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Construction of 1-Bit Transmit Signal Vectors for
Downlink MU-MISO Systems: QAM constellations
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Abstract—In this paper, we investigate the construction of a
transmit signal for a base station with the massive number of
antenna arrays under the cost-effective 1-bit digital-to-analog
converters. Due to the coarse nonlinear property, conventional
precoding methods could not yield an attractive performance
with a severe error-floor problem. Moreover, finding an optimal
transmit signal is computationally implausible because of its
combinatorial nature. Thus, it is still an open problem to
construct a 1-bit transmit signal efficiently. As an extension of
our earlier work, we propose an efficient method to construct
an 1-bit transmit-signal under quadrature-amplitude-modulation
constellations. Toward this, we first derive the so-called feasibility
condition which ensures that every user’s noiseless observation
belongs to a desired decision region, and then transform it as
linear constraints. Taking into account the robustness to an
additive noise, the proposed construction method is formulated
as a well-defined mixed-integer-linear-programming problem.
Based on this, we develop a low-complexity algorithm to solve it
(equivalently, to generate a 1-bit transmit signal). Via simulations,
we verify the superiority of the proposed method in terms of a
computational complexity and detection performance.

Index Terms—Massive MISO, 1-bit DAC, Downlink, precoding,
Linear programming.

I. INTRODUCTION

In recent years, massive multiple-input single-output
(MISO) has been actively investigated for fifth-generation
(5G) and future wireless communication systems due to its
significant gain in spectral efficiency [1]. Because of the large
number of antennas, whereas, dealing with a high hardware
cost and considerable power consumption become one of the
key challenges. In massive MISO systems, the use of cheap
and efficient building block, e.g., digital-to-analog converters
(DACs) or analog-to-digital converters (ADCs), has attracted
the most interest as a promising low-power solution [2],
[3]. Considering the same clock frequency and resolution,
it is known that DACs have lower power consumption than
ADCs, therefore research on low-resolution DACs are of-
ten ignored for this reason. However, in downlink multiuser
massive MISO systems, the number of transmit antenna at
base station (BS) is much larger than the number of re-
ceive antennas. In this context, we should consider DACs’
power consumption, cost, and computation complexity. In
downlink systems, conventional precoding method such as
zero-forcing (ZF) and regularized ZF (RZF) achieve almost
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optimal performance effectively [4]. These linear precoding
schemes have a low complexity and widely used in wireless
communication with high resolution DACs (e.g., 12 bits).
But in reality, massive MISO must be built with low cost
DACs. This is because power consumption due to quantiza-
tion increases exponentially as resolution increases. Various
non-linear precoding methods with phase-shift-keying (PSK)
constellations have been studied actively in the system, which
can achieve good performances with low-complexities [5]–
[8]. However, the above methods cannot be straightforwardly
applied to more practical quadrature-amplitude-modulation
(QAM) constellations since in QAM constellations, the deci-
sion regions are bounded. Recently, various precoding methods
for QAM constellations have been investigated in [9]–[13].
Leveraging the fact that 16-QAM symbols can be obtained as
the superposition of two QPSK symbols, the authors in [9]
formulated an optimization problem using gradient projection
to obtain 1-bit transmit vectors, and stored them in a look-up-
table per coherent channel. In [10], non-linear 1-bit precoding
methods for massive MIMO with QAM constellations have
been proposed, which are enabled by semi-definite relaxation
and `∞-norm relaxation. However, these methods do not
provide an elegant complexity-performance trade-off. Thus,
it is necessary to investigate a precoding method with an
attractive performance and low-complexity under QAM con-
stellations, which is the major subject of this paper. Some
precoding methods with 1-bit DACs follow the minimum mean
square error (MMSE) design criterion. In [7], C1PO method is
proposed from using bi-convex relaxation. Due to complexity
of matrix inversion at C1PO, C2PO has been proposed as a
low-complexity algorithm variant. The paper shows attractive
error-rate performance with efficient complexity at low-order
modulation. In [14], The MMSE-based one-bit precoding,
MMSE-ERP is developed with enhanced receive processing
capability at the mobile stations. the algorithm is based on
a combination of the alternating minimization method using
a projected gradient method, and equilibrium constraint. the
performance of MMSE-ERP is significant. Also, [15] provides
IDE algorithm that exploits an alternating direction method
of multipliers (ADMM) framework. Furthermore, complex-
ity efficient algorithm called as a IDE2. Both of IDE and
IDE2 achieve excellent error-rate performance. constructive
interference (CI) design criterion is similar to our one. [6],
[16], [17] introduce many symbol-level precoding methods
that have CI design critrion. Symbol scaling is the efficient
algorithm that achieve good performance with PSK. In [16],
[17], the optimization problems are defined with both of
equality constraints and inequality constraints. Based on the
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problems, A partial branch and bound(P-BB) and an ordered
partial sequential update(OPSU) achieve near-optimal per-
formance and significant performance, respectively. In [13],
maximum safety margin (MSM) design criterion exploiting the
constructive interference. Also, MSM algorithm and analysis
of the algorithm are provided for constant envelope precoding
with PSK and QAM.

In this paper, we present a novel direction to construct
a 1-bit transmit signal vector for a downlink MU-MISO
system with 1-bit DACs. Toward this, our contributions are
summarized as follows:
• We first derive the so-called feasibility condition which

ensures that each user’s noiseless observation is placed
in a desired decision region. That is, if a transmit signal
is constructed to satisfy the feasibility condition, each
user can recover a desired signal successfully in a higher
signal-to-noise ratio (SNR).

• Incorporating the robustness to an additive noise into the
feasibility condition, we show that our problem to con-
struct a 1-bit transmit signal vector can be formulated as a
mixed integer linear programming (MILP). This problem
can be optimally solved via a linear programming (LP)
relaxation and branch-and-bound.

• Furthermore, we propose a low-complexity algorithm to
solve the MILP, by introducing a novel greedy algorithm,
which can almost achieve the optimal performance with
much lower computational complexity.

• Via simulation results, we demonstrate that the proposed
method can outperform the state-of-the-art methods. Fur-
thermore, the complexity comparisons of the proposed
and existing methods demonstrate the potential of the
proposed direction and algorithm.

This paper is organized as follows. In Section II, we provide
useful notations and definitions, and describe a system model.
In Section III, we propose an efficient method to construct
a transmit signal vector for downlink MU-MISO systems
with 1-bit DACs. Moreover, the low complexity methods are
proposed in Section IV. Section V provides simulation results.
Conclusions are provided in VI.

II. PRELIMINARIES

In this section, we provide useful notations used throughout
the paper, and then describe the system model.

A. Notation

The lowercase and uppercase bold letters represent column
vectors and matrices, respectively. The symbol (·)T denotes the
transpose of a vector or a matrix. For any vector x, xi repre-
sents the i-th component of x. Let [a : b]

∆
= {a, a+ 1, . . . , b}

for any integer a and b with a < b. The notation of card(U)
denotes the number of elements of a finite set U . A rank
of a matrix A is represented as rank(A). Re(a) and Im(a)
represent the real and complex parts of a complex vector
a ∈ C, respectively. For any x ∈ C, we let

g(x) = [Re(x), Im(x)]T, (1)

and the inverse mapping of g is denoted as g−1. Also, g and
g−1 are the component-wise operations, i.e., g([x1, x2]T) =
[Re(x1), Im(x1),Re(x2), Im(x2)]T. For a complex-value x,
its real-valued matrix expansion φ(x) is defined as

φ(x) =

[
Re(x)−Im(x)
Im(x) Re(x)

]
. (2)

As an extension into a vector, the operation of φ is applied in
an element-wise manner as

φ([x1, x2]T) = [φ(x1)T, φ(x2)T]T. (3)

1̄n denotes the length-n all-one vector, and ⊗ indicates
Kronecker product operator.

B. System Model

We consider a downlink MU-MISO system where BS
equipped with Nt � K transmits antennas serves K users
with a single antenna. As a natural extension of our earlier
work in [5] which focuses on PSK constellations only, this
paper considers 4n-QAM with n ≥ 2. Let C denote the
set of constellation points of 4n-QAM. Also, letting x =
[x1, . . . , xNt ]

T be a transmit vector at the BS, the received
signal vector x ∈ CK at the K users is given as

y =
√
ρHx + z, (4)

where H ∈ CK×Nt denotes the frequency-flat Rayleigh fading
channel, each of which component follows a complex Gaus-
sian distribution with zero mean and unit variance, and z ∈
CK×1 denotes the additive Gaussian noise vector whose each
element are distributed as complex Gaussian random variables
with zero mean and unit variance, i.e., zi ∼ CN (0, σ2 = 1).
The SNR is defined as SNR = ρ/σ2, where ρ denotes the per-
antenna power constraint. Throughout the paper, it is assumed
that the channel matrix H is perfectly known at the BS.

Given a message vector s ∈ CK , BS needs to construct a
transmit vector x such that each user k can recover the desired
message sk successfully. Toward this, our goal is to construct
such a precoding function P:

x = P(H, s), (5)

which produces a transmit vector x from the channel matrix
H and the message vector s. Focusing on the impact of 1-
bit DACs on the downlink precoding, we assume that BS is
equipped with 1-bit DACs while all K users are equipped with
infinite-resolution ADCs. To isolate the performance impact
of 1-bit DACs, each component xi of the transmit vector x is
restricted as

Re(xi) and Im(xi) ∈ {−1, 1}. (6)

Since this restriction causes a severe non-linearity, conven-
tional precoding methods, developed by exploiting the linear-
ity, cannot ensure an attractive performance. The objective of
this paper is to construct a precoding function P(H, s) with a
manageable complexity and suitable for the considered non-
linear MISO channels.
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III. THE PROPOSED TRANSMIT-SIGNAL VECTORS

We formulate an optimization problem to construct a
transmit-vector x under 4n-QAM. Especially, this problem can
be represented as a manageable MILP. We remark that our
earlier work on PSK [5] cannot be employed as the decision
regions of 4n-QAM because a QAM constellation is bounded
(see Fig. 1). For the ease of exploration, an equivalent real-
valued expression is used as follows:

ỹ =
√
ρH̃x̃ + z̃, (7)

where x̃ = g(x), x̃ = g(x), z̃ = g(z), and H̃ = φ(H) ∈
R2K×2Nt denotes the real-value expansion matrix of H.

Before explaining the main result, we provide the useful
definitions which are used throughout the paper.

Definition 1: (Decision region) For any constellation point
s ∈ C, the decision region of s is defined as

R(s) ,

{
y ∈ C : |y − s| ≤ min

c∈C:c 6=s
|y − c|

}
. (8)

This region means that a received signal y ∈ R(s) is detected
as s. In addition the real-valued decision region is given as

R̃(s) = g (R(s)) . (9)

�

Definition 2: (Base region) A base region B̃i ⊆ R2,∀i ∈
[0 : 3], is defined as

B̃i , {α1
im

1
i + α2

im
2
i : α1

i , α
2
i > 0}, (10)

where m`
i represents a basis vector with

m`
i =

{
g
(√

2 cos(π4 (1 + 2i))
)

if ` = 1

g
(
j
√

2 sin(π4 (1 + 2i))
)

if ` = 2.
(11)

�

Definition 3: (Partial matrix) A partial matrix AU ∈
Rm×card(U) is defined as

AU , [(AT)u1 , (A
T)u2 , . . . , (A

T)ucard(U)
]T, (12)

where A ∈ Rm×n, U , {u1, u2, . . . , ucard(U)} ⊆ [1 : n] and
(AT)k denotes the k-th row of AT.

�

Definition 4: (Partial vector) A partial vector xU ∈
Rcard(U)×1 is defined as

xU , [xu1
, xu2

, . . . , xucard(U)]
T, (13)

where x ∈ Rn×1, U , {u1, u2, . . . , ucard(U)} ⊆ [1 : n].

In the sequel, the decision region in Definition 1 will
be represented by the intersections of the n base regions
in Definition 2 with proper shift values. This representation
makes it easier to formulate an optimization problem. First of
all, we need to decide the size of bounded decision regions,
i.e., the parameter τ in Fig. 1 should be determined. Note
that 2τ = dmin denotes the minimum Euclidean distance of
the given constellation points. In PSK, τ is always infinite
regardless of a channel matrix, whereas in 4n-QAM, it should
be well-optimized. Specifically, τ should be chosen as large

R(s(",$)$ )

𝑠(",$)$

𝜏 3𝜏

𝜏

3𝜏
𝑠(",")$

𝑑!"#

𝐵!
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&

𝑚$
$

Fig. 1. Description of the decision regions for 42-QAM with adaptive τ .

as possible to ensure a reliable performance, provided that a
noiseless received signal belongs to the corresponding decision
regions at all the K users.

From now on, we will explain how to construct a transmit-
signal vector x for a decision-size τ . Throughout the paper, it
is assumed that all K users have the identical decision size τ
for the practicability of an optimization. Given 4n-QAM, each
symbol is indexed by a length-n quaternary vector (i1, ..., in)
with ij ∈ [0 : 3], i.e.,

C =
{
sn(0,...,0), s

n
(0,...,1), . . . , s

n
(3,...,3)

}
. (14)

Each constellation point can be represented as a linear com-
bination of the n basis symbols ci’s such as

sn(i1,...,in) , τ
n∑
l=1

2n−lcil = τs′
n
(i1,...,in). (15)

Here, a normalized constellation point and the basis symbols
are defined as

s′
n
(i1,...,in) ,

n∑
l=1

2n−lcil , (16)

where ci’s, four fundamental constellation points are given as

ci ,
√

2
{

cos
(π

4
(1 + 2i)

)
+ j sin

(π
4

(1 + 2i)
)}

, (17)

for i ∈ [0 : 3]. For the ease of expression, we represent
the constellation C and the corresponding decision regions
R(sn(i1,...,in)) in the corresponding real-valued forms:

C̃ =
{
g(sn(0,...,0)), g(sn(0,...,1)), . . . , g(sn(3,...,3))

}
, (18)

and
R̃
(
sn(i1,...,in)

)
= g

(
R
(
sn(i1,...,in)

))
. (19)

A transmit vector x should ensure that a noiseless received
signal at the k-th user (i.e., rk = hTk x) should be placed in the
corresponding decision regions for all users k ∈ [1 : K]. This
necessity condition implies that x should satisfy the following
condition:

g(rk) ∈ R̃
(
sn(µk,1,...,µk,n)

)
, k ∈ [1 : K], (20)
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for k ∈ [1 : K], where rk = hTk x denotes a noiseless received
signal (i.e., yk = hTk x + zk).

Feasibility condition: The condition in (20) can be rewritten
in a way that the optimization problem can be interpreted as an
LP problem. The decision region in (20) can be expressed as
the intersections of the n shifted base regions in Definition 2:

R̃
(
sn(i1,...,in)

)
, B̃i1

n⋂
l=2

{
B̃il + 2n−(l−1)g

(
sl−1

(i1,...,il−1)

)}
,

(21)

where the shifted base region with a bias c is defined as

B̃i + c , {α1
im

1
i + α2

im
2
i + c : α1

i , α
2
i > 0}. (22)

Then, the condition in (20) holds if g(rk) can be represented
by the following n linear equations with some positive coef-
ficients, i.e.,

g(rk) = α1
k,1m

1
µk,1

+ α2
k,1m

2
µk,1

+ 2ng(0) (23)

= α1
k,2m

1
µk,2

+ α2
k,2m

2
µk,2

+ 2n−1g(s1
(µk,1))

...

= α1
k,nm1

µk,n
+ α2

k,nm2
µk,n

+ 21g(sn−1
(µk,1,...,µk,n−1)),

for some α1
k,1, α

2
k,1, . . . , α

1
k,n, α

2
k,n ≥ 0. The condition in (23)

is called a feasibility condition as it can guarantee that rk ∈
R
(
sn(µk,1,...,µk,n)

)
for k ∈ [1 : K]. In other words, if this

condition is satisfied, all K users can reliably detect the desired
messages in higher SNRs.

Example 1: Assuming 42-QAM, we explain how to obtain
the feasibility condition in (21). Consider the decision region
R(s2

(0,2)). From Fig. 1, the decision region is represented by
the intersection of the two base regions B0 (i.e., the infinite
region with blue basis in Fig. 1) and B2 +s1

(0) (i.e., the infinite
region with red basis in Fig. 1). Thus, the decision region (i.e.,
the gray region in Fig. 1) is represented as

R
(
s2

(0,2)

)
,
{
B0 + 22g(0)

}
∩
{
B2 + 21s1

(0)

}
. (24)

Also, from Definition 2, the above condition can be repre-
sented by the following two linear equations:

g(rk) =α1
k,1m

1
0 + α2

k,1m
2
0 + 22g(0),

=α1
k,2m

1
2 + α2

k,2m
2
2 + 21g

(
s1

(0)

)
, (25)

for some positive coefficients α1
k,1, α

2
k,1, α

1
k,2, α

2
k,2 > 0. This

is equivalent to the condition in (23). In the same way, we can
verify the feasibility condition in (21). �

We are now ready to derive MILP problem which can
generate a good transmit vector x under 1-bit DAC constraints.
We first represent the feasibility condition in a matrix form.
Define the n copies of the channel vector hk as

Hk ∆
= 1̄n ⊗ hk = [hT

k , . . . ,h
T
k︸ ︷︷ ︸

n

]T, (26)

where hk denotes the k-th row of H. Also, the corresponding

real-valued expression is denoted as

H̃k = φ(Hk). (27)

Accordingly, the n-extended received vector at k-th user is
written as

rk , g(Hkx)

= H̃kx̃ = 1̄n ⊗ g(rk). (28)

We next express the right-hand side of (23), i.e., linear
constraints, in a matrix form. From Definition 2, we let:

Mi , [m1
i m2

i ] =

[
Re(ci) 0

0 Im(ci)

]
=

[√
2 cos

(
π
4 (1 + 2i)

)
0

0
√

2 sin
(
π
4 (1 + 2i)

)] .
(29)

We notice that Mi is a symmetric and orthogonal matrix as

MiMi =

[
cos
(
π
2 (1 + 2i)

)
+ 1 0

0 − cos
(
π
2 (1 + 2i)

)
+ 1

]
= I.

(30)

Since the decision region of a constellation point 4n-QAM is
formed as the conjunction of n shifted base regions, we need
to establish a tightly packed format that can cope with both
base regions and shifts (biases, equivalently). The former is
addressed by the basis matrix Mµk and coefficient vector αk,
which are respectively written as

Mµk , diag(Mµk,1
, . . . ,Mµk,n

) (31)

αk , [α1
k,1, α

2
k,1, . . . , α

1
k,n, α

2
k,n]T. (32)

Lastly, the whole series of the biases are formed as the
normalized bias vector b with τ , which is defined from (15)
as

bµk , g
(

[2n · 0, 2n−1 · s′1(µk,1), . . . , 2
1 · s′n−1

(µk,1,...,µk,n−1)]
T
)

=
1

τ
g
(

[2n · 0, 2n−1 · s1
(µk,1), . . . , 2

1 · sn−1
(µk,1,...,µk,n−1)]

T
)
.

(33)

From (31)-(33), the matrix form of k-th user’s feasibility
conditions (23) is given as

rk = Mµkαk + τbµk . (34)

Leveraging the expression designed for each user, we construct
the cascaded matrix form of feasibility conditions on all K
users as

r̄ = H̄x̃ = M̄ᾱ + τ b̄, (35)

where

M̄ , diag(Mµ1 , . . . ,MµK ), H̄ , [(H̃1)T, . . . , (H̃K)T]T

r̄ , [(r1)T, . . . , (rK)T]T, b̄ , [(bµ1)T, . . . , (bµK )T]T

ᾱ , [(α1)T, . . . , (αK)T]T.

Thus, the feasibility condition in (35) is rewritten as

ᾱ = M̄H̄︸︷︷︸
,Λ

x̃− τ M̄b̄︸︷︷︸
,Λb

, (36)
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Fig. 2. The normalized noiseless received signals of 42-QAM.

using the fact that M̄−1 = M̄ from (30). We remark that
Λ ∈ R2nK×2Nt and Λb ∈ R2nK×1 are fully determined by
the channel matrix H̄ and users’ messages {µk : k ∈ [1 : K]}.
Robustness: A feasible transmit vector can provide an at-
tractive performance in higher SNR regimes. However, the
robustness to an additive Gaussian noise cannot be guaranteed.
To enhance the robustness, one reasonable way is to make
a noiseless received signal to be placed in the center of the
decision region. Namely, we aim at moving away the noiseless
signal from the boundaries of the decision areas. By taking this
goal into account, we formulate the following optimization
problem:

P1 : max
x̃,τ

min{αik,j : i = 1, 2, j ∈ [1 : n], k ∈ [1 : K]}

(37)
s.t. ᾱ = Λx̃− τΛb,

α1
k,j , α

2
k,j > 0, j ∈ [1 : n], k ∈ [1 : K],

x̃ ∈ {−1, 1}2Nt .

From now on, we explain how to solve the problem P1

efficiently. According to dealing with the decision parameter τ ,
we consider the two different scenarios: i) a fixed τ irrespective
of a channel matrix H; ii) a channel-dependent τ . Clearly, the
second scenario requires a more overhead since in this case,
BS needs to transmit the τ to the K users more frequently. For
the first scenario, we employ the asymptotic result provided
in [11], where it is fully determined as a function of Nt, n
and K:

τ
∆
=

√
2/π

6

√
2ρNt

2

f̃(K,n)
, (38)

where

f̃(K,n) = K
2n + 1

3(2n − 1)
+ 2

√
K

(2n + 1)(22n − 4)

22.5(2n − 1)3
. (39)

Leveraging the fixed τ in (38), P1 can be formulated as MILP:

P2 : argmax
x̃,t

t

s.t. Λix̃− τΛb,i ≥ t, i ∈ [1 : 2nK],

t > 0,

x̃ ∈ {−1, 1}2Nt , (40)

where Λi and Λb,i denote the i-th row of Λ and Λb,
respectively. For the second scenario, τ is set by τ

∆
= t. In

general, this value can be changed according to a channel
matrix H. This choice is motivated by the fact that t is the
lower bound of the coefficients ᾱ, and due to the normalized
M̄ and b̄, the coefficients directly signify how far away it
is from a detection boundary. Accordingly, the optimization
problem to find the decision parameter τ and transmit vector
x simultaneously is defined as

P3 : argmax
x̃,t

t

s.t.
1

1 + Λb,i
Λix̃ ≥ t, i ∈ [1 : 2nK],

t > 0,

x̃ ∈ {−1, 1}2Nt . (41)

The proposed MILP problems in P2 and P3 can be solved
via the well-known branch-and-bound (B&B) method like in
[8], when implemented correctly, should identify the optimal
precoding vector in its criterion. Furthermore, the partial B&B
like in [16] is, as the title suggest, a nearly optimal method.
However, its computational complexity is quite expensive for a
realistic implementation [8]. In the following section, we will
present a low-complexity method to solve the optimization
problems in P2 and P3 efficiently.

Remark 1: Fig. 2 verifies the proposed approach, where
104 normalized noiseless signals, i.e., Hx, are plotted with
Nt = 8, K = 2, and n = 2. The blue points depict the
noiseless received signals when ZF precoding in [4] is used
with the assumption of infinite resolution. In contrast, the red
points show the noiseless received signals when the proposed
1-bit transmit vectors obtained from the solutions of P2 are
used. Fig. 2 clearly shows that the red points can provide more
robustness than the blue points even with the low-resolution
data converters. �

IV. LOW-COMPLEXITY PRECODING METHODS

In this section, we present an efficient algorithms to solve
MILP problems in P2 and P3. We first solve the LP problem
by relaxing the integer constraint in P3 as the bounded
interval:

P4 : argmax
x̃,t

t

s.t.
1

1 + Λb,i
Λix̃ ≥ t, i ∈ [1 : 2nK],

t > 0,

− 1 ≤ x̃j ≤ 1, j ∈ [1 : 2Nt]. (42)
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Algorithm 1 Greedy Algorithm
Input: x̃LP ∈ R2Nt×1, Λ ∈ R2nK×2Nt , Λb ∈ R2nK×1 and
τ ∈ R+.
Initialization: x̃ = x̃LP (obtained by either P4 or P5).

for i = 1 : 2Nt do
for j ∈ {−1, 1} do

x̃i = j and ᾱ(j) = Λx̃− τΛb

end for
Update x̃i ← argmaxj∈{−1,1}{min(ᾱ(j))}

end for
Output: x̃ ∈ R2Nt×1

Algorithm 2 Partial Greedy Algorithm
Input: x̃LP ∈ R2Nt×1, Λ ∈ R2nK×2Nt , Λb ∈ R2nK×1, τ ∈
R+, O ⊆ [1 : 2Nt], Q ⊆ [1 : 2Nt].
Initialization: x̃ = x̃LP (obtained by either P4 or P5),
Λk = τΛb −ΛOx̃O.

for i = 1 : card(Q) do
for j ∈ {−1, 1} do

x̃Qi
= j and ᾱ(j) = ΛQx̃Q −Λk

end for
Update x̃Qi

← argmaxj∈{−1,1}{min(ᾱ(j))}
end for
Output: x̃ ∈ R2Nt×1

Similarly, P2 can reformed as the following LP problem with
relaxed linear constraint:

P5 : argmax
x̃,t

t

s.t. Λix̃− τΛb,i ≥ t, i ∈ [1 : 2nK],

t > 0,

− 1 ≤ x̃j ≤ 1, j ∈ [1 : 2Nt], (43)

where τ is given in (38).
The above problems can be efficiently solved via simplex

method [18], and the corresponding relaxed LP solutions are
denoted as x̃LP. We then refine the solution of P4 or P5

via a greedy algorithm (see Algorithm 1), so that it satisfies
the one-bit constraints. Starting from the solutions of P4 or
P5, i.e., x̃LP, the main steps behind the second stage are 1)
choosing an antenna index i; 2) testing the possible values
of the antennas, that is x̃i ∈ {−1, 1}; 3) calculating the set
of scaling coefficients when artificially changing x̃i; and 4)
finally setting x̃i = j where the substitution of j ∈ {−1, 1}
for x̃i = j insists the maximization of the minimum element
in the coefficients.

A. Greedy algorithms

x̃LP, which is the solution of P4 or P5, is obtained via
simplex method [18] instead of the interior point method [19].
The simplex method concentrates on finding out an optimal
solution that is an extreme point of constraint set of P4 or P5.
Via numerical tests, we have confirmed that the extreme points
are basic feasible solutions whose most entries are already

satisfying 1-bit constraint. A theoretical proof is non-trivial
and left for an interesting future work.

From x̃LP, the solution of LP, set O and Q are obtained
such as

O = {i : x̃i ∈ {−1, 1}, i ∈ [1 : 2Nt]} (44)
Q = {i : −1 < x̃i < 1, i ∈ [1 : 2Nt]}. (45)

To alleviate the computational complexity of the greedy algo-
rithm, a partial greedy algorithm is suggested based on x̃LP,
i.e., solution of P4 or P5. Unlike the full greedy algorithm,
the second stage of the partial greedy algorithm performs the
greedy search on the entries in Q while elements in O are
unchanged (see Algorithm 2) with Definition 3, 4. We can
diminish the size of the search space, thereby reducing the
complexity dramatically.

B. Computational complexity

We compare the proposed algorithms with the existing
methods in terms of the computational complexity measured
by the total number of real-valued multiplications. We first
evaluate the complexity of the optimal method based on an
exhaustive search that explores all possible signal candidates
x̃ ∈ {−1, 1}2Nt . Since each candidate requires 2nK · 2Nt
operations to generate the magnitude of coefficients in the
feasibility conditions in (36), the total complexity of the
exhaustive search is computed as

Xe = 4nKNt · 22Nt . (46)

We next focus on the computational complexity of the pro-
posed algorithms which consist of LP solver of P4 and its
greedy refinement. For the LP solver, we use the simplex
method in whose computational complexity of the standard
constraints of LP (i.e., Ax ≥ b, where A ∈ Rm×n,
b ∈ Rm×1,x ∈ Rn×1) is given as [19], [20]:

XLP = iLP · {(m+ 1)(n+ 1) + 2m}
= iLP · {m× n+ 3m+ n+ 1}, (47)

where iLP is the number of iterations during the simplex
method. The simplex method visit all 22Nt vertices in worst
case. Fortunately, the fact that expected complexity of the
method is polynomial is proved by [21]. Because of the
randomness of Λ and Λb, iLP varies according to the con-
straints, however, we can obtain the approximation of average
iLP ≈ α×m ,where exp (α) = log2 (2 + n

m ) [22]. Note that
the number of iterations totally depends on the constraints of
LP instead of the objective function. Overall, the complexity
of simplex method in the system is represented as

XLP = (log{log2 (2 +
n

m
)}×m)·(m×n+3m+n+1). (48)

Also, the quantized LP represents the algorithm that directly
quantizes the solution of P4 or P5 to generate 1-bit transmit
vector using sign function, i.e., xq = sign(xLP). Thus, the
corresponding complexity is the same as the one in the LP as

Xq = XLP. (49)
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Next, the complexity of the full-greedy method is obtained as

XF−greedy = 2× 2nK × 2Nt (50)

based on the fact that the algorithm needs to sequentially
search over x̃i ∈ {−1, 1},∀i ∈ [1 : 2Nt] and each iteration
requires 2nK operations. Similarly, the complexity of the
partial-greedy algorithm is represented as

XP−greedy = 2× 2nK × card(Q). (51)

Combining (48), (50), and (51), the total computational com-
plexities of the proposed methods are computed as

Xpro1 = XLP + XF−greedy

= XLP + 8nKNt, (52)
Xpro2 = XLP + XP−greedy

= XLP + 4nKcard(Q). (53)

As a benchmark method, we consider a low-complexity
method, the symbol-scaling method (SS) [6] whose compu-
tational complexity is given as

XSS = 4N2
t + 24nKNt − 2nK. (54)

Also, computation complexities of SQUID, C1PO and IDE
[7], [10], [15] are given as

XSQUID =iSQUID(2NtK +Nt)

+
1

3
K3 + 2NtK(K + 1) +K2, (55)

XC1PO = iC1PO(2NtK
2 +Nt) +

1

3
K3 +NtK

2, (56)

XIDE = iIDE(NtK +
4

3
K3 + 5NtK + 3Nt +K)

+NtK
2, (57)

where ix denotes the number of iterations during the x
algorithms, respectively. For simulation and TABLE I, we set
iSQUID = 100, iC1PO = 24, iIDE = 100, which is the setting
for each paper provided [7], [10], [15].

The P-BB and OPSU algorithm are proposed for QAM
constellation with low complexity in [16]. Recall that the full
B&B has a prohibitive complexity in real equipment [8]. The
P-BB also is based on x̃LP and corresponding O,Q. In detail,
P-BB fix entries of x̃LP, which satisfy x̃i ∈ x̃LP, i ∈ O, but
only reconstruct the rest entries of x̃LP(i.e., x̃i ∈ x̃LP, i ∈ Q)
based on B&B. Moreover, the P-BB algorithm significantly
reduces the complexity compared to F-BB. Unfortunately, in
the worst case, it needs to search all subset {−1, 1}card(Q),
causing high complexity with many users. The OPSU algo-
rithm is essentially a greedy algorithm based on B&B. The
complexity of P-BB (XP−BB) cannot be specific due to B&B
search tree by case. It’s totally natural that the computation
complexity of OPSU (XOPSU) is even lower than XP−BB [16].
The complexity of OPSU is represented as

XOPSU = XLP + 2(2K + 2K)card(Q) (58)
= XLP + 8Kcard(Q). (59)

In nature, we have:

XP−BB � XOPSU. (60)

The complexity analysis in the TABLE I suppose the
assumptions such as a single alternation stage, the cardinality
of partial set, and the number of iterations of LP. Moreover,
pivoting of the simplex method depends on the rank(A), which
is constraint matrix of standard LP form. From Lemma 1 [16],
the rank(Λ) equals rank of LP constraints for OPSU and P-
BB as 2K. Therefore, in real, there is not much difference
between the complexity of OPSU and complexity of our
proposed methods. Therefore, for the realistic comparison, we
demonstrate the run-time simulation in Figs. 7 and 8.

Lemma 1: rank(Λ) = 2K with flat-fading Rayleigh fading
channel H with probability 1.

proof : See Appendix A.

V. SIMULATION RESULTS

In this section, we verify the superiority of the proposed
methods by comparing the symbol-error-rate (SER) perfor-
mances of existing methods. Simulations include the following
methods:
• Zero forcing (ZF): The conventional ZF method for

unquantized MU-MIMO systems, which is used as the
lower-bound of the 1-bit quantized methods.

• Quantized zero forcing (QZF): The direct 1-bit quanti-
zation of ZF.

• Symbol scaling (SS): The low complexity method pro-
posed in [6].

• Quantized LP (QLP): The direct 1-bit quantization of the
solution from P4 in Figs. 5, 6 and P5 in Figs. 3, 4.

• Partial branch and bound (P-BB): The method for QAM
constellations proposed in [16].

• Ordered partial sequential update (OPSU): The ordered
greedy method based on B&B proposed in [16].

• Squared-infinity norm Douglas-Rachford splitting
(SQUID): The well-known algorithm that have excellent
performance in [10].

• Biconvex 1-bit precoding (C1PO, C2PO): The low com-
plexity algorithms for any constellations in [7].

• Iterative discrete estimation (IDE): The iteration algo-
rithm based on ADMM in [15].

• ADMM-Leo (ADMM-Leo): The efficient algorithm
based on ADMM in [23].

• MSM method (MSM): The constant envelope precoding
for MSM design criterion in [13].

• MMSE with enhanced receive processing (MMSE-ERP):
The MMSE based precoding using alternating minimiza-
tion in [14].

• Full-greedy (F-greedy): The proposed method 1, full
greedy algorithm based LP from Algorithm 1.

• Partial-greedy (P-greedy): The proposed method 2, par-
tial greedy algorithm based LP from Algorithm 2.

Recall that SNR is defined as per-antenna signal-to-noise
ratio, i.e., ρ/σ2. In addition, we evaluate the computation
complexities based on the analyses in Section IV-B. For
complexity of OPSU and P-greedy algorithms in TABLE I,
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TABLE I
COMPARISON OF COMPUTATION COMPLEXITIES AT SETTING OF PERFORMANCES

Precoding methods 42-QAM, Nt = 64,K = 8 43-QAM, Nt = 128,K = 8
Exhaustive search 1.4× 1042 1.4× 1081

P-BB 69481� · ≤ 1.34 · 108 263030� · ≤ 4 · 108

OPSU 69481 263030
QLP 131320 643100

F-greedy 139510 667680
P-greedy 133240 645980

SS 40928 139216
SQUID (iteration=100) 118250 236270

C1PO (iteration=24) 31915 62123
IDE (iteration=100) 757960 1446900

-10 -5 0 5 10 15 20 25 30
SNR
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100

SE
R

ZF
QZF
SS [6]
QLP
P-BB [16]
OPSU [16]
P-greedy(Prop.2)
F-greedy(Prop.1)

Fig. 3. Performance comparisons of precoding methods for the downlink MU-
MISO systems with 1-Bit DACs, where Nt=64, K=8, and 42-QAM with a
fixed τ .

We also use average card(Q) from 105 simulations, and the
average card(Q) in the setting (42-QAM, Nt = 64, K = 8) is
14.988 Also, in the setting of (43-QAM, Nt = 128, K = 8),
the average card(Q) is 14.998. TABLE I shows that the
computation complexity of proposed methods are moderate
[17].

The following two scenarios are considered according to the
overhead for information on a decision-region τ :

Scenario i) τ is chosen regardless of a channel matrix
H, i.e., τ is determined by (38). The corresponding
results are provided in Figs. 3 and 4. The x̃LP and
τ , inputs of our proposed methods (i.e., F-greedy and
P-greedy algorithms) is determined from P5.

Scenario ii) Figs. 5 and 6 adopt τ from own schemes.
In scenario ii), the solutions of P4, x̃LP and τ(

∆
= t) are

equipped at the proposed algorithms. Although we have
to transmit τ depending on channel H at given time, the
performance gain is attractive.

Fig. 3 shows the SER performance comparisons of the

-10 -5 0 5 10 15 20 25 30
SNR
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SS [6]
QLP
P-BB [16]
OPSU [16]
P-greedy(Prop.2)
F-greedy(Prop.1)

Fig. 4. Performance comparisons of precoding methods for the downlink
MU-MISO systems with 1-Bit DACs, where Nt=128, K=8, and 43-QAM
with fixed τ .

above algorithms for downlink MU-MISO systems with 1-bit
DACs where Nt = 64, K = 8, and 42-QAM. Without 1-bit
constraints, the ZF method provides an optimal performance
with infinite-resolution DACs. This can be interpreted as the
lower-bound of the above 1-bit constraint methods. Note that,
in all simulation settings, we cannot evaluate the performance
of MILP due to its unmanageable complexity. At high SNR,
we observe that all 1-bit precoding methods including the
quantized LP suffer from a severe error-floor except the
proposed methods. To overcome the error-floor, we apply the
F-greedy and P-greedy algorithms which determine the entries
of xLP such that they belong to {−1, 1} while keeping the
feasibility and robustness.

Fig. 4 shows the SER performance comparisons for the
configuration of Nt = 128, K = 8, and 43-QAM showing the
similar trend. Based on the formulation of the optimization
problem, our formulation has all candidates in the decision
region due to the expression of intersections of the n shifted
base regions. In detail, it causes that our MILP, LP problem
can have only inequality constraint without equality constraint.

Fig. 5 shows the performance comparisons of the MU-
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Fig. 5. Performance comparisons of precoding methods for the downlink
MU-MISO systems with 1-Bit DACs, where Nt=64, K=8, and 42-QAM
with adaptive τ .
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Fig. 6. Performance comparisons of precoding methods for the downlink
MU-MISO systems with 1-Bit DACs, where Nt=128, K=8, and 43-QAM
with adaptive τ .

MISO case where Nt = 64, K = 8 and 42-QAM with adaptive
τ . We observe the performances of the proposed methods are
the closest to the optimal performance, however the deviation
between the full greedy method and the partial greedy method
is trivial, which means the P4 provides near optimal τ and
the refinement of xLP over Q is sufficient. At high SNR, the
proposed methods show more performance gain over P-BB
which is the near optimal method [16], which further validates
that τ from P4 is properly chosen.

Fig. 6 also shows the same aspect of the systems, where
Nt = 128, K = 8 and 43-QAM with adaptive τ . Although we
assume that the iteration is only once in the actual algorithm
process, P-BB and OPSU find τ alternatively, whereas the pro-
posed method fix the τ from P4 at a sitting. The performances
in Figs. 5 and 6 show that τ found at once in P4 is reasonable.

Fig. 9 shows the performance of IP, solution from P3 in
small-scale MIMO. The other algorithms perform undesirable
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Fig. 7. Run-time versus the number of BS antennas for precoding methods
, where K=8, and 42-QAM with adaptive τ .
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Fig. 8. Run-time versus the number of BS antennas for QLP, OPSU, F-greedy,
P-greedy algorithms, where K=8, and 42-QAM with adaptive τ .

performance. However, the proposed methods achieve some
suitable performance and IP attains near-optimal performance.
Unfortunately, high complexity of P4 mainly caused by large-
scale antenna array prevents the simulation. The performance
loss of IP is caused by the adaptive τ . τ of IP is generally
smaller than τ of ZF with infinite resolution due to difference
of candidates by resolutions. We already provide computa-
tional complexity of many methods in IV-B. However, many
assumption of the computations are existed. For the specific
comparison, we compare run-time of the methods in same
computer setting with 104 simulations. Fig. 7 and Fig. 8 shows
the proposed methods have short run-times. In TABLE I, the
complexity of OPSU is almost half of the F-greedy. However,
in real, the complexity of LP is almost same. In addition, the
run-time of LP mainly depends on the number of users unlike
other methods. we expect to compensate the performance loss
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Fig. 9. Performance comparisons of precoding methods for the downlink
MU-MISO systems with 1-Bit DACs, where Nt=8, K=2, and 42-QAM with
adaptive τ .
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Fig. 10. Performance comparisons of precoding methods for the downlink
MU-MISO systems with 1-Bit DACs for channel estimiation error ε, where
Nt=64, K=8, and 42-QAM with adaptive τ in SNR=10.

from resolution with more BS antennas without complexity
loss.

Fig. 7 shows novelty of our algorithms in terms of the
computation complexity. The run-time of each algorithms is
the averaged over 104 simulations. Run-time of our algorithms
are attractive when having large-scale antennas arrays, i.e.,
massive MIMO systems. From performance figures and Fig. 7,
the proposed algorithms perform the same as P-BB, the
near-optimal performance. But, run-time is about 10 times
less. Furthermore, we exploit the simplex method where the
complexity almost depend on the number of users. Therefore
the run-times of the methods based on LP rarely increase. So,
we can consider the scenario that cover up the performance
loss as more antennas at BS instead of increasing power of all
transmit antennas.

We further present the robustness of our algorithms to
channel estimation errors. At BS, we assume the imperfect

CSI as
He =

√
1− εH +

√
εE, (61)

where ε ∈ [0, 1] and E ∈ CK×Nt . Therefore, ε = 0, ε ∈
(0, 1), and ε = 1 mean perfect CSI, partial CSI and a no CSI
scenario, respectively. In fig. 10, the proposed algorithms still
achieve near-optimal performance with 10 dB SNR under the
imperfect CSI.

VI. CONCLUSION

We proposed the construction of 1-bit transmit signal vector
for downlink MU-MISO systems with QAM constellations. In
this regard, we derived the linear feasibility constraints which
ensure that each user can recover the desired message suc-
cessfully and transformed them into the cascaded matrix form.
From this, we constructed mixed integer linear programming
(MILP) problem whose solution generates a 1-bit transmit
vector to satisfy the feasibility conditions and guarantee the
robustness to a noise. To address the computational complexity
of MILP, we proposed the LP-relaxed algorithm consisting
of two steps: 1) to solve the relaxed LP; 2) to refine the
LP solution to fit into the 1-bit constraint. Via simulation
results, we demonstrated that the proposed methods show
better performances with low-complexity compared with the
benchmarks. One promising future direction is to further
reduce the complexity of the proposed method without the
performance loss.

APPENDIX A
PROOF FOR LEMMA 1

W denotes the space spanned by rows of H̄. Any wT ∈ W
is represented as a linear combination of the row of H̄

wT = vTH̄, (62)

where vT is 1 × 2nK vector. M̄ is full rank because it is
diagonal matrix by (31). It has 2nK linear independent rows
which span the space of 2nK dimension. Therefore, There
exists a 1× 2nK vector uT such that

vT = uTM̄. (63)

And then, by (62), (63), wT is represented as

wT = vTH̄ = (uTM̄)H̄ = uT(M̄H̄) (64)

In detail, wT is a linear combination of the rows of M̄H̄ and
a linear combination of rows of H̄ as well. By definition of
rank,

rank(Λ) = rank(M̄H̄) = rank(H̄). (65)

H is flat-fading Rayleigh fading channel that has full rank
and real part and imaginary part of H are i.i.d.. We could
see rank(H̄) = 2K based on (26), (35) and rank(H̃) = 2K.
Overall, proof of Lemma 11 is completed as rank of Λ is 2K.
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