
ar
X

iv
:2

10
8.

00
35

4v
1

 [
ee

ss
.S

Y
]

 1
 A

ug
 2

02
1

1

UAV Trajectory Planning in Wireless Sensor

Networks for Energy Consumption Minimization by

Deep Reinforcement Learning
Botao Zhu, Ebrahim Bedeer, Member, IEEE, Ha H. Nguyen, Senior Member, IEEE,

Robert Barton, Member, IEEE, and Jerome Henry, Senior Member, IEEE

Abstract—Unmanned aerial vehicles (UAVs) have emerged as
a promising candidate solution for data collection of large-scale
wireless sensor networks (WSNs). In this paper, we investigate a
UAV-aided WSN, where cluster heads (CHs) receive data from
their member nodes, and a UAV is dispatched to collect data
from CHs along the planned trajectory. We aim to minimize
the total energy consumption of the UAV-WSN system in a
complete round of data collection. Toward this end, we formulate
the energy consumption minimization problem as a constrained
combinatorial optimization problem by jointly selecting CHs
from nodes within clusters and planning the UAV’s visiting
order to the selected CHs. The formulated energy consumption
minimization problem is NP-hard, and hence, hard to solve
optimally. In order to tackle this challenge, we propose a novel
deep reinforcement learning (DRL) technique, pointer network-
A* (Ptr-A*), which can efficiently learn from experiences the
UAV trajectory policy for minimizing the energy consumption.
The UAV’s start point and the WSN with a set of pre-determined
clusters are fed into the Ptr-A*, and the Ptr-A* outputs a group
of CHs and the visiting order to these CHs, i.e., the UAV’s
trajectory. The parameters of the Ptr-A* are trained on small-
scale clusters problem instances for faster training by using the
actor-critic algorithm in an unsupervised manner. At inference,
three search strategies are also proposed to improve the quality of
solutions. Simulation results show that the trained models based
on 20-clusters and 40-clusters have a good generalization ability
to solve the UAV’s trajectory planning problem in WSNs with
different numbers of clusters, without the need to retrain the
models. Furthermore, the results show that our proposed DRL
algorithm outperforms two baseline techniques.

Index Terms—Combinatorial optimization, deep reinforcement
learning, trajectory planning, UAV, WSN.

I. INTRODUCTION

THE use of unmanned aerial vehicles (UAVs) has re-

cently attracted a lot of attention from both the research

community and industry. UAVs have been used for a variety

of purposes [1], such as environmental monitoring, mobile

cloud computing, disaster management, security operations,

and wireless power transfer, to name a few. The popularity

and widespread applications of UAVs are due to their many

advantages, such as cost-effectiveness, having line-of-sight

B. Zhu, E. Bedeer, and H. H. Nguyen are with the Department of Electrical
and Computer Engineering, University of Saskatchewan, Saskatoon, Canada
S7N5A9. Emails: {botao.zhu, e.bedeer, ha.nguyen}@usask.ca.

R. Barton and J. Henry are with Cisco Systems Inc. Emails: {robbarto,
jerhenry}@cisco.com.

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

(LoS) links with the ground devices, mobility, and reliable

network access [2].

In order to overcome the limitations of the tradition wireless

sensor networks (WSNs), extensive research has been done on

the integration of UAVs and WSNs for long-distance mission

communications where UAVs are considered as mobile sinks

for receiving data from cluster heads (CHs), and then, they

can transmit the collected data to terrestrial BSs for further

processing. Using UAVs as mobile sinks can reduce the energy

consumption of ground nodes in WSNs when compared to

the traditional multi-hop WSNs which transmit data from each

node to the sink node over a long distance or several hops [3].

Despite the advantages, the integration of UAVs and WSNs

still grapples with many challenges. First of all, due to the

limited energy source carried by UAVs, the service range of

UAVs is constrained by the reality that they cannot travel very

long distances or fly for long periods of time. Second, battery

life of sensor nodes in WSNs is typically limited, and in many

cases it is hard to regularly replace their batteries. As a result,

frequent communication with UAVs can cause sensor nodes

to exhaust their energy rapidly. Hence, it is important to study

the energy saving problem in UAV-enabled WSNs.

A. Motivation

Prior works on the energy consumption minimization for

UAV-enabled WSNs can be classified into three categories

depending on the objectives. The first category only considers

minimizing the UAV’s energy consumption, e.g., [4], [5]. In

contrast, the second category considers only minimizing the

energy consumption of the ground devices in the UAV-aided

wireless networks, e.g., [6], [7]. In the third category, the

energy of both the UAV and the ground devices are taken into

account when minimizing the energy consumption of the UAV-

enabled system, e.g., [8], [9]. However, most of the aforemen-

tioned studies assume the UAV directly communicates with

each device of the ground wireless network. In this case, if

the UAV flies over all devices in a large-scale WSN, it would

lead to a long flight trajectory for the UAV which increase its

energy consumption. As a result, the UAV may run out of its

energy in flight or may need to recharge its battery frequently.

Motivated by the aforementioned works, in this paper we

investigate the problem of minimizing the total energy con-

sumption of the UAV and the ground devices in a clustered

WSN, which has not been well researched in prior works.

http://arxiv.org/abs/2108.00354v1

2

0 10 20 30 40 50 60 70 80 90 100

m

0

10

20

30

40

50

60

70

80

90

100
m

Fig. 1. Comparison of different UAV’s trajectories.

We assume that devices on the ground have been clustered

according to some specific criterion, e.g., based on their

geographical locations; hence, clustering techniques for WSNs

will not be discussed in this paper. In each pre-determined

cluster in our system model, one of the ground devices will

be selected as the CH, which is responsible for collecting

data from the non-CH devices in the same cluster. Hence,

the UAV only needs to visit a set of CHs for gathering data

along the planned trajectory that is determined by locations of

the ground CHs. The selection of CHs affects both the energy

consumption of the ground devices and the UAV, as shown in

the following illustrative example.

Consider the case where nodes of three clusters are de-

ployed in a given area as shown in Fig. 1. There are two

candidate solutions of potential CHs. One possible solution,

i.e., trajectory 1, selects the “center” node of each cluster as

the CH, such as cc1, cc2, cc3, and the other possible solution,

i.e., trajectory 2, selects non-center nodes as the CHs, e.g.

c1, c2, c3. The start/end location of the UAV is (0, 0). If the

UAV chooses to follow trajectory 1, the energy consumption

between CHs and their member nodes will be minimal because

the Euclidean distances between member nodes and their CHs

are minimal (on average) per cluster [10]. However, this will

lead to an increase in energy consumption of the UAV as

its flight trajectory may be longer, and hence, may not be

optimal from the start point to the end point, which can

be seen from trajectory 1 in Fig. 1. On the contrary, if the

UAV goes through trajectory 2, it will consume less energy in

flight because trajectory 2 is shorter than trajectory 1. But,

the communication energy consumption between CHs and

their member nodes will be higher in this case. From the

above simple example and discussion, it is clearly important

and relevant to study the energy-efficient UAV’s trajectory

planning in clustered WSNs in order to minimize the overall

energy consumption of the UAV and the ground network.

B. Related Works

1) UAV Trajectory Planning: Energy-efficient trajectory

planning for UAVs has recently attracted significant research

interest, and multiple solutions have been proposed for UAV-

enabled wireless networks. In general, existing solutions for

energy-efficient UAV trajectory planning can be loosely classi-

fied into two categories: non-machine learning-based methods

and machine learning-based methods. In the first category,

researchers mostly use mathematical programming or heuris-

tic algorithms to solve the trajectory optimization problem.

However, the computation time of mathematical programming

algorithms may increase exponentially as the problem size

increases, e.g., [11], [12]. Although some heuristic algorithms

are applied to design the energy-efficient path in the UAV-

enabled wireless networks, such as ant colony optimization

[13] and cuckoo search [14], they usually cannot fully adapt

to the increasing complexity of scalable wireless networks.

Regarding the machine learning-based category, deep rein-

forcement learning (DRL) and reinforcement learning (RL) are

the most common techniques in solving the UAV’s trajectory

planning. In [15], the authors propose a DRL-based method

which is composed of two deep neural networks (DNNs)

and deep deterministic policy gradient (DDPG) to maximize

the energy efficiency for a group of UAVs by jointly con-

sidering communications coverage, energy consumption, and

connectivity. In order to minimize the UAV’s transmission and

hovering energy, the authors in [16] formulate the energy-

efficient optimization problem as a Markov decision process.

Then, they use two DNNs and the actor-critic-based RL

algorithm to develop an online DRL algorithm that shows a

good performance in terms of energy savings. In [17], the

authors jointly optimize the UAV’s 3D trajectory and the

frequency band allocation of ground users by considering the

UAV’s energy consumption and the fairness of the ground

users. A DDPG-based DRL algorithm is developed to generate

the energy-efficient trajectory with fair communication service

to ground users. In [18], with the aim of designing an energy-

efficient UAV’s route for long-distance sensing tasks, the

authors propose a DRL-based framework where convolutional

neural networks (CNNs) are used for extracting features and

the deep Q-network (DQN) is utilized to make decisions.

Towards realizing green UAV-enabled Internet of Things (IoT),

the authors in [19] formulate the UAV’s path planning problem

as a dynamic decision optimization problem, which is solved

by dueling DQN. The aforementioned machine learning-based

methods show strong ability to handle complex wireless en-

vironments and effectively learn the UAV’s trajectory policy

from experiences; however, they are implemented by using

some common neural network models, such as DNNs, DQN,

and CNNs. Instead of common neural network models, in

this paper we exploit the appealing concept of sequence-to-

sequence learning that originally emerged in Natural Lan-

guage Processing to design the DRL algorithm to solve the

UAV’s path planning problem in clustered WSNs.

2) Sequence-to-Sequence Learning: Sequence-to-sequence

learning has shown great success in machine translation where

sentences are mapped to correct translations [20]. Over the last

3

several years, many neural networks based on sequence-to-

sequence models have been proposed in different applications.

For example, pointer network is one of the extensively studied

models because of its excellent ability in solving sequence

decision problems. In [21], pointer network is trained in a

supervised fashion to solve the traveling salesman problem

(TSP). The work of [22] uses a RL-based unsupervised method

to train the pointer network and obtains better results when

compared to the supervised learning in [21]. In [23], the

authors propose a structural graph embedded pointer network

to develop online vehicular routes in intelligent transportation

systems. The authors in [24] propose a modified pointer

network to solve the keyword recommendation problem in

sponsored search advertising system. In [25], a simplified

pointer network is introduced to solve Vehicle Routing Prob-

lem (VRP) in dynamic traffic environments. Different from the

above-discussed research works, we extend the state-of-the-

art pointer network-based DRL to solve the UAV’s trajectory

planning problem. Our contributions are elaborated in the next

subsection.

C. Contributions

We aim to minimize the overall UAV-WSN’s energy con-

sumption by designing an efficient UAV’s trajectory in a

clustered WSN. Since the UAV’s visiting order to the ground

CHs can be seen as a sequence decision problem, we propose

a sequence-to-sequence learning-based DRL strategy with

pointer network to deal with the challenging trajectory plan-

ning problem. The pointer network can capture the relation be-

tween a problem instance and its solution by using a sequence-

to-sequence neural network. It has been demonstrated to be

an effective method to solve some NP-hard problems, such

as TSP [22] and VRP [25]. Hence, it is expected that the

pointer network-based DRL algorithm is also promising for

solving the problem of the UAV trajectory planning for the

UAV-WSN system. The main contributions of this paper are

summarized as follows:

1) We consider a UAV-enabled energy-efficient data col-

lection framework for clustered WSNs. We formulate

an optimization problem to minimize the energy con-

sumption of the entire UAV-WSN system by jointly

designing the UAV’s trajectory and selecting CHs in pre-

determined clusters of the ground WSN.

2) We show that the UAV’s trajectory planning problem in

the clustered WSN can be seen as a sequence of deci-

sions. Hence, a sequence-to-sequence pointer network-

A* (Ptr-A*) model is proposed to solve the formulated

problem. Particularly, the pointer network is utilized to

model the visiting order of all ground clusters, and A*

algorithm [26] is used to efficiently select CHs from

clusters’ ground nodes. The UAV’s start point and all

clusters, as the input, are fed into the Ptr-A* model, and

its output is a set of CHs and the visiting order to these

CHs, i.e., the UAV’s trajectory.

3) We use a self-driven learning mechanism that only needs

the reward calculation to train the parameters of Ptr-A*

network on problem instances with small-scale clusters

for faster training.

4) Our proposed DRL method has an excellent generaliza-

tion capability with respect to the number of clusters

used for training. In other words, given a new problem

instance with any number of clusters, the trained model

can automatically generate a trajectory for the UAV to

visit clusters, without retraining the new model.

5) We perform extensive simulations to demonstrate that

the proposed DRL method outperforms other baseline

techniques when considering both the computation times

and energy consumption results.

The rest of this paper is organized as follows. Section

II presents the system model and the problem formulation.

Section III describes the proposed DRL algorithm. Section IV

provides simulation results. Finally, Section V concludes the

paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As mentioned earlier, we assume that devices on the ground

have been clustered according to some specific criterion,

e.g., based on their geographical locations; hence, clustering

techniques for the ground WSN are not discussed in this

work. In particular, we consider K clusters of sensor nodes

{G1, . . . ,GK} located in the sensing (service) area for data

collection. Each cluster contains N nodes, one of which is

the CH, represented by bk ∈ Gk, that will be selected by

our proposed algorithm. We assume that only one rotary-

wing UAV is dispatched to visit CHs to collect data from the

ground network. The UAV takes off from the start position

b0 and then back to b0 after finishing the data collection

task. The trajectory of the UAV should contain the start/end

hovering position c0 corresponding to b0, and the K target

hovering positions {c1, . . . , cK}, which are vertically above

the ground CHs. Hence, the trajectory planning problem of

the UAV can be seen as a permutation of (K + 1) hovering

positions. It is obvious that the locations of CHs determine the

flight trajectory, and hence, the energy consumption of UAV

and the ground nodes. We consider a three-dimensional (3D)

Cartesian coordinates system to define the positions of ground

nodes and the UAV. The position of the CH of the k-th cluster

is bk = (xk, yk, 0). Correspondingly, the coordinate of the

UAV’s hovering position ck can be represented by (xk, yk, H),
where H is the fixed flight height of the UAV. Similarity, the

coordinate of the n-th member node of the k-th cluster b
(n)
k is

denoted as
(

x
(n)
k , y

(n)
k , 0

)

, n = 1, . . . , N − 1, k = 1, . . . ,K ,

and b
(n)
k 6= bk.

A. Channel Model

There is a number of channel models that have been

developed for UAV communications, e.g., [27], [28]. In this

work, we consider a simple air-to-ground channel model that is

described as follows. For ground-to-air communication, there

is a certain probability that each CH bk has a LoS view towards

the UAV when it hovers at the hovering position ck. This

probability typically depends on the environment and elevation

angle, and is given by [8]

PLoS =
1

1 + η exp (−β[τ − η])
, (1)

4

where η and β are constants determined by environment, and

τ = 180
π × sin−1

(

H
dk

)

, where dk is the distance between

bk and ck. Since it is assumed that each hovering position

is directly above the corresponding CH, one has dk = H .

Obviously, the non-line-of-sight (NLoS) probability is given

by PNLoS = 1−PLoS. The average path loss between each CH

and the UAV can be expressed as [8]

P loss = PLoS (K0 + µLoS) + PNLoS (K0 + µNLoS) (2)

where µLoS and µNLoS are the mean values of the excessive

path losses in LoS and NLoS links, respectively, K0 =

10α log10

(

4πfcH
c

)

, α is the path loss exponent, c is the speed

of light, and fc is the carrier frequency. Thus, the average data

rate from each CH to the UAV can be computed as [8]

rdata = Bwidth log2

(

1 +
PCH

P lossN0

)

(3)

where Bwidth is the available bandwidth, N0 is the noise power

spectral density, and PCH is the transmit power of each CH.

B. UAV’s Energy and Trajectory Model

We assume that the UAV supports a flying-hovering mode

without considering acceleration-deceleration patterns. After

the UAV flies to the hovering position ck with a fixed speed

vUAV, it hovers there and transfers a beacon frame to wake up

the corresponding CH bk from sleep mode to active model.

Then, bk starts to collect data from its member nodes by time-

division multiple access (TDMA) and forwards the collected

data to the UAV. At each hovering position, the energy

consumption of the UAV includes two parts: communication-

related energy and hover-related energy. The hovering power

is given by [8], [29]

Phover =

√

(mtotg)
3

2πr2pnpρ
(4)

where g is the earth gravity, ρ is the air density, np is the

number of propellers, rp is the propeller radius, and finally

mtot is the mass of the UAV. Thus, the energy consumed by

the UAV at each hovering position ck is given by

Eck = Tk(Phover + Pcom)

=
Dk

rdata

(Phover + Pcom) (5)

where Tk is the total hovering time of the UAV at ck, Dk is

the amount of data that needs to be transferred from CH bk to

the UAV, and Pcom is the communication power of the UAV.

In order to simplify the analysis, we assume that the hovering

time is equal to the data transmission time from bk to the UAV.

The horizontal movement power is assumed as a linear

function of the UAV’s flight speed vUAV, which is expressed

as [8], [29]

Pmove =
Pmax − Pidle

vmax

vUAV + Pidle (6)

where vmax is the maximum speed of the UAV, Pmax and Pidle

are the hardware power levels when the UAV is moving at full

speed and when the UAV is in idle state, respectively. Because

the UAV needs to start from the start hovering location c0, goes

through all target hovering positions c1, . . . , cK , and then back

to c0, the total energy consumption of the UAV in flight is

given by [8], [29]

Eflight = Tflight (Phover + Pmove) (7)

where Tflight is the total flight time, which can be expressed as

Tflight =
1

vUAV

K
∑

i=0

K
∑

j=0
j 6=i

dci,cjLci,cj , ∀ci, cj ∈ C (8)

where C = {c0, c1, . . . , cK}, ck is determined by bk, bk ∈
Gk, and Lci,cj specifies whether the UAV travels from stop

position ci to cj , which is defined as

Lci,cj =

{

1, if the path goes from ci to cj

0, otherwise.
(9)

The quantity dci,cj is the Euclidean distance between ci and

cj , which is given by

dci,cj = ||ci − cj || = ||bi − bj ||. (10)

In order to meet the requirements of the UAV’s trajectory, we

need to consider the following constraints:

K
∑

i=0
i6=j

Lci,cj = 1, ∀ci, cj ∈ C (11)

K
∑

j=0
j 6=i

Lci,cj = 1, ∀ci, cj ∈ C (12)

∑

ci∈F

∑

cj∈F

Lci,cj ≤ |F | − 1, ∀F ⊂ C; |F | ≥ 2. (13)

The constraints (11) and (12) guarantee that there is only one

UAV path entering and leaving a given node, which means that

the UAV should visit each point in C exactly once. Constraint

(13) is the sub-trajectories elimination constraint and enforces

that no partial loop exists where F is the subset of C [32],

which means there is only one single trajectory covering all

CHs.

According to the above analysis, the total energy consump-

tion of the UAV is composed of the flying-related and the

hovering-related energy consumption, which can be written as

EUAV = Eflight +

K
∑

k=1

Eck . (14)

C. Ground Network and Energy Model

We assume that all nodes have the same computation and

transmission capabilities. In other words, all nodes are capable

of acting as a CH. Nodes are static after being deployed.

All member nodes transmit their sensing information to CHs

periodically and CHs forward the collected data to the UAV.

We also assume that the transmission energy of each node is

sufficient to send messages to its CH. In addition, the UAV

5

can simultaneously connect to at most one CH. Hence, there

is no interference among neighboring CHs.

The energy consumption in the ground network includes

two components. The first component is the communication

energy consumption between CHs and their member nodes.

The first-order radio model [30] is used to calculate the energy

consumption of the ground network. The transmission energy

is consumed by the transmitter’s circuitry and power amplifier.

If the distance between a member node and its CH is less than

a given threshold, the power amplifier uses the free space

model; otherwise, the multi-path model is used [31]. The

energy consumed to transmit an l-bit message from a member

node to its CH bk is given by [30]

Ebkn = lEelec + l
(

χεfsd
2
n,bk + (1− χ) εmpd

4
n,bk

)

(15)

where

χ =

{

1, dn,bk ≤ d0

0, dn,bk > d0
(16)

and

d0 =

√

εfs

εmp

. (17)

In (15), Eelec is the dissipated energy per bit in the circuitry,

dn,bk is the distance between the CH bk and one of its member

nodes n, n = 1, . . . , N−1, d0 is the distance threshold, εfs and

εmp represent the radio amplifier’s energy parameter of the free

space and multi-path fading models, respectively. Moreover,

the energy consumed to receive an l-bit message from member

node n by bk is given by [30]

E
(n)
bk

= lEelec. (18)

In addition, the second component of the energy consumption

of the ground network is the energy consumed by each CH bk
to complete its data transmission to the UAV. This component

can be written as

Ebk = PCHTk = PCH

(N − 1)l

rdata

(19)

where (N − 1)l is the amount of data transferred by bk to

the UAV. Hence, the total energy consumption of all nodes in

the ground network in a complete data collection task, where

member nodes transmit the sensing data to their CHs and CHs

forward data to the UAV, is

Eground =
K
∑

k=1

N−1
∑

n=1

(

Ebkn + E
(n)
bk

)

+
K
∑

k=1

Ebk . (20)

D. Problem Formulation for UAV’s Trajectory

Based on (14) and (20), the total weighted energy consump-

tion in the UAV-WSN system can be formulated as

E = ω

(

K
∑

k=1

N−1
∑

n=1

(

Ebkn + E
(n)
bk

)

+

K
∑

k=1

Ebk

)

+ (1 − ω)

(

Eflight +

K
∑

k=1

Eck

)

, 0 ≤ ω ≤ 1 (21)

where the first term corresponds to the total energy consump-

tion of the ground network, while the second term is the energy

consumption of the UAV, and ω is the weighting coefficient

that can be adjusted to achieve the trade-off between the

two terms. With the aim of minimizing the total energy

consumption of the ground network and the UAV, we jointly

find a set of CHs from the ground cluster-based WSN and

design the UAV’s visiting order to these CHs. The optimization

problem of interest is formulated as

min
{b0,b1,...,bk,...,bK}

bk∈Gk

E

(22)

s.t. (9), (11)− (13).

Obviously, the problem at hand is a constrained combinato-

rial optimization problem, which is NP-hard. Some promising

approaches have been put forward to solve such combinatorial

optimization problems, and their advantages and disadvantages

are discussed below.

1) Exact methods: Exact methods often search for the

optimal solution of the problem through systematic

enumeration, integer programming, and constraint pro-

gramming, etc. [33]. At least in theory, they can provide

the optimal solution for the optimization problem. How-

ever, such algorithms cannot be applied to combinatorial

optimization problems with large data scale because

their computation complexity becomes prohibitive.

2) Heuristics: Heuristics are higher-level problem-

independent algorithmic frameworks that provide a

set of guidelines to develop optimization algorithms

[34]. However, they generally cannot guarantee to find

globally optimal solutions.

3) RL: Q-learning, one of the RL techniques, is demon-

strated to be promising in solving NP-hard problems

[35]. Specifically, it can deal with the path decision prob-

lem when provided with sufficient state space variables.

However, if the number of ground nodes is high, Q-

learning will need more storage space for action and

state space variables [18].

As discussed before, DRL has recently shown to have

important advantages in solving combinatorial optimization

problems. A typical neural combinatorial framework is pro-

posed in [22] that uses RL to optimize a policy modeled by

the pointer network. In [25], the authors view a combinatorial

optimization problem as a sequence of decisions, and they

use a sequence-to-sequence neural network model and the RL

approach to obtain a near-optimal solution for the optimization

problem. Inspired by these promising developments, we extend

the application of sequence-to-sequence model to solve the

UAV’s trajectory planning problem described earlier.

III. DEEP REINFORCEMENT LEARNING FOR UAV

TRAJECTORY PLANNING

Because all clusters {G1, . . . ,GK} must be visited by the

UAV sequentially, we convert the visiting decisions problem

into a sequence-to-sequence prediction problem. The problem

can be simply formalized as follows. Given start position and

6

Fig. 2. Example of Ptr-A* architecture for a 3-clusters network.

all clusters, denoted by G = {b0,G1, . . . ,GK}, we want to

output a permutation of the items in G that maximizes some

measure of interest. The output sequence is denoted as T =
{π0, π1, . . . , πK}, where each πt is the index of any element

in G being placed at the t-th position of T . In fact, T is the

UAV’s visiting order to clusters in our problem. Thus, for a

given input sequence G, the probability of the output sequence

T can be factorized by a product of conditional probabilities

according to the chain rule

Pθ(T |G) =

K
∏

t=0

P (πt|π0, . . . , πt−1,G) (23)

where t is the time step, Pθ(T |G) parameterized by θ is a

stochastic policy for deciding the visiting order. The condi-

tional probability P (πt|·) models the probability of any cluster

being visited at the t-th time step according to the given G

and clusters already visited at previous time steps [36]. A

trained θ can assign high probabilities to good results and low

probabilities to bad results. The reinforcement learning can be

applied to train the optimal model policy θ∗ for producing the

optimal visiting order T ∗ with the highest probability.

A. Pointer Network-A* Architecture for UAV’s Trajectory

Planning

With the rapid development of neural network techniques,

the neural network-based frameworks have been applied to

sequence-to-sequence learning [20]. The general sequence-to-

sequence neural network [25] encodes the input sequence into

a vector that includes information of the input by a recurrent

neural network (RNN), called encoder, and decodes the vector

to the target sequence by another RNN, called decoder [21].

In this work, we employ the pointer network to model the

conditional probability P (πt|·), which has been proved to be

effective to solve the combinatorial optimization problems.

The architecture of the pointer network is similar to sequence-

to-sequence network model, but it uses attention mechanism

as a pointer to choose items of its input sequence as the

output. The proposed Ptr-A* model in this work is elaborated

as follows.

1) Encoder: The traditional RNN shows poor performance

in dealing with the problem of long-term dependencies, which

makes it difficult to be trained in practice [38]. Hence, we use

Long Short-Term Memory (LSTM) cells which are capable of

learning long-term dependencies to construct a RNN as the

encoder. Each item (a start position or a cluster) in G is con-

verted into a high D-dimensional vector space, which enables

the policy to extract useful features much more efficiently in

the transformed space [37]. Then, the embedding vectors are

fed into LSTM cells. At each encoding step, the LSTM cell

reads one embedded item and outputs a latent memory state.

Finally, the input sequence G is transformed into a sequence

of latent memory states E = {e0, . . . , eK}, each ek ∈ R
D.

In fact, the motive of the encoder network is to acquire the

representation for each element in G.

2) Decoder: We also adopt LSTM cells to construct the

RNN of the decoder network. The output {e0, . . . , eK} of the

encoder are given to the decoder network. At each decoding

step t, the LSTM cell outputs the hidden state ht ∈ R
D

that includes the knowledge of previous steps. And then,

the decoder employs the attention mechanism to output the

visiting decision πt based on ht and {e0, . . . , et}. Attention

mechanism can help the model to give different weights

to different elements of the input and extract more critical

information [39]. It tells us the relationship between each

element in the input at current step t and the output πt−1

of the last decoding step. The most relevant element with

the maximum conditional probability is selected as the access

element at decoding step t. Thus, the calculation is given by

utj =

{

ϕ tanh (W1ej +W2ht), if j /∈ {π0, . . . , πt−1}

−∞, otherwise
(24)

7

where W1, W2 ∈ R
D×D are attention matrices, ϕ ∈ R

1×D is

the attention vector.W1, W2, and ϕ are denoted collectively by

θ, which is the learnable parameter in our pointer network. In

essence, utj is the score associated with item j (ej) in position

t.
The conditional probability is calculated by a softmax

function over the remaining items (not visited in the previous

steps), as follows:

P (πt = j|π0, . . . , πt−1,G) = softmax
(

utj
)

=
exp

(

utj
)

∑

m/∈{π0,...,πt−1}
exp (utm)

, j ∈ m. (25)

The probability P (πt = j|·) represents the degree to which the

model points to item j at the decoding step t [36]. As shown

in the example in Fig. 2, the start position b0 and clusters

G1,G2,G3 are inputted into the encoder network. vgo is the

start tag of the decoder, which is a learned vector. At each

decoding step, the item of the input sequence with the highest

probability is pointed by a thicker black arrow. The output

of the 0-th decoding step points to b0 (π0), which will be

visited at this step and given as the input of the next decoding

step. Finally, we will obtain a visiting order sequence T =
{π0, π1, π2, π3} corresponding to the input sequence.

To help the reader familiarize with the attention mechanism,

a numerical example is provided in Appendix A.

3) A* search: Once the output sequence of the decoder net-

work is obtained, we can build a search graph for all clusters

according to this sequence, where each layer is composed of

nodes of one cluster. This is illustrated with an example in

Fig. 2. It is worth mentioning that the first layer is the start

position b0 and the last layer is the end position b
′

0 which

is the copy of b0. Thus, the created graph has a total of

(K+2) layers. We use the A* search algorithm, one of best

path-finding algorithms, to find the CH from each cluster to

build a path having the smallest cost (total weighted energy

consumption of the UAV-WSN system) from the start position

to the end position. In each iteration, the A* algorithm needs

to calculate the cost of the traversed path and the estimated

cost required to extend the path to the end to determine which

of its partial paths to expand into one or more longer paths

[26]. Any node m is chosen to be visited by the following

function

f(m) = g(m) + h(m) (26)

where g(m) represents the exact energy consumption of the

UAV-WSN system when the UAV moves from the start node

to a candidate node m, following the path generated to get

there, h(m) is the estimated energy consumption of the UAV

to travel from the candidate node m to the end. Then, the node

with the lowest f(m) value is selected from candidate nodes

as the next node to be traversed.

The main implementation of the A* algorithm is to maintain

two lists. The OPEN list contains those nodes that are candi-

dates for checking. The CLOSED list contains those nodes

that have been checked. The neighbor nodes of any node

located in any layer are defined as all nodes in its previous

and next layers. Also, each node keeps a pointer to its parent

node so that we can determine how it was found, which is

Algorithm 1: A* search algorithm for the trajectory

planning

Input: T

Output: Trajectory, minimum energy consumption E
1: Build a search graph by T

2: Initialize OPEN, CLOSED, and COME FROM

3: f(b0) = 0, OPEN.add(b0)
4: while OPEN is not empty do

5: Find the node q with the lowest f(q) from OPEN

6: if q = b
′

0 then

7: Construct path from b0 to b
′

0 by COME FROM

8: return Trajectory, E
9: end if

10: OPEN.remove(q)

11: CLOSED.add(q)

12: Obtain neighbor nodes of q
13: for each neighbor node m of q do

14: cost = g(q) + the energy consumption of

UAV-WSN from q to m
15: if m in OPEN and cost < g(m) then

16: OPEN.remove(m)

17: end if

18: if m in CLOSED and cost < g(m) then

19: CLOSED.remove(m)

20: end if

21: if m not in OPEN and CLOSED then

22: g(m) = cost
23: f(m) = g(m) + h(m)
24: OPEN.add(m)

25: COME FROM[m]= q //set m’s parent

26: end if

27: end for

28: end while

implemented by a map COME FROM. The pseudocode of

using the A* algorithm to find the path from the start position

to the end position is described in Algorithm 1. As shown

in the example in Fig. 2, the output of the A* algorithm is

the trajectory from b0 to b
′

0, which can ensure the minimum

energy consumption E. In addition, the CH of each cluster is

found on this trajectory, given by {b0, b3, b1, b2, b
′

0}. Finally,

the Ptr-A* model outputs the trajectory and the minimum

energy consumption E.

B. Parameters Optimization with Reinforcement Learning

In order to find a good trajectory for the UAV, we need

to obtain the optimal model parameter θ∗ that can be trained

from samples. If we adopt a supervised learning to train the

model parameter, high-quality labeled data is needed because

it decides the performance of the model. However, it is

expensive to get the high-quality labeled data in practice for

the proposed UAV’s trajectory problem. Instead, we choose the

well-known model-free policy-based RL, known as the actor-

critic algorithm [40], to train the model because it is shown

to be an appropriate paradigm for training neural networks

for combinatorial optimization [22]. The UAV works as the

8

Algorithm 2: Training Ptr-A* by Actor-Critic algo-

rithm

Input: Training samples set D = {G1,G2, . . . }, batch size

B, training steps S
1: Initialize actor network θ and critic network ψ with

random weights

2: for s = 1 to S do

3: Sample Gi from D, ∀i ∈ {1, . . . , B}
4: Calculate Ei and T i with Ptr-A* network,

∀i ∈ {1, . . . , B}
5: Calculate Vψ (Gi) with Critic network,

∀i ∈ {1, . . . , B}
6: dθ ← 1

B

∑B
i=1 (Ei − Vψ (Gi))∇θ log pθ (T i|Gi)

7: L(ψ)← 1
B

∑B
i=1 (Vψ (Gi)− Ei)

2

8: θ ← Adam (θ, dθ)
9: ψ ← Adam (ψ,∇ψL(ψ))

10: end for

11: return θ∗ = θ

agent to make a sequential action set in a given state of the

environment. In the following, we describe the state, action,

reward, and training of the proposed DRL algorithm.

1) State: The state includes coordinates for all clusters, the

UAV’s location, and the energy consumption of UAV-WSN at

current step t.
2) Action: The action represents the choice of the next

cluster to be selected at current step t and the CH in this

cluster. Thus, we define the output of the right-hand side of

(23) and the CH selection by A* as the action at each step.

3) Reward: We design the reward as the negative of the

total energy consumption in (21). This means that the DRL is

set to get the maximal reward (minimal energy consumption).
4) Training: The actor-critic method includes the actor

network and the critic network. The actor network is the

proposed Ptr-A* in this work. The critic network is used

to provide an approximated baseline of the reward for any

problem instance to reduce the variance of gradients during the

training phase and increases the speed of learning [40]. Our

critic network, parameterized by ψ , has the same architecture

as that of the encoder of the Ptr-A*. Then, its hidden states

are decoded into a baseline prediction by two fully-connected

ReLU layers [22]. Our training objective is the expected

energy consumption, which is defined as

J (θ|G) = ET ∼pθ(.|G)
[E]. (27)

We use policy gradient method and stochastic gradient descent

to optimize θ. The gradient of (27) is formulated by REIN-

FORCE [41] algorithm

∇θJ (θ|G) = ET ∼pθ(.|G)
[(E − Vψ (G))∇θ log pθ (T |G)]

(28)

where Vψ (G) is a baseline function for reducing the variance

of the gradients, which is implemented by the critic network.

Assume we have B i.i.d train samples, the gradient in (28)

can be approximated with Monte Carlo sampling as follows

∇θJ (θ) ≈
1

B

B
∑

i=1

(Ei − Vψ (Gi))∇θ log pθ (T i|Gi) . (29)

TABLE I
SIMULATION PARAMETERS

Parameter Description Value

εfs Amplifier’s energy parameter of the

free space fading

10 pJ/bit/m2 [30]

εmp Amplifier’s energy parameter of the

multi-path fading

0.0013 pJ/bit/m2 [30]

Eelec Energy consumption per bit in the

circuitry

50 nJ/bit [30]

PCH Transmit power of each CH 21 dBm/Hz [8]

N Number of nodes per cluster 20

Bwidth Bandwidth 1 MHz

N0 Noise power −174 dBm/Hz [8]

fc Carrier frequency 2 GHz [8]

α Path loss exponent 3 [8]

H UAV’s flight height 50 m

µLoS, µNLoS Mean values of the excessive path loss 1 dB, 20 dB [44]

β, η Environmental parameters 0.03, 10 [8]

vUAV = vmax UAV’s flight speed 15 m/s [8]

mtot UAV’s mass 500 g [45]

rp Radius of UAV’s propellers 20 cm [45]

np Number of propellers 4 [45]

Pmax UAV’s hardware power level at full

speed

5 W [45]

Pidle UAV’s hardware power level when it

hovers

0 W [45]

Pcom UAV’s communication power 0.0126 W [8]

We train the parameters of the critic with stochastic gradient

descent on a mean squared error objective L(ψ) between its

predictions Vψ (Gi) and the actual energy consumption. L(ψ)
is formulated as

L(ψ) =
1

B

B
∑

i=1

(Vψ (Gi)− Ei)
2
. (30)

The training procedure is presented in Algorithm 2. Notice

that Adam algorithm is used to update the parameters of

the actor network and the critic network iteratively. Adam

algorithm designs independent adaptive learning rates for dif-

ferent parameters via calculating the first and second moment

estimates of the gradient instead of using a single learning rate

to update all parameters by the traditional random gradient

descent [42]. Given the initial learning rate, the learning rates

in different steps adaptively change according to the learning

results. Because of the generalization property of RNNs [43],

our proposed models, including the Ptr-A* and critic, have a

very good generalization ability. In the training phase, we can

use small problem instances to train the model, and then the

trained model can be utilized to solve large problem instances.

IV. NUMERICAL RESULTS

In this section, we first introduce detailed environment

settings, and then describe the decoding search strategies at

inference. Furthermore, we compare the performance of the

proposed DRL algorithm with several baseline algorithms.

A. Environmental Settings and Model Training

We consider the ground network size of 2 km × 2 km,

and the start position of the UAV is located at (0m, 0m).

9

Simulation parameters are listed in Table I. We use mini-

batches of size 512 and LSTM cells with 128 hidden units

in the encoder and the decoder. We implement the proposed

model by using Pytorch 1.4 and Python 3.7 on a VM instance

of Google Cloud Platform with 1 NVIDIA TESLA P100

GPU. The parameters of both the actor and critic networks

are initialized by the Xavier initialization method and trained

by the Adam optimizer with an initial learning rate of 0.0001

and decayed every 5,000 steps by 0.96.

It is assumed that nodes in a given cluster Gk are distributed

according to the Gaussian distribution. Each cluster’s nodes

are sampled from a torch.normal(ν, std) where ν is the mean

and std is the constant standard deviation. Each Gaussian

distribution’s ν is randomly sampled from a torch.rand()

function to determine the position of each cluster in the two-

dimensional space. We train the model using instances of 20

clusters and 40 clusters, respectively. The 20-clusters model

is trained for 100,000 steps, and the 40-clusters model is

trained for 200,000 steps. We give a simple example on how

to obtain the train data. At each training step of the 20-

clusters model, we sample 20 means from torch.rand() for

20 Gaussian distributions, respectively. Then, we use these 20

i.i.d. distributions to generate a set (problem instance) of 20

clusters where the number of nodes per cluster is 20. The test

data sets are also generated in the same way, only the number

of clusters is different.

B. Decoding Search Strategies at Inference

Given a new problem instance G at inference, the decoder

network of our trained Ptr-A* architecture can easily output

an access sequence for all clusters. The decoding process of

the decoder at inference shows how solvers search over a large

set of feasible access sequences. In this work, we consider the

following three decoding search strategies.

1) Greedy Search: Greedy search strategy always select

the cluster with the largest probability at each decoding step

during inference, which is labeled as DRL-greedy in the

simulation results.

2) Sampling Search: This strategy samples M candidate

solutions from the stochastic policy Pθ(·|G) by running the

trained Ptr-A* on a single test input G and selects the one with

the minimum expected energy consumption from M candidate

outputs. The more we sample, the more likely we will get the

better output. In the simulation, we set M = 51200, and this

strategy is labeled as DRL-sampling.

3) Active Search: Unlike the greedy search and the sam-

pling search, this strategy can refine the parameter θ of the

Ptr-A* during inference to minimize the expected energy

consumption on a single test input G. Active search samples

multiple solutions T 1, . . . ,T Q from Pθ(·|G) for a single test

input G and uses policy gradients to refine θ [22]. The process

is presented in Algorithm 3. In the simulation, we sample

three different sets of candidate solutions, {512, 5120, 10240},
which are labeled with DRL-active-512, DRL-active-5120, and

DRL-active-10240, respectively.

Algorithm 3: Active Search

Input: Test input G, steps S, ζ
1: Randomly sample a solution T for G

2: Calculate E according to T by A*

3: O ← E
4: for s = 1 to S do

5: T i ∼ Sample solutions Pθ(·|G), ∀i ∈ {1, . . . , Q}
6: E(T j |G) ← argmin

(

E(T 1|G), . . . , E(T Q|G)

)

7: if E(T j |G) < E then

8: T ← T j

9: E ← E(T j |G)

10: end if

11: dθ ← 1
Q

∑Q
i=1

(

E(T i|G) −O
)

∇θ log pθ (T i|G)
12: θ ← Adam (θ, dθ)
13: O ← ζO + (1 − ζ) 1

Q

∑Q
i=1 Vψ (G)

14: end for

15: return T , E

TABLE II
RUNNING TIME COMPARISON ON SMALL-SCALE CLUSTERS.

Time (s)

Algorithm

K
10 20 30 40 50

DRL-active-10240 17.1 57.15 121.62 209.27 319.64

DRL-active-5120 8.59 29.12 60.85 105.82 160.68

DRL-active-512 0.98 3.4 7.05 12.11 18.48

DRL-sampling 14.26 29.34 43.39 59.89 81.3

DRL-greedy 0.31 0.63 1.07 1.68 2.46

Genetic 60.37 64.85 73.35 80.21 90.91

NN 1.12 1.12 1.13 1.15 1.16

C. Small-Scale Clusters

To thoroughly evaluate the performance of the proposed

DRL algorithm, we first test the trained 20-clusters model

on small-scale clusters. Since ω in (21) is the weighting

coefficient, its value does not impact the comparison results

among algorithms. When ω = 0, our optimization problem

only considers the energy consumption of the UAV, which

mainly depends on the flying distance of the UAV. Fig. 3

illustrates how the proposed DRL algorithm performs with

different search strategies on the 25-clusters problem instance.

As can be seen, the trajectory generated by DRL-greedy is

the longest (9241 m), while DRL-active-10240 produces the

shortest trajectory (8693 m) among strategies.

Next, we compare our proposed DRL algorithm having

different decoding search strategies with the nearest neighbor

(NN) heuristic [46] and the genetic algorithm [47]. We first

investigate the energy consumption comparison between our

proposed DRL on the trained 20-clusters model and two

baselines when ω = 0.5. The genetic algorithm runs for 4,000

generations, the chance of mutation is 0.5%, and the size of

population is 150. In Fig. 4, we plot the average ratios of

the energy consumption of our proposed DRL algorithm with

different search strategies and two baselines to the energy

consumption of DRL-active-10240 versus different numbers

10

(a)

(b)

Fig. 3. Trajectories comparison on 25 clusters test instance when ω = 0.

of clusters K . Although the model is trained on 20-clusters

problem instances, it still obtains good performance on the

10-clusters, 30-clusters, 40-clusters, and 50-clusters networks.

This shows that the proposed DRL algorithm achieves an

excellent generalization ability with respect to the number

of clusters used for training. When K = 10, genetic, DRL-

active-10240, DRL-active-5120, DRL-active-512, and DRL-

sampling obtain almost the same energy consumption result;

however, the NN algorithm has higher energy consumption

when compared with our proposed DRL with active search

and sampling search strategies. As the number of clusters

increases, the energy consumption savings of our proposed

algorithm increase when compared to the NN and genetic

algorithms. For example, when K = 30, the energy consump-

tions of UAV-WSN produced by NN and genetic algorithms

�� �� �� �� 	�
�

���

���

���

���

���

��	

�
��
�"

��
��

�
�
��
��
��
��
���

��
��
�
��
�#
��
���

�
��
��

��
��
�!
��
��

��
��

� ��
���

�
�
���

���
��

���

���

��������!�������
��������!��	���
��������!��	��
������������
���������"
�������
��

Fig. 4. Energy consumption comparison on small-scale clusters.

are almost equal, which is about 11% more than that of

DRL-active-10240, 8% more than that of DRL-sampling, and

7% more than that of DRL-greedy. When the number of

clusters increases to 50, the energy consumption of NN is

around 21% more than that of DRL-active-10240, 13% more

than that of DRL-sampling, and 8% more than that of DRL-

greedy. Likewise for K = 50, the energy consumption of

the genetic algorithm is around 33% more than that of DRL-

active-10240, 24% more than that of DRL-sampling, and 17%
more than that of DRL-greedy. It can be seen that our proposed

DRL algorithm using any of three active search strategies

can achieve better results than other search strategies and

algorithms. This is because the active search strategy can refine

the parameters of the Ptr-A* model for producing the best

solution while searching for candidate solutions on a single

test instance at inference. From Fig. 4, we can see that DRL-

sampling also obtains a relatively competitive result.

Table II compares the running time at inference. As the

number of clusters increases, the running time of the proposed

DRL algorithm with all strategies and two baseline techniques

increases. Although DRL-active-10240 obtains the best per-

formance in reducing the energy consumption as can be seen

from Fig. 4, it has the longest running time. This is because it

needs more iterations to update the parameters. If the number

of candidate solutions is relatively small, active search strategy

tends to spend less time to produce the solution, like DRL-

active-512. In addition, we can see that the running time of

NN is always minimal among all algorithms for all values

of K . DRL-greedy’s running time is comparable with that

of NN. Meanwhile, the running times of DRL-sampling and

DRL-active-512 are lower when compared with the genetic

algorithm.

D. Large-Scale Clusters

In this subsection, we test the performance of the trained

models on large-scale clusters test instances. The genetic

algorithm runs for 10,000 generations. We first observe the

11

��
� �� �� ��� ���
�

���

���

��

���

���

���

���

��

���

��
�!
�&
��
��
"$
�
 #
��
��
!�
#��

��
�!
�
��
�'
��
�#�

�
��
��

��
�#
�%
��
��
�

��
�

��
��
$"
#�
!"
��

��
��
�

���
���

��
��� 	��

�

��
���

��	�

	��
	�����

������#�%�����
���
����$"#�!"�������
������#�%��������
����$"#�!"�������
������#�%�������
����$"#�!"�������
����"�� ������
����$"#�!"�������
�����!���&��
����$"#�!"�������
����#��
��

(a) On 40-clusters model.

��
� �� �� ��� ���
�&���#�!����&$%�#$

���

���

��

���

���

���

�
�#
�(
��
!
$&
�
"%
�!
 �
#�
%�!

�
!#
�
��
�)
��
�%!

�
��
��

��
�%
�'
��
��
�

��
��
��
��
&$
%�
#$
��

!�
��
�

	��

��

��

�����
�	�

	��

���

���

��
�
�

���

������%�'�����
��������&$%�#$��!����
������%�'�������������&$%�#$��!����
������%�'������������&$%�#$��!����
����$��"�� ��������&$%�#$��!����
�����#���(�������&$%�#$��!����
�� �%��
��

(b) On 20-clusters model.

� �� ��
� ��� ���
�#��� ������#!"� !

���

���

���

��

���

���

��
�

�%
��

��
!#

�
�"

��
��

 �
"��

��
�

�
��

�&
��

�"�
�

��
��

��
�"

�$
��

��
��

��
��

��
��

#!
"�

 !
��

��
��

�

������"�$��������������#!"� !�������
������"�$��������������#!"� !�������
������"�$��	����������#!"� !�������
������"�$��	���������#!"� !�������
����!��������������#!"� !�������
����� ���%�������#!"� !�������

(c) 40-clusters model vs. 20-clusters model

Fig. 5. Energy consumption comparison on large-scale clusters

results of the proposed DRL algorithm on the trained 40-

clusters model, as shown in Fig. 5 (a). Clearly, our proposed

DRL algorithm exhibits much better performances than the

two baseline techniques in reducing the energy consumption

of the UAV-WSN system. As the number of clusters increases,

there is an increasing performance gap between the proposed

DRL algorithm and the baseline techniques. For instance,

when K = 80, the genetic algorithm consumes 50%, 58%,

and 76% more energy than when compared to DRL-greedy,

DRL-sampling, and DRL-active-10240, respectively. As the

number of clusters increases to 100, the energy consumption

of the UAV-WSN when using the genetic algorithm is 72%
more than that of DRL-greedy, 82% more than that of DRL-

sampling, and 103% more than that of DRL-active-10240. NN

also shows a similar trend to that of the genetic algorithm.

In particular, its energy consumption is 47% more than that

of DRL-active-10240 when K = 80 and increases to 55%
more than the energy consumption of DRL-active-10240 when

K = 100. When compared with DRL-greedy, the extra

amount of energy consumed by the UAV-WSN when using

NN increases from 25% to 31% as the number of clusters

increasing from 80 to 100. However, NN exhibits an obviously

superior performance than the genetic algorithm. As we can

see, the active search strategies outperform the greedy strategy

and sampling strategy for large-scale clusters problems. DRL-

sampling shows a slightly better performance than DRL-

greedy, which is reasonable.

Next, we use the trained 20-clusters model to evaluate

the performance of the proposed DRL algorithm on large-

scale clusters test instances. In Fig. 5 (b), our proposed DRL

algorithm with different search strategies still obtains relatively

good results as compared to the two baseline techniques on

large-scale problem instances when the value of K varies,

while the results generated by active search strategies are

still the best among all search strategies. For example, when

K = 80, the energy consumption of the genetic algorithm is

48% more than that of DRL-active-10240, 40% more than that

of DRL-sampling, and 31% more than that of DRL-greedy.

Although NN exhibits a better performance than the genetic

algorithm, its energy consumption is 23% more than that of

DRL-active-10240, 16% more than that of DRL-sampling,

and 8% more than that of DRL-greedy when K = 80.

However, compared with the results obtained on the trained

40-clusters model, the 20-clusters model clearly shows inferior

performance. When K = 100, the energy consumption gap

between the genetic algorithm and DRL-active-10240 is 103%
on the 40-clusters model, but this gap decreases to 65%
on the 20-clusters model. Likewise, the gap in the energy

consumption between the genetic algorithm and DRL-active-

10240 decreases from 76% on the 40-clusters model to 48%
on the 20-clusters model when K = 80.

To investigate the difference between the two trained mod-

els, we compare the results obtained on the 20-clusters model

with the results of DRL-active-10240 on the 40-clusters model.

As shown in Fig. 5 (c), DRL-active-10240 (40-clusters model)

clearly exhibits superior performance in reducing the energy

consumption than three search strategies on the 20-clusters

model. This performance merit constantly increases as the

12

TABLE III
RUNNING TIME COMPARISON ON LARGE-SCALE CLUSTERS.

Time (s)

Algorithm

K
60 70 80 90 100 110

DRL-active-10240
20-clusters model 448.65 584.71 754.23 920.83 1149.36 1329.96

40-clusters model 449.01 584.81 755.37 920.61 1150.05 1330.28

DRL-active-5120
20-clusters model 225.98 293.52 382.03 480.87 590.5 705.11

40-clusters model 226.26 294.31 382.15 480.92 590.04 705.36

DRL-active-512
20-clusters model 24.99 33.08 44.08 55.54 67.21 79.31

40-clusters model 25.75 33.57 44.1 55.78 67.54 79.88

DRL-sampling
20-clusters model 102.06 148.72 171.65 210.4 257.64 306.85

40-clusters model 102.47 148.79 171.9 210.29 258.53 307.11

DRL-greedy
20-clusters model 3.11 4.23 5.84 7.83 9.96 12.55

40-clusters model 3.39 4.54 5.81 7.48 10.2 12.89

Genetic 213.39 217.06 225.5 233.88 239.54 247.19

NN 1.17 1.17 1.18 1.19 1.2 1.22

value of K increases. Thus, the trained 40-clusters model is

more suitable for solving the trajectory planning problem for

the UAV in cases of large-scale clusters.

The running time comparison of different strategies and

algorithms at inference on large-scale problem instances is

provided in Table III. We can observe that for a given

number of clusters, the same strategy running on different

models produces solution in almost the same amount of time.

For example, DRL-active-10240 takes 448.65 s on the 20-

clusters model and 449.01 s on the 40-clusters model. DRL-

active-10240 takes the longest time among all the algorithms

because it requires more iterations to refine the parameters

of the Ptr-A* to produce the best performance. The running

time of DRL-sampling is acceptable in comparison with the

genetic algorithm given its performance merits. Furthermore,

the computation time spent by DRL-greedy is the least among

all strategies, which is also significantly less than the running

time of the genetic algorithm and slightly more than the time

spent by NN. Although the NN algorithm spends the least

amount of time, it produces worse results.

V. CONCLUSIONS

In this paper, we investigated the problem of designing

the UAV’s trajectory for a clustered WSN to minimize the

total energy consumption in the UAV-WSN system. Inspired

by the recent developments of DRL, we propose a novel

DRL-based method to solve the UAV’s trajectory planning

problem. Because the visiting order of the UAV to clusters

can be regarded as a sequential decision problem, we design

a Ptr-A* model to produce the trajectory of the UAV. The

pointer network of the proposed Ptr-A* model is used to

determine the visiting order to clusters. Then, a search graph

for all clusters is built according to the visiting order. The A*

search algorithm is utilized to quickly find the CH for each

cluster from the search graph with the aim of minimizing

the energy consumption of the UAV-WSN system. In order

to obtain optimal parameters of the Ptr-A*, we employ the

model-free RL method to train the proposed Ptr-A* model

in an unsupervised manner. Lastly, we propose three search

strategies at inference.

We conduct comprehensive experiments to evaluate the

performance of the proposed DRL algorithm. The simula-

tion results show that the proposed DRL algorithm with

different search strategies can produce better trajectories for

the UAV when compared with the baseline techniques. In

particular, DRL-active-10240 always produces the best results

with different numbers of clusters of test instances. We also

analyze the impact of different trained models on the results.

The trained 40-clusters model is shown to be able to solve

the trajectory planning problem of the UAV on large-scale

clusters problems. The proposed DRL algorithm offers an

appealing balance between performance and complexity. A key

advantage of our proposed DRL algorithm is its generalization

ability with respect to the number of clusters used for training.

The model can be trained on small-scale clusters for faster

training, and then can be used to solve larger-scale clusters

problems. This makes it clearly more suitable for solving

large-scale clusters problems as compared to the baseline

techniques.

As for future work, we are interested in exploring other

search strategies at inference to further improve the perfor-

mance. It would also be interesting to develop a distributed

DRL algorithm based on the Ptr-A* model to solve multiple

UAVs’ trajectory planning problem jointly. We also plan to

investigate and improve the generalization capability of the

proposed DRL algorithm, i.e., when the number of nodes per

cluster at inference is significantly larger than that used for

training.

ACKNOWLEDGEMENT

This work was supported by an NSERC/Cisco Industrial

Research Chair in Low-Power Wireless Access for Sensor

Networks.

APPENDIX A

EXAMPLE OF ATTENTION MECHANISM

13

Here, we give a detailed numerical example of 3-clusters

network to explain how the attention mechanism works.

In Fig. 2, the input sequence G = {b0, G1, G2, G3} is

transformed into a sequence of latent memory states E =
{e0, e1, e2, e3}, which is the input of the decoder network. At

decoding step 0, we calculate correlations between all elements

in E and the start tag vgo by (24) and (25), which can be

expressed as

u00 = ϕ tanh (W1e0 +W2h0) (A.1)

u01 = ϕ tanh (W1e1 +W2h0) (A.2)

u02 = ϕ tanh (W1e2 +W2h0) (A.3)

u03 = ϕ tanh (W1e3 +W2h0). (A.4)

The learning parameters, namely ϕ,W1,W2, are initialized

by the Xavier initialization method and trained by the Adam

optimizer as explained in Section IV.A. Then, the softmax

function is used to normalize the vector u0 = {u00, u
0
1, u

0
2, u

0
3}.

For the sake of illustration, we assume that the four elements in

u0 determine the following four conditional probability values:

P (π0 = 0|G)

=
exp

(

u00
)

exp (u00) + exp (u01) + exp (u02) + exp (u03)
= 0.6 (A.5)

P (π0 = 1|G)

=
exp

(

u01
)

exp (u00) + exp (u01) + exp (u02) + exp (u03)
= 0.1 (A.6)

P (π0 = 2|G)

=
exp

(

u02
)

exp (u00) + exp (u01) + exp (u02) + exp (u03)
= 0.1 (A.7)

P (π0 = 3|G)

=
exp

(

u03
)

exp (u00) + exp (u01) + exp (u02) + exp (u03)
= 0.2.

(A.8)

Since e0 has the highest conditional probability value at

decoding step 0, the output π0 of this step points to the

first element of G, b0. At decoding step 1, we use the same

approach to calculate the correlations between b0 and the

remaining elements in E as follows

u11 = ϕ tanh (W1e1 +W2h1) (A.9)

u12 = ϕ tanh (W1e2 +W2h1) (A.10)

u13 = ϕ tanh (W1e3 +W2h1). (A.11)

Similarly, by using the softmax function, we calculate the

following conditional probabilities based on the obtained ele-

ments {u11, u
1
2, u

1
3}:

P (π1 = 1|π0,G)

=
exp

(

u11
)

exp (u12) + exp (u12) + exp (u13)
= 0.2 (A.12)

P (π1 = 2|π0,G)

=
exp

(

u12
)

exp (u12) + exp (u12) + exp (u13)
= 0.1 (A.13)

P (π1 = 3|π0,G)

=
exp

(

u13
)

exp (u12) + exp (u12) + exp (u13)
= 0.7. (A.14)

The output π1 of this step points to G3 because the conditional

probability of e3 is maximum. Then, the process repeats until

we obtain the full output sequence of the decoder network as

{b0, G3, G1, G2}, i.e., {π0, π1, π2, π3}.

REFERENCES

[1] M. Mozaffari et al., “A Tutorial on UAVs for Wireless Networks:
Applications, Challenges, and Open Problems,” IEEE Commun. Surveys

& Tutorials, vol. 21, no. 3, pp. 2334–60, 3rd qtr. 2019.
[2] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless Communications with Un-

manned Aerial Vehicles: Opportunities and Challenges,” IEEE Commun.
Mag., vol. 54, no. 5, pp. 36–42, May 2016.

[3] D. A. Hedges, J. P. Coon, and G. Chen, “A continuum model for route
optimization in large-scale inhomogeneous multi-hop wireless networks,”
IEEE Trans. Commun., vol. 68, no. 2, pp. 1058–1070, Feb. 2020.

[4] D. H. Tran, T. X. Vu, S. Chatzinotas, S. ShahbazPanahi, and B. Ottersten,
“Coarse trajectory design for energy minimization in UAV-enabled,” IEEE

Trans. Veh. Technol., vol. 69, no. 9, pp. 9483–9496, Sept. 2020.
[5] Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless

communication with rotary-wing UAV,” IEEE Trans. Wireless Commun.,
vol. 18, no. 4, pp. 2329–2345, Apr. 2019.

[6] C. Zhan and H. Lai, “Energy minimization in internet-of-things system
based on rotary-wing UAV,” IEEE Wireless Commun. Lett., vol. 8, no. 5,
pp. 1341–1344, Oct. 2019.

[7] J. Baek, S. I. Han, and Y. Han, “Energy-efficient UAV routing for wireless
sensor networks,” IEEE Trans. Veh. Technol., vol. 69, no. 2, pp. 1741–
1750, Feb. 2020.

[8] M. B. Ghorbel et al., “Joint position and travel path optimization for
energy efficient wireless data gathering using unmanned aerial vehicles,”
IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 2165–2175, Mar. 2019.

[9] D. Yang, Q. Wu, Y. Zeng, and R. Zhang, “Energy trade-off in ground-to-
UAV communication via trajectory design,” IEEE Trans. Veh. Technol.,
vol. 67, no. 7, pp. 6721–6726, Jul. 2018.

[10] B. Zhu, E. Bedeer, H. H. Nguyen, R. Barton, and J. Henry, “Improved
soft-k-means clustering algorithm for balancing energy consumption in
wireless sensor networks,” IEEE Internet Things J., vol. 8, no. 6, pp.
4868–4881, Mar. 2021.

[11] M. Samir et al., “UAV trajectory planning for data collection from time-
constrained IoT devices,” IEEE Trans. Wireless Commun., vol. 19, no. 1,
pp. 34–46, Jan. 2020.

[12] S. Zhang, S. Shi, S. Gu, and X. Gu, “Power control and trajectory
planning based interference management for UAV-assisted wireless sensor
networks,” IEEE Access, vol. 8, pp. 3453–3464, 2019.

[13] A. A. Al-Habob, O. A. Dobre, S. Muhaidat, and H. V. Poor, “Energy
efficient data dissemination using a UAV: an ant colony approach,” IEEE

Wireless Commun. Lett., vol. 10, no. 1, pp. 16–20, Jan. 2021.
[14] K. Zhu, X. Xu, and S. Han, “Energy-efficient UAV trajectory planning

for data collection and computation in mMTC networks,” in Proc. IEEE

Globecom Workshops, 2018, pp. 1–6.
[15] C. H. Liu, Z. Chen, J. Tang, J. Xu, and C. Piao, “Energy-efficient

UAV control for effective and fair communication coverage: a deep
reinforcement learning approach,” IEEE J. Sel. Areas Commun., vol. 36,
no. 9, pp. 2059–2070, Sept. 2018.

[16] Y. Yuan, L. Lei, T. X. Vu, S. Chatzinotas, and B. Ottersten, “Actor-critic
deep reinforcement learning for energy minimization in UAV-aided net-
works,” in Proc. European Conference on Networks and Communications,
2020, pp. 348–352.

[17] R. Ding, F. Gao, and X. S. Shen, “3D UAV trajectory design and
frequency band allocation for energy-efficient and fair communication: a
deep reinforcement learning approach,” IEEE Trans. Wireless Commun.,
vol. 19, no. 12, pp. 7796–7809, Dec. 2020.

[18] B. Zhang et al., “Learning-based energy-efficient data collection by
unmanned vehicles in smart cities,” IEEE Trans. Ind. Informat., vol. 14,
no. 4, pp. 1666–1676, Apr. 2018.

14

[19] W. Liu, P. Si, E. Sun, M. Li, C. Fang, and Y. Zhang, “Green mobility
management in UAV-assisted IoT based on dueling DQN,” in Proc. IEEE

International Conference on Communications (ICC), 2019, pp. 1–6.
[20] H. Zhang, J. Li, Y. Li, and H. Yue, “Understanding subtitles by character-

level sequence-to-sequence learning,” IEEE Trans. Ind. Informat., vol. 13,
no. 2, pp. 616–624, Apr. 2017.

[21] O. Vinyals, M. Fortunato and N. Jaitly, “Pointer networks,” in Proc.

Advances Neural Information Processing Systems (NIPS), 2015, pp.
2692–2700.

[22] I. Bello et al., “Neural combinatorial optimization with reinforcement
learning,” arXiv preprint arXiv:1611.09940, 2016.

[23] J. J. Q. Yu, W. Yu, and J. Gu, “Online vehicle routing with neural com-
binatorial optimization and deep reinforcement learning,” IEEE Trans.

Intell. Transp. Syst., vol. 20, no. 10, pp. 3806–3817, Oct. 2019.
[24] Z. Li, J. Wu, L. Sun, and T. Rong, “Combinatorial keyword recommen-

dations for sponsored search with deep reinforcement learning,” arXiv

preprint arXiv:1907.08686, 2019.
[25] M. Nazari, A. Oroojlooy, L. Snyder, and M. Takác, “Reinforcement

learning for solving the vehicle routing problem,” in Proc. Advances
Neural Information Processing Systems (NIPS), 2018, pp. 9839–9849.

[26] V. Razo and H. Jacobsen, “Smart charging schedules for highway travel
with electric vehicles,” IEEE Trans. Transport. Electrific., vol. 2, no. 2,
pp. 160–173, Jun. 2016.

[27] Z. Ma, B. Ai, R. He, G. Wang, Y. Niu, and Z. Zhong, “A wideband
non-stationary air-to-air channel model for UAV communications,” IEEE

Trans. Veh. Technol., vol. 69, no. 2, pp. 1214–1226, Feb. 2020.
[28] Z. Lian, L. Jiang, C. He, and D. He, “A non-stationary 3-D wideband

GBSM for HAP-MIMO communication systems,” IEEE Trans. Veh.

Technol., vol. 68, no. 2, pp. 1128–1139, Feb. 2019.
[29] D. Hulens, J. Verbeke, and T. Goedeme, “How to choose the best

embedded processing platform for onboard UAV image processing,” in
Proc. Int. Joint Conf. Comput. Vis., Imag. Comput. Graph. Theory Appl.,
2015, pp. 1—10.

[30] W. Heinzelman et al., “An application-specific protocol architecture for
wireless microsensor networks,” IEEE Trans. Wireless Comm., vol. 1, no.
4, pp. 660–670, Oct. 2002.

[31] T. Rappaport, Wireless Communications: Principles and Practice. En-
glewood Cliffs, NJ:Prentice-Hall, 1996.

[32] R. Roberti and P. Toth, “Models and algorithms for the asymmetric
traveling salesman problem: an experimental comparison,” EURO Journal
on Transportation and Logistics, vol. 1, no. 1, pp. 113–133, Jun. 2012.

[33] J. Puchinger and G. R. Raidl, “Combining metaheuristics and exact
algorithms in combinatorial optimization: A survey and classification,”
in Artificial Intelligence and Knowledge Engineering Applications: A
BioInspired Approach, vol. 3562, pp. 41–53, Jun. 2005.

[34] D. Gong and Y. Yang, “Low-latency SINR-based data gathering in
wireless sensor networks,” IEEE Trans. Wireless Commun., vol. 13, no.
6, pp. 3207-3221, Jun. 2014.

[35] L. Liu and U. Mitra, “On sampled reinforcement learning in wireless
networks: exploitation of policy structures,” IEEE Trans. Commun., vol.
68, no. 5, pp. 2823–2837, May 2020.

[36] I. Bello, et al., “Seq2Slate: re-ranking and slate optimization with
RNNs,” in Proc. International Conference on Learning Representations

(ICLR), 2019, pp. 1–12.

[37] W. Koehrsen, “Neural Network Embeddings Explained,” Towards
Data Science, 2018. [Online]. Available: https://towardsdatascience.
com/neural-network-embeddings-explained-4d028e6f0526

[38] Y. Zhu, X. Dong, and T. Lu, “An adaptive and parameter-free recurrent
neural structure for wireless channel prediction,” IEEE Trans. Commun.,
vol. 67, no. 11, pp. 8086–8096, Nov. 2019.

[39] O. Vinyals, A. Toshev, S. Bengio and D. Erhan, “Show and tell: a neural
image caption generator,” in Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015, pp. 3156–3164.

[40] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Proc.

Advances Neural Information Processing Systems (NIPS), 2000, pp.
1008–1014.

[41] R. J. Williams, “Simple statistical gradient following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, pp. 229–256,
1992.

[42] D. P. Kingma and J. L. Ba, “Adam: a method for stochastic optimiza-
tion,” in Proc. Int. Conf. Learn. Represent., 2015, pp. 1–13.

[43] Z. Tu, F. He, and D. Tao, “Understanding generalization in recurrent
neural networks,” in Proc. International Conference on Learning Repre-
sentations(ICLR), 2020, pp. 1–16.

[44] A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal LAP altitude
for maximum coverage,” IEEE Wireless Commun. Lett., vol. 3, no. 6, pp.
569–572, Dec. 2014.

[45] H. Ghazzai, M. Ben Ghorbel, A. Kadri, M. J. Hossain, and H. Menouar,
“Energy-efficient management of unmanned aerial vehicles for underlay
cognitive radio systems,” IEEE Trans. Green Commun. Netw., vol. 1, no.
4, pp. 434–443, Dec. 2017.

[46] B. Hu and G. Raidl, “Effective neighborhood structures for the gen-
eralized traveling salesman problem,” in Proc. European Conference
on Evolutionary Computation in Combinatorial Optimization (EvoCOP),
2008, pp. 36–47.

[47] J. Li, Q. Sun, M. Zhou, and X. Dai, “A new multiple traveling salesman
problem and its genetic algorithm-based solution,” in Proc. IEEE Int.
Conf. Syst. Man Cybern., 2013, pp. 627–632.

http://arxiv.org/abs/1611.09940
http://arxiv.org/abs/1907.08686

	I Introduction
	I-A Motivation
	I-B Related Works
	I-B1 UAV Trajectory Planning
	I-B2 Sequence-to-Sequence Learning

	I-C Contributions

	II System Model and Problem Formulation
	II-A Channel Model
	II-B UAV's Energy and Trajectory Model
	II-C Ground Network and Energy Model
	II-D Problem Formulation for UAV's Trajectory

	III Deep Reinforcement Learning for UAV Trajectory Planning
	III-A Pointer Network-A* Architecture for UAV's Trajectory Planning
	III-A1 Encoder
	III-A2 Decoder
	III-A3 A* search

	III-B Parameters Optimization with Reinforcement Learning
	III-B1 State
	III-B2 Action
	III-B3 Reward
	III-B4 Training

	IV Numerical Results
	IV-A Environmental Settings and Model Training
	IV-B Decoding Search Strategies at Inference
	IV-B1 Greedy Search
	IV-B2 Sampling Search
	IV-B3 Active Search

	IV-C Small-Scale Clusters
	IV-D Large-Scale Clusters

	V Conclusions
	Appendix A: Example of Attention Mechanism 1.3
	References

