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Abstract—Spectrum sensing is one of the means of utilizing
the scarce source of wireless spectrum efficiently. In this paper,
a convolutional neural network (CNN) model employing spectral
correlation function (SCF) which is an effective characterization
of cyclostationarity property, is proposed for wireless spectrum
sensing and signal identification. The proposed method classifies
wireless signals without a priori information and it is imple-
mented in two different settings entitled CASE1 and CASE2.
In CASE1, signals are jointly sensed and classified. In CASE2,
sensing and classification are conducted in a sequential manner.
In contrary to the classical spectrum sensing techniques, the
proposed CNN method does not require a statistical decision
process and does not need to know the distinct features of signals
beforehand. Implementation of the method on the measured over-
the-air real-world signals in cellular bands indicates important
performance gains when compared to the signal classifying deep
learning networks available in the literature and against classical
sensing methods. Even though the implementation herein is
over cellular signals, the proposed approach can be extended
to the detection and classification of any signal that exhibits
cyclostationary features. Finally, the measurement-based dataset
which is utilized to validate the method is shared for the
purposes of reproduction of the results and further research and
development.

Index Terms—Deep learning, spectrum sensing, cyclostation-
arity, signal classification, spectral correlation function, convolu-
tional neural networks.

I. INTRODUCTION

Today’s wireless communication systems have to bear an
unprecedented increase in data transmission volume. It is
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matics and Information Security Research Center (BİLGEM), TÜBİTAK,
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A. Görçin is with the Department of Electronics and Communica-
tions Engineering, Yıldız Technical University, İstanbul, Turkey. e-mail:
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essential for wireless communication networks to utilize the
limited source of spectrum as efficiently and effectively as
possible to meet the demand [1]. Furthermore, the efforts
including the deployment of small cells, utilizing mmWave
bands, effective spectrum usage algorithms, massive multiple-
input multiple-output (MIMO) systems [2], and cognitive radio
networks target the same goal. Cognitive radios aim to attend
this purpose by sharing the spectrum dynamically among
users; thus, spectrum sensing and signal identification became
major techniques for cognitive radio networks.Considering
joint communications, sensing, and localization demanded by
6G and beyond, efficient spectrum allocation will be more
crucial for heterogeneous networks. For instance, 5G NR
Release 16 introduces dynamic spectrum sharing which is
novel method enabling parallel operation of 5G and Long-
Term Evolution (LTE) in the same band [3]. Furthermore, it
is envisioned that radar and communications system will share
the same frequency band [4].

When spectrum sensing and signal identification techniques
are considered, it is seen that sensing techniques of energy de-
tection and matched filtering require a priori information such
as number of second order noise statistics, cyclic frequencies
and particular pulse shaping filter characteristics to operate.
Moreover, after processing of the received signals, a statistical
decision mechanism should be implemented to complete the
sensing process [5]. Such cumbersome process can hamper
the agile decision making requirements of 5G and beyond
networks, thus, classical sensing paradigm can not satisfy
the requirements of fast changing operation environment of
contemporary and future wireless communications networks.
In this context, deep learning (DL) has been proposed as a
solution to the parameter adaptation issues of classical tech-
niques. This stems from the known ability of DL techniques
in extracting the intrinsic features of given inputs through a
convolutional process. The use of DL based approaches also
eliminates the need for a statistical decision mechanism at the
end of the identification process. Along this line, the recent
study shows that DL methods outperform classical approaches
in signal detection in the spectrum [6]. To achieve the require-
ments for 5G and beyond wireless networks, an intelligent
radio design for spectrum sensing and signal identification is
required and such solution can be realized with the help of
machine learning (ML) algorithms [7] utilizing features such
cyclostationarity of signals [8].
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A. Related Work

When the literature on the implementation of artificial
intelligence techniques for spectrum sensing and signal iden-
tification purposes are considered, it is initially seen that
convolutional neural networks (CNNs) are trained with high-
order statistics of single carrier signals for modulation classi-
fication [9]. A CNN classifier is used for modulation and in-
terference identification for industrial scientific medical (ISM)
bands by utilizing fast Fourier transform (FFT), amplitude-
phase representation (AP) and in-phase/quadrature (I/Q) fea-
tures for training [10]. Another study [11] focused on the
protocol classification in ISM band by utilizing fully connected
neural networks. As another example of the application of DL
to signal classification, long short term memory (LSTM) is
deployed for modulation classification and identification of
digital video broadcast (DVB), Tetra, LTE, Global System
for Mobile communications (GSM), wide-band FM (WFM)
signals by using AP and FFT magnitude for training [12].
The performance of the proposed model is high, however,
it employs synthetic data generated from MATLAB. In the
real channels, there are numerous phenomenons, which further
complicate the signal characteristics.

On the other hand, cyclostationarity signal analysis has been
explored for modulation classification, parameter estimation
and spectrum sensing for more than 20 years. In addition to
being an established method for spectrum sensing in cognitive
radio domain, cyclostationary features detection (CFD) is also
utilized to distinguish generic modulations such as M-PSK,
M-FSK, and M-QAM [8, 13]. When the radio access tech-
nology (RAT) identification [14] is considered, second order
cyclostationarity is employed for classification of LTE and
GSM signals [15]. Later, a tree-based classification approach
is proposed to identify GSM, cdma2000, universal mobile
telecommunications system (UMTS) and LTE signals [16].

B. The Contributions

1) Methodological novelty: CFD depends on extracting the
underlying features using likelihood-based techniques utiliz-
ing statistical decision mechanisms and for CFD to operate
under the dynamically changing communication medium, an
additional mechanism to adaptively adjust decision parameters
such as thresholds and the number samples is required [17].
On the other hand, even though employment of DL techniques
for the purposes of spectrum sensing and signal identification
implies considerable advantages in terms of performance and
complexity, utilization of FFT, AP and I/Q as input features
to the intelligent networks do not lead stable and dependable
results due to the rapidly and significantly changing wireless
communications medium between the nodes. Therefore, this
study proposes application of SCF as input feature to CNNs for
blind wireless signal identification. The problems of spectrum
sensing and signal identification are framed into two particular
contexts which utilize a novel CNN model designed and
trained with spectral correlation function (SCF) of wireless
signals without bi-frequency mapping. Therefore, the proposed
method can be employed either to decide whether the signal
is present or not in the spectrum or to distinguish signals

from each other. Sensing and identification performance of the
method is tested and validated utilizing real-life over-the-air
signal measurements of GSM, UMTS, and LTE signals.

The proposed method approaches to the problems of sensing
and identification from the aspects of two cases; in CASE1,
the designed CNN model is fed directly with the SCFs of mea-
surements of GSM, UMTS, LTE along with SCF of spectrum
which is only comprised of noise. Sensing and classification
are executed jointly for CASE1. On the other hand in CASE2,
a two-step approach is adopted; first, as a spectrum sensing
method to measure the spectrum occupancy is conducted and
this stage is followed by a signal classification procedure.

2) Novelty in terms of numerical studies: In terms of per-
formance analysis, first, a comparative analysis is conducted
and superiority of SCF over the features of I/Q, AP and
FFT is shown for the purpose of training of DL networks.
Second, comparison with the existing DL methods such as
convolutional long short term memory fully connected deep
neural network (CLDNN) [18], LSTM [12], DenseNet [19],
ResNet [9] are given in terms of accuracy, memory consump-
tion and computational complexity. Third, it is shown that
the proposed method outperforms support vector machines
(SVMs) trained with SCF, which is our previous study. Fourth,
the performance of the proposed method is compared with the
classical spectrum sensing technique of CFD, which requires
the cyclic frequencies as a priori information. The identifica-
tion results indicate important performance improvements over
the aforementioned techniques.

3) Novelty in terms of experimental activities: Focusing
on the valuable information in the dataset is an important
metric for the proposed method; thus, it is denoted that
utilizing only the meaningful part of the input matrices im-
proves the classification performance along with alleviation in
training time and complexity. On the other hand, the general
dataset, which has been developed from measurements taken
through a comprehensive measurement campaign conducted
in different locations and frequency bands, is shared publicly
in [20]. Therefore, the measurement-based dataset is open to
researchers as a comprehensive resource in the development
and validation of their work.

4) Applicability for future research problems: Even though
in this work the scope of implementation is focused on cellular
signals, the introduced identification system can be directly
used for detection and classification of any signal that exhibit
cyclostationary features. All the analyses are based on the real-
world measurements taken during an extensive measurement
campaign conducted at different locations with varying en-
vironmental conditions such as channel fading statistics and
signal-to-noise ratio (SNR) levels. Finally, the measurement
data that this work is experimented on is also shared for
reproducibility of this work and to support future research and
development activities in this domain.

C. Organization of the Paper

The rest of the paper is structured as follows. Background
information on the system model, cyclostationary analysis and
CNNs is presented in Section II. The problem statement is
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given in Section III. The proposed CNN model is described in
Section IV. The details of the measurement setup and dataset
utilized in this study are given in Section V. Section VI
presents measurement results and details the classification
performance of the proposed method. The concluding remarks
are provided in Section VII.

II. BACKGROUND

Assuming that received signal is down converted to base-
band before further processing, first the complex baseband
equivalent of the received signal, r(t) should be defined.
When the presence of fading environment with thermal noise,
received signal can be given as

r(t) = ρ(t) ∗ x(t) + ω(t), (1)

where ω(t) denotes the complex additive white Gaussian
noise (AWGN) with CN (0, σ2

N ) in the form of ω(t) =
ωI(t)+jωQ(t) as both ωI(t) and ωQ(t) beingN (0, σ2

N/2) and
j =
√
−1; the complex baseband equivalent of the transmitted

signals is denoted as x(t); and ρ(t) stands for the impulse
response for the time-invariant wireless channel because of
extremely short observation time for a signal.

Depending on the idle or busy state of the mobile propaga-
tion channel in the radio frequency (RF) spectrum, the signal
detection process of deep learning methods can be modelled
as a binary hypothesis test

r(t) =

{
ρ(t)x(t) + ω(t), H1

ω(t), H0.
(2)

H0 and H1 hypotheses stand for the presence of noise only
and the unknown signal, respectively. Therefore, the problem
statement can be stated as identification of the presence of the
unknown signal, x(t), and classification of the x(t).

A. Cyclostationarity

Cyclostationary signal processing leads to extracting hidden
periodicities in a received signal, r(t). Since these periodicities
(e.g., symbol periods, spreading codes, and guard intervals)
exhibit unique characteristics for different signals, they provide
the necessary information for identification. Thus, the un-
known signals x(t) can be identified by using cyclostationary
features to obtain the statistical characteristics of r(t) in
the presence of ω(t) and multipath fading without a priori
information. A nonlinear transformation, second-order cyclo-
stationarity of a signal can be expressed as

sτ (t) = E {r(t+ τ/2)r∗(t− τ/2)} , (3)

where sτ (t) is the autocorrelation of r(t). Assuming that the
autocorrelation function is periodic with T0 for second-order
cyclostationary signals, a Fourier series expansion of sτ (t) is
given as

Rαr (τ) =
1

T0

∫ T0/2

−T0/2

sτ (t)e−j2παtdt, (4)

where Rαr (τ) is the cyclic autocorrelation function (CAF) and
α values denote the cyclic frequencies.

The Fourier transform of the CAF for a fixed α is given
with the cyclic Wiener relation [8]

Sr(f) =

∫ T/2

−T/2
Rαr (τ) e−j2πfτdτ, (5)

where Sr(f) is called as SCF which is equal to the power
spectral density (PSD) when α is zero.

The computational complexity of calculating SCF is rel-
atively high. However, this complexity can be decreased by
using the FFT accumulation method (FAM) based on time
smoothing via FFT [21]. FAM estimates the SCF as

SrT =
∑
k

RT (kL, f)R∗T (kL, f)gc(n− k)e−i2πkq/P , (6)

where RT (n, f) denotes the complex demodulates which is
the N ′-point FFT of r(n) passed through a Hamming window
and can be computed by

RT (n, f) =

N ′/2∑
k=−N ′/2

a(k)r(n− k)e−i2πf(n−k)Ts , (7)

where a(n) and gc(n) are both data tapering windows. The
symbols N ′, Ts, and L denote the channelization length,
sampling period, and sample size of hopping blocks, re-
spectively. The ratio between the number of total samples
and L is employed as the length of second FFT, whose
length is denoted as P . The FAM has six implementation
steps. These steps are respectively channelization, windowing,
N ′-point FFT, complex multiplication, P -point FFT and bi-
frequency mapping. In the study, the unit rectangle and Ham-
ming windows are employed as gc(n) and a(n), respectively.
Fig. 1 illustrates SCFs results in bi-frequency plane, which
are estimated by FAM algorithm for GSM, UMTS, and LTE
along with the noise. Consequently, the input matrix, XSCF

k ,
to be fed into classifier model is given as

XSCF
k = |SrT (nL, f)|, (8)

B. Amplitude-Phase

The amplitude and phase values of time-domain I/Q data
can be used to establish a real-valued classification feature
matrix, XAP

k . This feature matrix is composed of the ampli-
tude and phase vectors of the received signal samples. So,
XAP
k is defined as

XAP
k =

[
xTA
xTφ

]
, (9)

where xA = (rq
2 + ri

2)
1
2 and xφ = arctan(

rq
ri

) denote the
amplitude and phase vectors, respectively.

C. Fast Fourier Transform

The characteristics of signals in frequency domain can be
employed as discriminating classification features. The FFT of
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(a) AWGN (b) GSM (c) UMTS (d) LTE

Fig. 1. FAM based SCF estimates of cellular signals in bi-frequency plane. It is easily observed that the signals show different cyclic characteristics. The
noise does not show cyclic characteristics as SCF of noise gives only peak at the center of bi-frequency plane where the cyclic frequency is zero.

the received signal is used to obtain a real-valued classification
feature matrix XFFT

k as

f = F(r), XFFT
k =

[
fTre
fTim

]
, (10)

where F(·) stands for the FFT of the received signals; fre and
fim are real and imaginary parts of f , respectively.

D. The Convolutional Neural Networks

CNN is a class of deep neural networks which is mainly
employed in image classification and recognition. CNN pro-
cess inputs like a visual system in human. In other words,
it extracts features in an input rather than fitting data [22]. In
this study, we utilize the input matrices which resemble image
consisting of features in a specific positions as seen in Fig. 1.
Still, it has been recently extended to several application areas.
CNNs have two stages: feature extraction and classification.
In feature extraction, a convolutional layer is followed by a
pooling layer. In the convolution layer, the feature matrix is
convolved with different filters to obtain convolved feature
map as follows

h[i, j] =

m∑
p=1

n∑
l=1

wp,lXk[i+ p− 1, j + l − 1], (11)

where wp,l is the element at p-th row and l-th column of
the m × n filter matrix, and Xk [·, ·] denotes the elements
of feature matrix convolved by wp,l. The convolution layer
is followed by the pooling layer to reduce computational
complexity and training time, and control over-fitting due to
the fact that pooling layer makes the activation less sensitive to
feature locations [23]. The u× v maximum pooling operation
is described as

g[i, j] = max {h[i+ a− 1, j + b− 1]} , (12)

where 1 ≤ a ≤ u and 1 ≤ b ≤ v. The output of the pooling
layer is a 3-D tensor. This output is then reshaped into a 1-D
vector. This vector is fed to the dense (fully-connected) layers
for the final classification decision.

III. PROBLEM STATEMENT

The dynamic communications environment of next genera-
tion wireless networks require fast, robust and adaptive sensing
and identification of the multi-dimensional communications
medium to utilize the resources quickly and efficiently [5].

In this context, spectrum sensing and signal identification
becomes important means of achieving effective resource
utilization. To that end, we approach the problems of sensing
and identification via DL from two aspects:
CASE1: In this case, first a novel CNN classifier is trained

with all possible classes, in this case GSM, UMTS, LTE and
empty spectrum which can be referred to as AWGN only. For
each signal the cyclic spectrum is constructed based on the
procedures described in Section II-A. The cyclic spectrum is
then fed to the CNN classifier, which is trained with four
possible inputs beforehand. Finally, the classification is made.
CASE2: In this case a two-stage approach is adopted; at the

first stage a CNN detector (the same CNN model defined is
employed for both detection and classification for the sake of
simplicity) is utilized to decide whether a signal exists in the
given band or not by training the CNN by two classes, first
comprised of GSM, UMTS, and LTE signals and second part
with AWGN only. Thus, in the first stage a decision is made
about whether a signal exists in the spectrum or not as in the
case of classical spectrum sensing. If the decision is made
that there is an information bearing signal in the given band,
second stage is activated utilizing a CNN classifier, which is
trained in our case with three classes (i.e., GSM, UMTS, and
LTE) and finally a decision is made for the class of the signal
occupying the spectrum.

Please note that the classification refers to identification of
the signals, and at the detection part of the approach H1 and
H0 refers to the existence and non-existence of a signal over
the spectrum based on binary hypothesis testing. Both CASE1
and CASE2 are illustrated in Fig. 2.

Firstly, we can define the accuracy for CASE1, PCASE1 as:

PCASE1 = P (χ̂k = χk), k = 0, 1, 2, 3, (13)

where χk denotes the label array of the transmitted signals and
k represents the label of the classes AWGN, GSM, UMTS,
and LTE, respectively. χ̂k is array for the predicted classes
of the received signals. In a short, PCASE1 stands for the
accuracy of four-classes classification problem. For CASE2,
it is required to define two independent accuracy functions:
the sensing accuracy, P S

CASE2 and the classification accuracy,
P C
CASE2, which are defined as

P S
CASE2 = P (χ̂S = 1|H1) + P (χ̂S = 0|H0), (14)
P C
CASE2 = P (χ̂k = χk|H1), k = 1, 2, 3. (15)

χ̂S is the prediction of χS regarding to the presence of a
signal in the spectrum. χk stands for the predictions for the
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Fig. 2. Two different approaches for the sensing and classification of signals.
In CASE1, signal sensing and signal classification are jointly conducted.
However, CASE2 firstly sense signal in the spectrum, then classify.

TABLE I
THE PROPOSED CNN LAYOUT.

Layer Output Dimensions

Input 8193× 16
Conv1 8193× 16× 64

Leaky ReLU1 8193× 16× 64
Max Pool1 4097× 8× 64

Conv2 4097× 8× 128
Leaky ReLU2 4097× 8× 128

Max Pool2 2049× 4× 128
Conv3 2049× 4× 64

Leaky ReLU3 2049× 4× 64
Max Pool3 1025× 2× 64

Flatten 131200
Dense1 256
Dense2 4

Trainable Par. 33, 736, 772

classification part of CASE2. χS is defined for the transmitted
signal as:

χS =

{
0, k = 0,
1, k = 1, 2, 3.

(16)

The overall accuracy for CASE2 can be introduced in terms
of P S

CASE2 and P C
CASE2 by

PCASE2 = P S
CASE2P

C
CASE2. (17)

IV. THE PROPOSED CNN MODEL

As indicated in Section III, the proposed method relies on
a novel CNN model. Design and implementation of CNN for
classification of wireless mobile communication signals is con-
ducted via an open source machine learning library, Keras [24].
The proposed CNN model consists of three convolution and
three pooling layers sequentially. The convolution layers have
respectively 64, 128, and 64 filters. The network is terminated
by two fully connected layers. First hidden layer includes 256
neurons. Second hidden layer consists of 4 and 3 neurons for
CASE1 and CASE2, respectively. The leaky rectified linear
unit (ReLU) activation function with an alpha value 0.1 is used
in each convolution layer to extract discriminating features.
Leaky ReLU is selected instead of ReLU. Unlike ReLU,
leaky ReLU maps larger negative values to smaller ones by
a mapping line with a small slope. In each convolution layer,
3 × 3 filters are used. 2 × 2 max pooling is used to reduce
the dimension and training time. A fully connected layer is
formed by 256 neurons and Leaky ReLU activation function.
Following the fully connected layers, the probabilities for each

Convolution and Pooling Layers Dense Layers

2
5
6

N
-c
la
s
s

Fig. 3. The proposed CNN model consists of three convolutional layers and
two dense layers with Adam optimizer with learning rate of 10−5.

class are computed by the softmax activation function. In
addition, the adaptive moment estimation (ADAM) optimizer
is utilized when determining the model parameters. In the
training phase, early stopping is employed to prevent the
model from over-fitting. The patience is chosen as 10 epochs
for early stopping function and validation loss is monitored
during the training. If the validation loss converges a level and
remain at this level during 10 epochs, the training is terminated
and the weights at the end of training are used in the test. The
implementation layout for the proposed CNN model is given
in Table I. The input matrices, XAP

k , XFFT
k , and XSCF

k are
used at the beginning of the proposed model by convolving
with filters. The overall block diagram for the proposed CNN
model is depicted in Fig. 3.

When the motivation behind designing such a CNN model
is considered, it should be noted firstly that the information
about changes in the local regions of the mapped output is
extracted by using 3×3×64 filters in the first convolution layer.
In this problem, because the SCF creates local differences
in frequency and cyclic frequency regions, the smaller filter
size is preferred to catch peaks in the feature matrices. Thus,
local differences are taken into account along the layers.
After the first layer determines the cyclic characteristics of all
local terms as a general process, the second layer examines
the properties such as location and size related to these
characteristics. Here, it is aimed to deal with cyclic features
in detail by increasing the number of filters to 128. In the
last layer, all properties are converted to an average of all
information gathered and eventually sent to the decisive layer
which is dense layer. For this reason, the number of filters in
the last layer should be chosen so that sufficient information
is obtained without overfitting. Therefore, the number of
filters is selected as 64 in the last layer. It is customary to
quantify the performance of a classifier model in terms of the
precision (Π), recall (Ψ), and F1-score performance metrics.
The precision metric quantifies how much positive results are
actually positive, the recall provides information on how much
true positives are identified correctly as positive, and F1-score
gives an overall measure for the accuracy of a classifier model
since it is the harmonic average of precision and recall. These
metrics are given as

Π =
ξ

ξ + υ
, Ψ =

ξ

ξ + µ
, F1-score = 2× Π×Ψ

Π + Ψ
, (18)

where ξ, υ, and µ denote the numbers of true positive, false
positive, and false negative, respectively.
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V. MEASUREMENT METHODOLOGY AND DATASET
GENERATION

The dataset to test and evaluate the proposed method is
developed from the measurements taken through an extensive
measurement campaign conducted at different locations and
frequency bands. In order to make the model robust against
environmental changes, measurements have been conducted
in different locations as illustrated in Fig. 5. The locations of
transmitters and measurement points can be seen in Fig. 5. It
can be seen that the signals propagate through the urban area,
and then reach the receivers in sub-urban area. The measure-
ment focuses on 800, 900, 1800, and 2100 MHz frequency
bands that are allocated for cellular communications. Rohde
Schwarz FSW26 spectrum analyzer and a set of Yagi-Uda
antennas are employed at the receiver. The measurements are
unified as follows: for each signal observed in the spectrum,
16384 I/Q samples are taken. Measurements are conducted
at 15 different SNR levels. Each level consists of the same
number of signals which is 4000. Therefore, 60000 signals
in total are recorded and included in the dataset. Sample
power spectra of these signal types, obtained with the Welch’s
method, are shown in Fig. 4. When the proposed method is
considered, the dataset is split into test and train data with the
proportion of 0.4 and 0.6, respectively.

To better understand the effects of wireless communi-
cations channels over the received signals, first, amplitude
distributions of four different recordings of all three signals
are given in Fig. 6. The figure indicates differing power
and amplitude levels. The distribution of the received power
changes considerably since the measurements are taken at
different locations, times and frequency bands. Second, Fig. 7
illustrates the phase distribution of four different recordings of
all three signals. It is seen that the phase of received signals
are distributed almost uniformly in between −π and π radians.
This result implies Rayleigh-like fading behavior stemming
from the amplitude and phase distributions of received signals.
This is an expected result when the measurement area and
the locations of transmitters and receivers are considered.
Eventually the received power and phase of the signals are
obviously affected by the shadowing, multipath fading and
path loss as depicted in Fig. 6 and Fig. 7.

The dataset is shared in [20] in the format of SCF. The
dataset covers 60000 SCF matrices with the dimensions of
8193 × 16 corresponding to received I/Q samples of 16384
for each signal.

VI. CLASSIFICATION PERFORMANCE ANALYSIS

We evaluate the performance of the proposed classification
model over the comprehensive dataset described in Section V.
Therefore, the dataset is composed of GSM, wideband code
division multiple access (WCDMA) for UMTS and LTE
signals which are recorded over-the-air at different locations
with unique conditions in terms of the number of channel
taps, and fading, again as noted in Section V. Training and
test sets contain 9000 and 6000 signals for each waveform.
The I/Q signal length is 16384. CNN is trained and tested on

TABLE II
CLASSIFICATION PERFORMANCE METRICS FOR THE PROPOSED CNN

MODEL WITH SCF, AP, AND FFT FEATURES FOR CASE2.

SNR Feature Signal Precision (Π) Recall (Ψ) F1-Score

1dB

I/Q

UMTS 0.33 1.00 0.49
LTE 0.00 0.00 0.00
GSM 0.00 0.00 0.00
Average 0.11 0.33 0.16

AP

UMTS 0.35 0.39 0.37
LTE 0.31 0.29 0.30
GSM 0.30 0.29 0.30
Average 0.32 0.32 0.32

FFT

UMTS 0.00 0.00 0.00
LTE 0.21 0.50 0.30
GSM 0.00 0.00 0.00
Average 0.07 0.17 0.10

SCF

UMTS 0.59 0.40 0.48
LTE 0.68 0.46 0.54
GSM 0.62 0.98 0.76
Average 0.63 0.61 0.59

5dB

I/Q

UMTS 0.33 1.00 0.49
LTE 0.00 0.00 0.00
GSM 0.00 0.00 0.00
Average 0.11 0.33 0.16

AP

UMTS 0.43 0.42 0.42
LTE 0.39 0.43 0.41
GSM 0.61 0.56 0.58
Average 0.47 0.47 0.47

FFT

UMTS 0.53 0.49 0.51
LTE 0.25 0.51 0.34
GSM 0.00 0.00 0.00
Average 0.26 0.33 0.28

SCF

UMTS 0.97 0.92 0.94
LTE 0.92 0.95 0.94
GSM 0.98 1.00 0.99
Average 0.96 0.96 0.96

10dB

I/Q

UMTS 0.33 1.00 0.49
LTE 0.00 0.00 0.00
GSM 0.00 0.00 0.00
Average 0.11 0.33 0.16

AP

UMTS 0.50 0.52 0.51
LTE 0.50 0.53 0.52
GSM 0.88 0.79 0.83
Average 0.63 0.61 0.62

FFT

UMTS 0.49 0.37 0.42
LTE 0.27 0.62 0.38
GSM 0.00 0.00 0.00
Average 0.26 0.33 0.27

SCF

UMTS 1.00 0.96 0.98
LTE 0.96 0.99 0.98
GSM 1.00 1.00 1.00
Average 0.99 0.98 0.98

15dB

I/Q

UMTS 0.33 1.00 0.49
LTE 0.00 0.00 0.00
GSM 0.00 0.00 0.00
Average 0.11 0.33 0.16

AP

UMTS 0.55 0.54 0.55
LTE 0.55 0.57 0.56
GSM 0.94 0.93 0.94
Average 0.68 0.68 0.68

FFT

UMTS 0.73 0.49 0.58
LTE 0.35 0.82 0.49
GSM 0.00 0.00 0.00
Average 0.36 0.44 0.36

SCF

UMTS 1.00 0.97 0.99
LTE 0.97 0.99 0.98
GSM 0.99 1.00 1.00
Average 0.99 0.99 0.99

the graphics processing unit (GPU) server equipped with four
NVIDIA Tesla V100 GPUs.

First, we focus on the results for CASE1. As stated before,
CASE1 refers to four-classes classification problem. As shown
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Fig. 4. This snapshot of spectrum denotes a sample from the dataset comprised of cellular signals recorded during a comprehensive measurement campaign.
900 MHz band is represented here but the measurements are not limited to that band; thus, cover all cellular bands.

Transmitter

Receiver

Fig. 5. An overview of the measurement area. The transmitters are located
in the urban area, but the receivers are in a sub-urban area.

Fig. 6. Sample PDFs of the amplitude of received signals in the dataset. The
example PDFs show the different channel and received power characteristics.

Fig. 7. Sample PDFs of the phase of received signals in the dataset. The
example PDFs show uniform distribution characteristics.

in Fig. 8, the test accuracy of the model exceeds 90% at
11dB SNR. It takes a maximum accuracy value of 92% at
15dB. The confusion matrices related to CASE1 are depicted
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Fig. 8. Accuracy values with respect to SNR level of the received signals for
both cases.

in Fig. 9. Due to the low SNR values, the model mostly can not
accurately clasify the signals and identifies the signal as Noise.
This case can be observed in Fig. 9(a). Therefore, dividing
the problem into two parts becomes a viable alternative:
first sense, then classify. In this case, we analyse both CNN
detector and CNN classifier (see Fig. 2). For the sensing part
of the architecture, noise signals are labeled as 0 and the rest
of the set is labeled as 1. The detection results are plotted again
in Fig. 8 as P S

CASE2. The detection accuracy follows 96% at
almost all SNR values.

Following the steps above, assuming that the signal is
present in the spectrum at the output of CNN detector of
CASE2 in Fig. 2, the performance of the CNN classifier can
be investigated. This stage is labeled as P C

CASE2 in Fig. 8 and
it is observed that the classification accuracy exceeds 90% at
3dB SNR. It gives the best performance, 98.5%, at 9dB and
it is remained stable until 15dB. The Fig. 10(a) depicts the
confusion matrices related to CNN classifier of CASE2 and
implies that even at low SNR regime, the classifier can identify
GSM signals with high accuracy; however, overall precision
of the classifier is low i.e., in contrary to GSM signals, the
classifier has difficulty in recognition of UMTS and LTE
signals in low SNR regime. But the accuracy and precision
of the classifier enhance as SNR increases in Fig. 10(b) and
Fig. 10(c). This phenomena is observed due to the dominance
of characteristics in feature matrices which follow Gaussian
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distribution. As known, GSM is associated with Gaussian min-
imum shift keying (GMSK); therefore, GSM signals inherently
show characteristics defined by Gaussian distribution in the
case of high SNR. Decreasing in SNR leverages Gaussian
characteristics in the received signal because of AWGN. That
is to say, UMTS and LTE signals with lower SNR values
become denoting Gaussian characteristics; thus, the model is
prone to learn Gaussian characteristics to decrease its loss
function. When the trained model is tested, it is expected
that the model can identify the signals which have dominant
Gaussian characteristics. As a result, the model can identify
GSM signals, which inherently denote Gaussian attributes, in
lower SNR regime where UMTS and LTE signals lose their
unique features. This statement shows parallelism with the
results given in CASE1 in Fig. 9(a). The model accurately
identifies AWGN at lower SNR regime as given in Fig. 9(a).

The results for CASE2 are given in parts to this point.
Now, we can examine the overall performance of CASE2.
Obviously, there is a loss of performance due to some mis-
detection in the sensing phase. Both the detection rate in
the sensing stage and the accuracy in the classification stage
are high at 3dB and thereafter, so overall performance does
not suffer a significant loss. As shown in Fig. 8, the overall
performance of CASE2 is far superior to that of CASE1.
Especially at low SNR levels, the signals remaining after first
detecting and separating noise from the signal set by the CNN
detector can be classified with much better performance. In
this way, the performance is higher in CASE2. However, it
should be noted that CASE2 is more costly than CASE1 in
terms of training time and the number of models. Obviously,
CASE2 can be predicted to perform better than CASE1 in the
presence of a jammers exhibiting Gaussian characteristics or
other interfering signals.

Sensing performance can be considered that it is slightly
lower than conventional spectrum sensing methods like energy
detector and matched filter. However, it should be noted that
this study employs real–world data rather than simulation or
synthetic data. For example, energy detectors can sense a
signal in a spectrum with optimal performance; however, it
needs to know noise variance. But even with a slight error
on estimating the noise variance, the sensing performance
seriously decreases. Moreover, as the power of spread spec-
trum signals (e.g. WCDMA in UMTS) is spreaded in a wide
band, its power is very close to the noise floor. By taking
into this account, in a fading environment, it can be said that
ED cannot perform a satisfactory detection rate for spread
spectrum signals as stated in [25]. It is worth noting that our
measurements follow Rayleigh distribution as seen in Fig. 6
and Fig. 7. On the other hand, matched filters are waveform-
specific solution and they require the perfect knowledge for
signals.

A. Investigation for the Impact of Different Features

In this section, we compare the performance of other
features of I/Q, AP, and FFT which are frequently employed
for sensing purposes with SCF. The features are used as
detailed in Section II. The results of this test are presented

TABLE III
PERFORMANCE COMPARISON BETWEEN THE EXISTING DL NETWORKS

AND THE PROPOSED SYSTEM FOR THE CLASSIFICATION STAGE OF CASE2
AT SNR VALUE OF 15DB.

Network Signal Precision Recall F1-score

CLDNN [18]

UMTS 0.33 1.00 0.50
LTE 0.00 0.00 0.00
GSM 0.00 0.00 0.00
Average 0.11 0.33 0.17

LSTM [28]

UMTS 0.33 1.00 0.50
LTE 0.00 0.00 0.00
GSM 0.00 0.00 0.00
Average 0.11 0.33 0.17

Proposed CNN with SCF

UMTS 0.79 1.00 0.88
LTE 1.00 0.72 0.84
GSM 0.99 1.00 0.99
Average 0.93 0.91 0.91

in Table II. Unlike the modulation classification studies [9,
26], I/Q cannot provide a meaningful input for the model due
to the severe fading effect on the phase of signal, which is seen
in Fig. 7. The histograms of phase imply that the signal phase
is corrupted and the information on the phase is lost. That is
why I/Q shows poor performance. The average performances
also indicate that SCF outperforms I/Q, AP, and FFT for all
SNR levels. Assuming that these two are used along with I/Q
as the main features for training, these results show significant
gains for real-world signals especially above 5dB SNR level.
It is observed that AP performs better than FFT. The average
training time per epoch is approximately 60s for SCF feature
where both FFT and AP take 7.5s per epoch; however,
both FFT and AP cannot show an acceptable classification
performance, PCCASE2. Although the cost of computing both
features is far behind the SCF, they are far from delivering the
desired performance. To visualize the vectors in input space,
we employ the t-distributed stochastic neighbor embedding (t-
SNE) algorithm. Although originally I/Q samples are not
linearly separable, SCF clusters the vectors in the space and
allows almost linear separation as depicted in Fig. 11. The
analysis based on t-SNE results show that SCF better separates
signal vectors in space. The results of this study are in line
with the previous analysis [27].

B. Comparison with Existing Deep Learning Networks

The existing DL networks are employed to classify the
cellular communication signals. We utilize CLDNN [18] and
LSTM [28] models. These models are originally used in
modulation classification. Without any change in the models,
input matrix, and input vector as proposed in the papers are
adopted in the study. CLDNN takes a 2×128 matrix which is
composed of amplitude and phase values for each I/Q sample.
On the other hand, LSTM model utilizes a vector reshaped
version of the matrix used in CLDNN. Therefore, the length
of the vector is 256. Its first half includes in-phase components
while the rest of the vector is quadrature components. Other
details are found in [18, 28]. The precision, recall, and F1-
score are given in Table III. It shows that CLDNN and LSTM
decide that the received signal is UMTS whatever it actually
is. Even though LSTM and CLDNN can be trained in a short
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Fig. 9. Confusion matrices for CASE1 at SNR levels of (a) 1dB, (b) 5dB, and (c) 10dB. It should be noticed that the model does not randomly choose only
one signal at low SNR level.
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Fig. 10. Confusion matrices for the classification part of CASE2 at SNR levels of (a) 1dB, (b) 5dB, and (c) 10dB. It should be noticed that the model does
not randomly choose only one signal at low SNR level.
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Fig. 11. Two-dimensional demonstration of the features by the t-SNE algo-
rithm. This illustration shows that in contrary to the other features, SCF can
separately cluster real-world signals in space successfully.

time by using I/Q vector and matrix, employing I/Q vector
and matrix give poor classification performance.

C. Comparison with SVM

In our previous work, we employed SVMs to identify real-
world signals [27]. Even though utilization of SCF in SVM
provides good performance, training of SVM should be con-
ducted for each SNR level separately i.e., at the end of the
training, the more SNR values in the dataset, the more mod-
els should be created. The real-world utilization of SVM re-
quires an SNR estimator and loading of all pre-trained mod-
els to memory during operation; thus, reducing the applica-
bility of the method and making improvements a necessity.
As seen in Fig. 12, the CNN-based classifier shows a superior
performance compared to SVM-based classifier of [27], under
the conditions of the classification part of CASE2. To this end,
while CNN-based classifier employs a less costly feature due
to elimination of mapping of bi-frequency spectrum, it still
performs with higher accuracy. Therefore, producing a model
independent of the SNR is an advantage of the proposed CNN
based method since the training set contains an equal number
of signals from each SNR. As a result, a single model would
be adequate for classification in a large SNR range at the test
stage.
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Fig. 12. The classification performance comparison between SVM in [27]
and the proposed CNN structure for P C

CASE2.
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Fig. 13. Spectrum sensing performances of CFAR detectors and CNN-based
detector with respect to SNR.

D. Comparison with CFD

Besides signal classification, the proposed CNN model can
be used for spectrum sensing. We investigated the sensing
performance of the model by training a CNN-based spectrum
occupancy detector trained over 600 pure noise signals and 600
noisy WCDMA signals for each SNR value. Then, the model
is tested with 400 pure noise signals and 400 noisy WCDMA
signals for each SNR level and sensing results are acquired.
Furthermore, for comparison purposes, we implement a con-
stant false alarm rate (CFAR) detector utilizing classical CFD
[29] to identify WCDMA signals and the same dataset is
also used for CFAR detector. Please note that UMTS signals
are deliberately selected due to their known dominant SCF
characteristics stemming from cyclic spreading codes. The
results of this test are given in Fig. 13. In view of these results,
it is clearly seen that the CNN-based detector outperforms the
CFAR detector at all SNR regimes. For example, the sensing
performance of the CNN-based detector is 91.75% at 3dB
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Fig. 14. Model comparison in terms of memory, complexity, and accuracy.
The epoch time and memory allocation rate are normalized with their maxi-
mum values observed in these models (maximum values for both are observed
in LSTM). The average accuracy is the mean accuracy in the SNR range
between 1dB and 15dB.
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Fig. 15. Test accuracy with respect to SNR values for the proposed CNN,
CLDNN, LSTM, ResNet, and DenseNet models.

while the probability of detection for the CFAR detector are
45.6% and 59.4% for the selected false alarm rates as 0.05
and 0.1, respectively.

E. Focusing on the Meaningful Region of Spectral Correlation
Function

As seen in Fig. 1, the meaningful part of the features is
located in the middle of the matrices. In order to investigate the
possibility of accuracy improvement and the fair comparison
with the existing DL networks, we employ a small partition in
middle of the SCF matrix, where the cyclic characteristics are
mainly observed. As stated in Section V, an SCF matrix has
the dimension 8193× 16. Therefore, it is not possible to train
such a dense model in our server equipped with four NVIDIA
Tesla V100 GPUs. To compare our proposed CNN architecture
with a more dense model, we decrease the dimensions of the
SCF matrices by using only 16× 16 part in the middle of
the matrices. Only in this way, we are able to train complex
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Fig. 16. Confusion matrices for CASE1 at SNR levels of (a) 1dB and (b)
5dB when 16× 16 inputs are employed.

models such as LSTM [12] and DenseNet [19] with SCF.
Moreover, the proposed CNN, CLDNN [18], and ResNet [9]
are also trained with the shrunken SCF matrices. It is worth
saying that, we conduct four-class classification (i.e., CASE1)
in this study. The results depicted in Fig. 14 shows that the
proposed CNN is favorable in terms of both low complex-
ity (i.e., epoch time) and efficient memory allocation, as well
as high test accuracy. During this study, batch sizes are kept
same for all models. The memory allocation and training time
have been normalized by LSTM’s memory allocation rate and
training time, respectively; thus, computer-independent results
are provided in Fig. 14. It should be noted that early stop-
ping is used during training of models and the minimum num-
ber of epochs is required by the proposed CNN. Furthermore,
Fig. 15 denotes the accuracy with respect to SNR levels for
each model. By considering results, it can be observed that the
proposed CNN is more robust and efficient than the existing
models. Moreover, it is seen that CNN gives better results
with this smaller matrix than the complete matrix is used.
By eliminating the region except for the meaningful part of
SCF, the input matrices become more distinct from each other.
Fig. 1 implies that SCF matrices have similarities except for
the meaningful part. The confusion matrices in Fig. 16 for
16× 16 inputs denote the improvement in the precision of
AWGN. This explains why the small portion of the matrix
can lead to higher accuracy.

It is also explored how the dimensions of the small partition
affect the performance of the CNN model. The results show
that using 4 rows does not perform well enough. When using
rows between 8 and 128 (as power of two), the results are
satisfactory. The test accuracy with respect to input size is
demonstrated in Fig. 17. It is revealed that by considering the
accuracy at lower SNR regimes and the training time, 16× 16
is the most suitable size for the CNN.

VII. CONCLUSION

In this study, a DL-based method utilizing SCF as an
input to a novel CNN model to achieve spectrum sensing
or signal identification interchangeably or jointly without the
requirement of any a priori information is proposed. First
approach investigates the joint sensing and classification of
wireless signals. Second, a sequential approach is adopted.
The results show that sequential approach performs better than
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Fig. 17. The test accuracy of the proposed CNN architecture with respect to
input size.

the joint approach. Moreover, comparative analysis indicated
the superiority of SCF as a distinctive feature when compare
to the contemporary features utilized for currently available
DL-based detector models. The results also imply that under
stringent channel conditions, the CNN model of the proposed
method provides better spectrum sensing performance than
other available DL models, SVMs, and classical CFD. These
results indicate that applicability of DL-based techniques in
the rapidly changing communications environment of con-
temporary wireless communications networks. In subsequent
studies, the performance of the proposed method for sensing
and identification of other wireless signals or modulation
techniques with cyclic features can be explored. Furthermore,
the performance of the proposed method can be investigated
against adversarial attacks and efforts can be made to develop
various techniques to strengthen its resistance to these types of
intrusions. Although this study focuses on supervised learning,
it is possible to improve the performance of the proposed
method by supporting unsupervised learning methods in fea-
ture extraction.
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“COSINE: Cellular cOmmunication SIgNal datasEt,” 2020. [Online].
Available: http://dx.doi.org/10.21227/safr-gh59

[21] R. Roberts, W. Brown, and H. Loomis, “Computationally efficient
algorithms for cyclic spectral analysis,” IEEE Signal Process. Mag.,
vol. 8, no. 2, pp. 38–49, Apr. 1991.

[22] M. Zhang, M. Diao, and L. Guo, “Convolutional neural networks for
automatic cognitive radio waveform recognition,” IEEE Access, vol. 5,
pp. 11 074–11 082, 2017.

[23] M. D. Zeiler and R. Fergus, “Stochastic pooling for regularization of
deep convolutional neural networks,” arXiv preprint arXiv:1301.3557,
2013.

[24] F. Chollet et al., “Keras,” https://keras.io, 2015.
[25] D. Cabric, S. M. Mishra, and R. W. Brodersen, “Implementation issues

in spectrum sensing for cognitive radios,” in Thirty-Eighth Asilomar
Conference on Signals, Systems and Computers, vol. 1, 2004, pp. 772–
776.

[26] K. Tekbiyik, A. R. Ekti, A. Gorcin, G. K. Kurt, and C. Kececi, “Robust
and fast automatic modulation classification with CNN under multi-
path fading channels,” in IEEE 91st Vehicular Technology Conference
(VTC2020-Spring), 2020, pp. 1–6.
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