ≤ (δ2minε1 + σ2
min) then

ri,j is a zero-ton bin vector.
else

for index 1 < k < Mi do
get the estimated index-value pair

〈
k̃, |α̃k̃|

〉
by using (9), (10).
identify if the received bin vector is a single-
ton by using (11).
if single-ton = ‘true’ then

obtain b̃ by utilizing the estimated k̃ and
the coding pattern in the j-th bin of the i-th
stage.
get the estimated CFO f̃ cl and estimated
path gain α̃k̃ by using (12), (13).
rebuild the virtual time-varying represen-
tation h̃[̃b].
peeling off : r = r−ψψψh̃[̃b].

else
bin vector ri,j is a multi-ton bin vector.

end if
end for

end if
end for

end for
end for

and J denotes the preset CFO estimation accuracy. Compared
with the recently proposed random search (RS) algorithm [5],
[6], which has the complexity order O(N RFMRF ×MRNT),
our proposed scheme achieves a lower complexity. Secondly,
since the received time-varying data can be modeled as a
three-dimensional tensor γγγ∈ CNRF×P×P for each successful
bin detection, the CRLB results for the channel parameters
{al, θl, ϕl, f cl } are derived in Appendix B.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
beam alignment scheme through numerical simulations. Here,
we consider a mmWave Massive MIMO sytem with hybrid
precoding architecture at both the BS and UE, where NT =
64, MR = 16, and both of them have multiple RF chains. In
particular, for the mmWave time-varying channel parameters,
we set Ts = 1µs, and the CFO f cl is randomly distributed
in [0, fcmax]. For the proposed algorithm, we utilize a regular
graph <Kd (F,m) to construct the measurement matrix, d ≥
3 stages. Furthermore, to strike a good balance between the
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performance and complexity order, we take O = 4.
Fig. 4 compares the performance of our algorithm to that

of the two existing beam alignment algorithms [6], [7] in
terms of the probability of successful detection. As shown
in Fig.4(a), compared with the fast beam alignment (FBA)
algorithm [7] which is also based on the sparse coding, our
algorithm provides considerable performance gains up to 16%
(L=3) and 40% (L=5) even the number of measurements
is very small (64). The benefit is due to the fact that the
proposed algorithm takes advantage of the peeling off method
and the density evolution to guarantee the bound achieving
performance. Furthermore, in the noise case, our algorithm
outperforms the RS algorithm [5], [6] v.s. different number of
measurement. In particular, the detection probability denotes
the probability of detecting the strongest path [6]. Although
the performance of the random search method can be improved
by sending multiple beams, it requires a longer sequence
to maintain the orthogonality of multiple beams. Further-
more, combined with the results of computational complexity
analysis in Section III-C, our algorithm achieves a lower
computational complexity and better performance than the
existing beam-alignment algorithms.

In Fig. 5, the MSE performances of the CFO estimation
v.s. different parameters are investigated. As can be seen in
Fig. 5 (a), our propose algorithm can effectively estimate the
CFO even the maximum Doppler shift is very large. Fig. 5 (b)

shows that the proposed CFO estimation method can approach
the theoretical CRLB under the condition of each successful
detection. However, this only happens when P is relatively
small. The proposed algorithm exhibits a certain error floor
when P increases. According to the conclusion in [12], the
alternate least squares (ALS) method can reach the CRLB, but
at the cost of higher computational complexity. Furthermore,
if P is too long, the total pilot overhead of our algorithm will
be very high. Therefore, the simulation results show that our
algorithm strikes a good balance between performance and
computational complexity.

V. CONCLUSION

This paper proposed a beam alignment algorithm using
sparse codes for mmWave time-varying channel beam index
acquisition and CFO estimation. Two CRLBs of the proposed
scheme are derived as a benchmark to evaluate the perfor-
mance of our algorithm. Simulation results show that the
proposed beam alignment scheme outperforms the existing
beam alignment algorithms and has potentials to approach
the CRLBs. Our future work will focus on applying our
proposed algorithm to holographic MIMO surfaces scene [14]
and reconfigurable intelligent surfaces scene [15].

APPENDIX A
PROOF OF THEOREM 1

Define Y as the total number of edges that are not decoded
over a randomly graph from the ensemble <K(F,m), similar
to the results in [10] and [9], we have

E(Y ) < 2Kdpi,

P (|Y − E(Y )| > Kdς) < e−δς
2K1/(4i+1)

,
(14)

where ς is the arbitrary parameter, and pi is the probability of
the event that an edge exists after the i-th peeling-off operation.

Furthermore, to derive the expression of pi , we define the
edge degree distribution in the ensemble as

λ(α) =
∑∞
i=1 λiα

i−1,
ρ(α) =

∑∞
i=1 ρiα

i−1,
(15)

where λi and ρi are the probability that the edge connected
to the left (resp. right) node with degree i. For the proposed
‘beams-and-detections procedure, λ(α) = αd−1. Furthermore,
considering that the degree of a right node follows the bino-
mial distribution B(1/ηK,K) [10], we have

ρi = iηP (a right node has edge degree i),

≈ (1/η)
i−1

e−1/η

(i− 1)!
.

(16)

Thus, the edge degree distribution polynomial ρ(α) is given
by

ρ(α) = e(−(1−α)/η), (17)

Then, under the cycle-free assumption, the probability pi in
(14) for the ensemble <K(F,m) can be expressed as

pi+1 = (1− e−
pi
η )d−1, (18)

where p1=1, and the choice of η is given to guarantee pi+1 <
pi e.g.., see Table I.
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According to (14), we can draw the conclusion that with
high probability, the proposed peeling-off decoder captures all
but an small fraction of the variable nodes. However, in a real
application scenario, we need to ensure the recovery of all the
variable nodes. Therefore, based on the above conclusions, we
next study how to complete the decoding work process.

Without loss of generality, we consider a set of left non-
zero nodes P in the random graph <K(F,m), and the cor-
responding right neighborhood Ni(P ) of the i-th subset of
the right nodes. Note that the proposed peeling-off decoder
fails when there are no single-ton nodes in the Ni(P ) for
i = 1, · · · d. Furthermore, a sufficient condition for the above
hypothesis is that the average degree of all the nodes in the
neighborhood of P (i.e. |Ni(P )| for all the i) is less than 2,
such as |Ni(P )| > |P | /2. Specifically, if the average degree of
the right nodes is less than 2, the single-ton must occur. Then,
considering that fi = ηK +O(1), we will discuss the proba-
bility of the opposite event===, i.e., max{|Ni(P )|}di=1 ≤ |P | /2
as follows:

Pr(ℵℵℵ) <

d∏
i=1

(
|P |
2fi

)|P |(
fi
|P | /2

)

≈
(
|P |

2ηK

)(
ηK
|P | /2

)d
<

(
|P |

2ηK

)(
2ηKe

|P |

)d|P |/2
=

(
|P | e
2ηK

)d|P |/2
.

(19)

Furthermore, by utilizing a union bound, the probability of
event ℵℵℵs of some set of the variable nodes following the rules,
i.e. max{|Ni(P )|}di=1 ≤ |P | /2, we obtain

Pr(ℵℵℵs) < Pr(ℵℵℵ)

(
K

|P |

)
<

(
|P | e
2ηK

)d|P |/2(
Ke

|P |

)|P |
<

[(
|P |
ηK

)d−2(e
2

)d( e
η

)2
]|P |/2

(a)
< O

(
(|P | /m)

|P |/2
)

(20)

where (a) comes from the fact that d ≥ 3 and m = O(ηK).
Then, according to |P | = O(K), we obtain

Pr(ℵℵℵs) < O(1/m), (21)

Finally, based on (14), (18) and (21), Theorem 1 can be
proved.

APPENDIX B
CRLB FOR MASSIVE-MIMO TIME-VARYING CHANNELS

For each bin detection, the received data is utilized twice,
once for amplitude information and once for complex infor-
mation, it can thus be rewritten as

γγγ =

L∑
l=1

al
−→ααα BS(θl) ◦ −→αααMS(ϕl)◦βββl + N, (22)

where −→α BS(θl) = FMSαBS(θl),−→αMS(ϕl) = FBSα
†
MS(ϕl),

βl = [ej2πf
c
l (s−1)PTs · · · ej2πfcl sPTs ]T , s denotes the number

of bin. Thus, all the unknown time-varying channel parameters
{al, θl, ϕl, f cl } are contained in the vector γγγ. Consequently,
similar to [12], [13], the CRLB of the channel parameter is
given as follows:

CRLB(µµµ) = Ω−1(µµµ)

= E−1{(∂f(µµµ)

∂µµµ
)H(

∂f(µµµ)

∂µµµ
)}

(23)

where µµµ = {αααTθθθTϕϕϕT (f c)T } is the parameter vector, Ω(µµµ)
denotes the complex Fisher information matrix (FIM), and
f(µµµ) is the log-likehood function.
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