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Abstract—Recently, Unmanned Aerial Vehicle (UAV) swarm has
been increasingly studied to collect data from ground sensors in
remote and hostile areas. A key challenge is the joint design of the
velocities and data collection schedules of the UAVs, as inadequate
velocities and schedules would lead to failed transmissions and
buffer overflows of sensors and, in turn, significant packet losses.
In this paper, we optimize jointly the velocity controls and data
collection schedules of multiple UAVs to minimize data losses,
adapting to the battery levels, queue lengths and channel conditions
of the ground sensors, and the trajectories of the UAVs. In the
absence of the up-to-date knowledge of the ground sensors’ states,
a Multi-UAV Deep Reinforcement Learning based Scheduling Al-
gorithm (MADRL-SA) is proposed to allow the UAVs to asymp-
totically minimize the data loss of the system under the outdated
knowledge of the network states at individual UAVs. Numerical
results demonstrate that the proposed MADRL-SA reduces the
packet loss by up to 54% and 46% in the considered simulation
setting, as compared to an existing DRL solution with single-UAV
and non-learning greedy heuristic, respectively.

Index Terms—Unmanned aerial vehicles, communication
scheduling, velocity control, multi-UAV deep reinforcement
learning, deep Q-Network.

I. INTRODUCTION

THANKS to excellent mobility and maneuverability, un-
manned Aerial Vehicles (UAVs) are used in many civilian

and commercial applications, e.g., weather monitoring, traffic
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Fig. 1. Multi-UAV assisted wireless sensor networks, where UAVs are em-
ployed to collect sensory data of the ground sensors.

control, package delivery [1] and crops monitoring [2]. UAVs
are also employed to relay data for the ground sensors in harsh
environment, such as natural disaster monitoring [3], border
surveillance [4] and emergency assistance [5]. We consider a
remote environment, where ground sensors are deployed beyond
the reach of any terrestrial gateways and have no persistent power
supply. A UAV can physically approach each individual ground
sensor. The short, line-of-sight (LoS)-dominant communication
link between the UAV and a ground sensor enjoys a significant
channel gain and supports high-speed data transmission. In
this sense, employing the UAVs to collect data can improve
the network throughput and extend the coverage range beyond
terrestrial gateways. Fig. 1 depicts a typical multi-UAV-assisted
wireless sensor network (MA-WSN), where the ground sensors
are deployed to monitor temperature and humidity of croplands.
Sensory data are generated by the ground sensors and are stored
in a data queue for future transmission to the UAVs. UAVs
are employed to hover over the cropland, where the UAV can
move sufficiently close to each ground sensor, exploiting short-
distance LoS communication links, for collecting the data.

In MA-WSN, the ground sensors undergo random data ar-
rivals, since the data generation experiences a random environ-
mental change of the temperature and humidity. As depicted
in Fig. 1, the UAVs are employed to hover over a cropland,
where a UAV can move sufficiently close to a ground sensor, ex-
ploiting short-distance line-of-sight (LoS) communication links

https://orcid.org/0000-0002-8842-2616
https://orcid.org/0000-0002-0781-9655
https://orcid.org/0000-0002-0517-2392
https://orcid.org/0000-0002-4933-594X
mailto:emami@isep.ipp.pt
mailto:kaili@isep.ipp.pt
mailto:emt@isep.ipp.pt
mailto:bo.wei@northumbria.ac.uk
mailto:Wei.Ni@data61.csiro.au


for data collection. However, selecting a ground sensor for data
collection may lead to buffer overflows at other sensors, if those
sensors’ buffers are already full while new data keeps arriving.
Moreover, the transmissions of ground sensors which are far
away from the UAVs and experience poor channel conditions
are prone to errors at the UAVs. The slow mobility of a UAV can
give rise to buffer overflows of the ground sensors since newly
arrived data is not promptly collected by the UAV. Adequately
scheduling data collection coupling with onboard velocity of
the UAVs is critical to data queue overflow and communication
failure. In addition, the joint velocity control and sensor selection
need to be coordinated between participating UAVs. However,
it is difficult for the UAVs to share their velocities and selected
sensors with each other in real-time due to limited radio coverage
and fast movements.

In this paper, joint communication schedule and velocities
control of multiple UAVs are formulated as a multi-agent
Markov Decision Process (MMDP), which aims to minimize
packet loss resulting from buffer overflows and communication
failures. In particular, the ground sensor records the visit time
whenever a UAV schedules the sensor to transmit data. More-
over, the visiting records of the sensor is shared to the UAV,
which is used as an evidence of the other UAVs’ communica-
tion schedules. The network state of MMDP contains battery
levels and data queue lengths of the ground sensors, channel
conditions, visit time and the waypoints along the trajectory
of the UAVs. The UAVs take actions of selecting the ground
sensors for data transmissions, determining modulation schemes
and adjusting the patrol velocities. In practice, the up-to-date
knowledge of the battery level and data queue length of the
ground sensors is not available at the UAVs. Thus, multi-UAV
Q-learning can be a solution to training the actions of the UAVs.
Since the trajectory of each UAV can consist of a large number of
waypoints, the velocity control of the UAVs along the trajectories
results in a massive state and action space and high complexity
of multi-UAV Q-learning. The main contributions of this paper
can be summarized as follows:
� We formulate the problem of joint velocity control and data

collection scheduling as an MMDP to minimize the overall
packet loss resulting from the buffer overflow and channel
fading. To deal with the large state and action spaces, we
propose Multi-UAV Deep Reinforcement Learning based
Scheduling Algorithm (MADRL-SA) based on Deep Q-
networks (DQN) to optimize the selection of the ground
sensor, instantaneous patrol velocity of the UAVs and
modulation scheme. The UAVs also carry out experience
replay to make learning efficient by breaking the correla-
tion between consecutive samples.

� In practice, the online decisions of the UAVs in flight are
unknown to each other, which may result in incomplete
training of MADRL-SA. To train the actions of a UAV
according to the actions of the other UAVs, a local action
recording process is developed, where each ground sensor
records historical visits of all UAVs. The UAV that sched-
ules the ground sensor to transmit data receives the records,
which contains the past scheduling decisions of the other
UAVs.

The rest of this paper is organized as follows. Section II
reviews the related work on multi-UAV systems. Section III
presents the system model. The joint optimization of the veloc-
ity control and communication schedule is formulated in Sec-
tion IV. In Section V, preliminaries is presented then multi-UAV
DQN is developed and a new MADRL-SA scheme is designed
to optimize the decision process of the MMDP, thereby opti-
mizing the patrol velocities as well as the transmission schedule
of the ground sensors. Performance evaluation is presented in
Section VI. This paper is concluded in Section VII.

II. RELATED WORK

This section presents the literature on resource allocation and
scheduling in multi-UAV systems.

A. Resource Allocation in UAV Networks

The work in [6] develops a framework for trajectory con-
trol, user association, and power control in multi-UAV enabled
wireless networks. Communication throughput gains can be
obtained by mobile UAVs over static UAVs/fixed terrestrial
base stations, by exploiting the design degree of freedom via
UAV trajectory adjustment. A general mixed integer nonlinear
program formulation for a multi-UAV network is presented in [7]
to adjust the communication and the computational energy. [8]
explores a multi-UAV-aided relaying system, where UAV relays
aim to establish communication between senders and receivers
and to improve the rate between the pair of sender and receiver,
the UAVs’ positions are adjusted and resource allocations are
conducted. In [9], a cooperative framework designed which
allowed the formation of a network between the aerial and
the ground nodes. Their approach provides continuous connec-
tivity, enhanced lifetime, and improved coverage in the UAV
coordinated WSNs and laid the foundation of guided network
formations between the UAVs and the ad hoc networks on the
ground. A framework is developed in [10] to improve energy
efficiency in deadline-based WSN data collection with multiple
UAVs. In [11], the mission completion time is adjusted for multi-
UAV-enabled data collection. An energy-efficient transmission
scheduling scheme of UAVs in a cooperative relaying network is
developed in [12] such that the maximum energy consumption of
all the UAVs is minimized, in which an applicable sub-optimal
solution is developed and the energy could be saved up to 50%
via simulations. In [13] a UAV is used to collect data from
time-constrained Internet of Things (IoT) devices. The UAV
trajectory and radio resource allocation are adjusted to collect
data from IoT devices adapting to their deadline.

B. DRL Approaches

In [14], a single agent DQN for UAV-assisted online power
transfer and data collection is developed. However, in most
situations, multiple UAVs are needed to interact with each
other to solve a resource allocation problem. In [15], online
velocity control and data capture are studied in UAV-enabled
IoT networks. DQN is developed in the presence of outdated



knowledge to determine the patrolling velocity and data trans-
mission schedule of the IoT node. In [16], the joint flight cruise
control and data collection scheduling in the UAV-aided IoT
network is formulated as a POMDP to minimize the data lost
due to buffer overflows at the IoT nodes and fading airborne
channels. A UAV-assisted IoT communication is investigated
in [17] where by applying multi-agent DRL a resource allocation
scheme adapting to bandwidth, throughput, and interference is
obtained.

A wireless powered communication network is developed
in [18] where multiple UAVs provide energy supply and com-
munication services to IoT devices. They used a multi-UAV
DQN based approach to improve throughput by jointly adjusting
UAVs’ path design and time resource assignment. They follow
an independent learner approach without cooperation between
UAVs. In [19], the authors consider long-term, long-distance
sensing tasks in a smart city scenario where UAVs make de-
cisions based on DQN for energy-efficient data collection. An
energy-saving DRL-based UAV control strategy is developed
in [20] to enhance the energy efficiency and communication
coverage. They used deep deterministic policy gradient method
and take into account communications coverage, fairness, en-
ergy consumption and connectivity. In [21], the dueling DQN
is employed to adjust the UAV deployment in the multi-UAV
wireless networks so that downlink capacity is to be enhanced
while covering all ground terminals. They modeled the problem
as a constrained MDP problem.

The multi-agent reinforcement learning (MARL) framework
is developed in [22] to investigate the dynamic resource alloca-
tion problem in UAV networks. A Q-learning based algorithm
is developed to enhance the long-term rewards where each UAV
runs Q-learning algorithm and automatically selects its com-
munication mode, power levels and sub-channels in concurrent
manner. [23] studies spectrum sharing among a network of
UAVs. A relaying service is realized by team of UAVs to serve
primary users on the ground aiming to gain spectrum access
consequently. The gained spectrum belongs to not only UAV
relay but also other UAVs that perform the sensing task. The
problem is formulated as deterministic MMDP and distributed
Q-learning is utilized to solve it.

[24] develops the DRL algorithm based on echo state network
cells to find an interference-aware path and allocate resources to
the UAVs. The developed scheme reduces wireless latency and
improves energy efficiency. The work in [25] adjusts trajectory
and power control in multiple UAVs scenarios to enhance the
users’ throughput and satisfying the users’ rate requirement.

The proposed MADRL-SA is different from the MARL
framework [22]. In MARL, the UAVs follow an independent
learner paradigm, while in MADRL-SA the UAVs cooperate to
minimize the packet loss. Moreover, MADRL-SA is for practical
scenarios and utilizes DQN unlike MARL which utilizes Q-
learning. The work in [14] follows a single UAV approach, while
MADRL-SA follows a multi-UAV approach with the merits of
scalability and robustness. Our work focuses on minimizing the
packet loss and provide velocity control while the work in [19]
focuses on energy efficiency and neglect the velocity control,
also the UAVs act independently.

III. SYSTEM MODEL

The network contains J ground sensors and I UAVs. Our
study focuses on the joint velocity control and communication
scheduling under preconfigured UAV trajectories. The UAVs
fly along pre-determined trajectories which consist of a large
number of waypoints to cover all the ground sensors in the field.
The trajectories of the UAVs can be predesigned according to
the required network capacity [26], coverage [14], or the UAVs’
propulsion energy consumption [27]. The optimization of UAV
trajectories has been widely studied in the literature [28]–[30].
The proposed MADRL-SA is generic to any given trajectory.

The channel coefficient between the UAV i (∈ [1, I]) and
device j (∈ [1, J ]) at t is hi

j(t), which can be known by channel
reciprocity. The modulation scheme of device j at t is denoted
byφj(t). In particular,φj(t)= 1, 2, and 3 indicates binary phase-
shift keying (BPSK), quadrature-phase shift keying (QPSK),
and 8 phase-shift keying (8PSK), respectively, and φj(t) ≥ 4
provides 2φj(t) quadrature amplitude modulation (QAM).

Let hi
j(t) denote channel gain between ground sensor j and

UAV i. The transmit power of the ground sensor, denoted by
P i
j (t), is [31]

P i
j (t) =

lnk1
ε

k2hi
j(t)

2

(
2φj(t) − 1

)
(1)

wherek1 andk2 are channel constants, and ε denotes the required
bit error rate (BER) of the channel. We consider that UAV i
moves in low attitude for data collection, where the probability
of LoS communication between UAV i and ground sensor j can
be

PrLoS(ϕ
i
j) =

1
1 + aexp(−b[ϕi

j − a])
(2)

where a and b are constants, and ϕi
j denotes the elevation angle

between UAV i and ground sensor j. Furthermore, path loss of
the channel between UAV i and device j can be obtained by

γi
j = PrLoS(ϕ

i
j)(ηLoS − ηNLoS)+

20log(r sec(ϕi
j)) + 20log(λ) + 20log

(
4π
vc

)
+ ηNLoS

(3)

where r denotes the radius of the radio coverage of UAV i, λ
is the carrier frequency, and vc is the speed of light. ηLoS and
ηNLoS represent the excessive path losses of LoS or non-LoS,
respectively [32]. Please See Appendix A.

A. Communication Protocol

Fig. 2 shows the data collection protocol for the MA-WSN.
Specifically, the proposed MADRL-SA operates onboard at the
UAVs to determine their velocities and sensor selection, and
allocate the modulation scheme for the selected sensors. The
details of MADRL-SA will be provided in the next section. Next,
the UAV broadcasts a short beacon message which contains
the ID of the selected sensor. Upon the receipt of the beacon
message, the selected sensor transmits its data packets to the
UAV, along with the state information of ej(t), qj(t), and TV Rp



Fig. 2. Data communication protocol for the MA-WSN. In each communication frame, MADRL-SA is conducted at the UAVs to determine the velocity and
sensor selection while allocating the modulation scheme for the selected sensor.

in the control segment of the data packet. Once the data is
correctly received, the UAV sends an acknowledgment to the
ground sensor.

IV. PROBLEM FORMULATION

In this section, we present the problem formulation.

A. Optimization Formulation

Let κi
j(t) be the binary indicator of ground sensor j being

selected by UAV i for data transmission at time t. If ground
sensor j is scheduled by UAV i at time t, κi

j(t) = 1; otherwise,
κi
j(t) = 0. The joint optimization of UAV velocity and commu-

nication schedule aims to minimize the packet loss of all the
ground sensors, as given by

Optimization problem:

min
κi
j(t),vi(t),P

i
j (t)

ΣI
i=1Σ

J
j=1fij(κ

i
j(t), vi(t), P

i
j (t))+

ΣJ
j=1gj(κ

i
j(t))) (4)

subject to:

0 ≤ P i
j (t)κ

i
j(t) ≤ Pmax, (5)

where

fij(κ
i
j(t), vi(t), P

i
j (t))

=

{
1, if (κi

j(t)=1) & (hi
j(t)<=hth) & (vi(t)<=vmax);

0, otherwise,

and

gj(κ
i
j(t))

=

{
1, if (qj(t) > D) &amp; (κi

j(t) = 0);

0, otherwise,

Constraint (5) ensures that the transmit power of the scheduled
ground sensor does not exceed the maximum transmit power
Pmax.

B. MMDP Formulation

MMDP can be defined by the tuple {I , {Sα,i}, {ai},
C{Sβ |Sα, a}, Pr{Sβ |Sα, a}}

1) I is the number of agents, i.e., UAVs.
2) Sα,i is the network state observed by agent i (i ∈ I).

Sα,i comprises: channel quality hi
j(t), battery level ej(t),

queue length qj(t), visit time TV Rp and the location of
UAV ζi(t),
i.e.,Sα,i ={(hi

j(t), ej(t), qj(t),TV Rp, ζi(t)), i=1,2,...I}.
In particular, each ground sensor maintains a list of visiting
time of the agents. Joint state of all the agents is denoted
Sα, where Sα=Sα,1×. . .. . .×Sα,I .

3) ai represents the action of agent i. ai is to schedule
one sensor to transmit data to the UAV, determine the
modulation and the instantaneous patrol velocity of the
UAV, i.e., ai={(j, φj(t), v(t)), i = 1, 2, . . ..I}. Joint ac-
tion a which consists of the actions of all the agents is
a=a1×. . .. . .×aI . The size of action space is JΦ | v(t) |,
whereΦ is the highest modulation order and | v(t) | stands
for the cardinality of the set [vmin, vmax].

4) C{Sβ |Sα, a} is the network cost yielded when joint action
a is taken at joint state Sα and the following joint state
changes to Sβ . The network cost is the packet loss of the
ground sensors.

5) Pr{Sβ |Sα, a} denotes the transition probability from joint
state Sα to joint state Sβ when joint action a is taken.

C. Transition Probability

The transition probability of the MMDP, from Sα to Sβ can
be given by



Pr{Sβ |Sα} = ΠI
i=1(Pr{(eβ,j , qβ,j , hβ,j , ζβ,j)

|(eα,j , qα,j , hα,j , ζα,j), j ∈ ai}i
×ΠK

k=1 Pr{(eβ,k, qβ,k, hβ,k, ζβ,k)

|(eα,k, qα,k, hα,k, ζα,k, k �= ai; i ∈ [1, I]}i)
(6)

Specifically, the state transition probability presented
in (6) consists of two parts. The first part, i.e.,
Pr{(eβ,j , qβ,j , hβ,j , ζβ,j)|(eα,j , qα,j , hα,j , ζα,j), j ∈ ai}is
the state transition probability from Sα to Sβ in terms of the
selected ground sensor (j ∈ ai). Let K denote the total number
of unselected ground sensors. The second part, i.e.,
ΠK

k=1 Pr{(eβ,k, qβ,k, hβ,k, ζβ,k)|(eα,k, qα,k, hα,k, ζα,k, k �=
ai; i ∈ [1, I]} is the probability from Sα to Sβ in terms of the
unselected ground sensors, where k �= ai; i ∈ [1, I] indicates
the sensors that are not selected by any of the I agents.

Let di,j denotes the distance between ground sensor j and
UAV i, v(t) is velocity of the UAV, R(t) is the data rate of the
ground sensor and λ is the packet arrival probability. The state
transition probability of the selected sensor j, which is specified
in (5), depends on the following possible transitions.

1) Packet transmission is successful due to the good channel
quality, i.e., hβ,j > hα,j and low velocity. There is no
packet arrival, the data queue of the selected node de-
creases, i.e., qβ,j = qα,j − 1. The state transition proba-

bility is (1 − ε)
2di,jR(t)

v(t) (1 − λ).
2) Packet transmission is failed due to the poor channel

quality, i.e., hβ,j < hα,j and high velocity. A new data
packet is generated and buffered, the data queue of the
selected node increases, i.e., qβ,j = qα,j + 1. The state

transition probability is (1 − (1 − ε)
2di,jR(t)

v(t) )λ.
3) Packet transmission is successful due to the good channel

quality, i.e., hβ,j > hα,j and low velocity. A new data
packet is generated and buffered, the data queue of the
selected node remains unchanged, i.e., qβ,j = qα,j . The

state transition probability is (1 − ε)
2di,jR(t)

v(t) λ.
4) Packet transmission is failed due to the poor channel

quality, i.e., hβ,j < hα,j and high velocity. There is no

packet arrival, the data queue of the selected node remains
unchanged, i.e., qβ,j = qα,j . The state transition probabil-

ity is (1 − (1 − ε)
2di,jR(t)

v(t) )(1 − λ).
Due to the packet transmission, the battery level of the selected

sensor decreases by Δe. See Eq. (7) and (8) shown at the bottom
of this page.

(8) corresponds to the unselected sensors with two different
cases. The first case corresponds to the case when queue of
the ground sensor increases, i.e., qβ,k = qα,k + 1 due to a new
packet arrival, i.e., λ. The second case gives that the data queue
remains unchanged, i.e., qβ,k = qα,k since there is no packet
arrival, i.e., (1 − λ).

By solving the formulated MDP, e.g., by using dynamic
programming techniques, the optimal solution with complete
states could be achieved, which could be used for performance
benchmarking in multi-UAV-assisted wireless sensor networks.
Unfortunately, dynamic programming (and the MDP formula-
tion) suffers from the well-known curse-of-dimensionality, and
incurs a prohibitive complexity and intractability, which can be
noted in Appendix B. Please See Appendix B.

V. MULTI-UAV PERSPECTIVE

A. Preliminaries

Reinforcement Learning (RL) is a major branch of machine
learning, where an agent learns to behave in an environment by
performing actions and observing the associated results [33].
RL can be applied to solve MMDPs with unknown transition
probabilities. In an RL process, an agent observes its current
state, takes an action, and receives its immediate cost together
with its new state. The observed information, i.e., the imme-
diate cost and new state, is used to adjust the agent’s pol-
icy. This process repeats until the agent’s policy approaches
the optimal policy [34]. Q-learning [35] is the most popular
RL paradigm which can be used to calculate the Q-functions
and decide the optimal policy. It gives an agent the ability to
act optimally in an MMDP setup. Agents implementing Q-
learning update their Q-values according to the following update
rule

Pr{(eβ,j , qβ,j , hβ,j , ζβ,j)|(eα,j , qα,j , hα,j , ζα,j), j ∈ ai} =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − ε)
2di,jR(t)

v(t) (1 − λ) if eβ,j = eα,j-Δe and qβ,j = qα,j − 1and hβ,j > hα,j

(1 − (1 − ε)
2di,jR(t)

v(t) )λ if eβ,j = eα,j-Δe and qβ,j = qα,j + 1and hβ,j < hα,j

(1 − ε)
2di,jR(t)

v(t) λ if eβ,j = eα,j-Δe and qβ,j = qα,j andhβ,j > hα,j

(1 − (1 − ε)
2di,jR(t)

v(t) )(1 − λ) if eβ,j = eα,j-Δe and qβ,j = qα,j andhβ,j < hα,j

(7)

Pr{(eβ,k, qβ,k, hβ,k, ζβ,k)|(eα,k, qα,k, hα,k, ζα,k, k �= ai; i

∈ [1, I]} =

⎧⎪⎨
⎪⎩
λ if eβ,k = eα,k and qβ,k = qα,k + 1

1 − λ if eβ,k = eα,k and qβ,k = qα,k

0 otherwise

(8)



Qi(Sβ,i|Sα,i, ai) = (1 − ν)Qi(Sβ,i|Sα,i, ai)+

ν(C(Sβ,i|Sα,i, ai) + γmin
a′
i

Qi(Sβ′,i |Sβ,i, a
′
i) (9)

where ν ∈ (0, 1] is the learning rate, Sβ′,i is the next state, and
a′i is the next action. The trajectory of each UAV can consist of
a large number of waypoints. The velocity control of the UAVs
along the trajectories can result in a very large state and action
space. In this case, Q-learning suffers from the well-known curse
of dimensionality [36]. To circumvent this impasse, we propose
a new deep Q-network to optimize the velocity control online
by approximating the optimal action-value function.

B. Multi-Uav Dqn

In practice, the UAVs have a common goal and able to
perform actions. Meanwhile, the environment is unknown for
the UAVs, and they receive outdated knowledge of the network
states. Therefore, statistical methodologies can not be applied
due to lack of real-time knowledge and the size of the state
space. RL could be the best paradigm in such situation given
uncertain environment, action and goal. In the joint problem of
communication scheduling and velocity control with I UAVs,
choice of actions by one UAV impact those of other UAVs. Each
UAV interacts with an unknown environment to learn a policy.
In learning process, the current environment state is partially
observed by UAV i then by following its policy takes an action,
this action is dependent on the past actions of other UAVs on the
scheduled ground sensor at−1

u , and consequently obtains the cost
and the new environment state. Then, UAV i utilizes the gathered
data to optimize its policy. UAV i interacts with the environment,
performs the action and optimizes its policy for many iterations
to converge to the optimal policy. In multi-UAV setting, each
UAV is designed to find an optimal policy πi for minimizing the
long-term expected accumulated discounted costs. The actions
of the UAVs i.e., velocities control, modulation allocation and
ground sensor selection are optimized to minimize the packet
losses resulting from buffer overflows and failed transmissions
of the sensors. The actions are defined as a tuple a =< . . . >
which consists of the optimization variables for all the UAVs.
The action space in the MDP contains all the UAVs’ decisions.
The decisions of velocity control and sensor selection are in-
dependently made by the UAVs. The action of each UAV not
only determines its future state, but also influences the actions
of the other UAVs. Therefore, a formulation of multi-agent MDP
and multi-agent DQN optimizes the actions of multiple decision
makers, i.e., UAVs.

From the perspective of UAV i, the accumulated cost by
executing actionai dependent onat−1

u at the current environment
state s on the basis of policy πi can be represented by

Qπi
i (Sα,i, ai, a

t−1
u ) = E[Σ∞

t=0γ
tC(Sβ,i|Sα,i, ai, a

t−1
u )] (10)

where γ ∈ [0, 1] is the discount factor. Each UAV aims to learn
the optimal Q-value or the optimal policy. The Q-value for agent
i is updated as follow:

Qi(Sβ,i|Sα,i, ai, a
t−1
u ) = (1 − ν)Qi(Sβ,i|Sα,i, ai, a

t−1
u )

+ ν(C(Sβ,i|Sα,i, ai, a
t−1
u ) + γmin

a′
i

Qi(Sβ′,i |Sβ,i, a
′
i, a

′
u)

(11)

where ν ∈ (0, 1] is the learning rate, Sβ′,i is the next state and
a′i the next action. Multi-UAV Q-learning cannot deal with
the exponential growth of states and actions for the resource
allocation problem in the MA-WSN. This is known as the curse
of dimensionality. Multi-UAV DQN circumvent the curse-of-
dimensionality of the problem. It represents the action-value
function of each agent with a deep neural network parameterized
by θQi . For each UAV, θQi is learned by sampling transition
from the replay memory and minimizing the squared temporal
difference error:

Γ(θQi) = yi −Qi{Sβ,i | Sα,i, ai, a
t−1
u ; θQi}. (12)

where yi is the target Q-value which is set as a label and can be
denoted by

yi = C{Sβ,i | Sα,i, ai, a
t−1
u }+

γmin
a′
i

Q′
i{Sβ,i′ | Sβ,i, a

′
i, a

′
u; θ

Q′
i} (13)

Multi-UAV DQN use target network and experience replay for
each UAV to guarantee stability. In multi-UAV DQN, experi-
ence replay is used to remove correlations in the observation
sequence and smoothing over changes in the data distribution
by randomizing over the states and the actions of MMDP at
each time-step t. The provided multi-UAV DQN formulation is
effective and promising for computing multi-UAV policies, in
contrast to the traditional approaches for solving MMDP, it does
not fail to deal with enormous size and complexity.

C. Proposed MADRL-SA

We present a multi-UAV version of DQN called MADRL-SA,
MADRL-SA realizes cooperation between UAVs, by enabling
them to learn the scheduling decisions of each other.

According to Fig. 3, MADRL-SA has three UAVs, and each
UAV is equipped with a classical DQN algorithm and learns
through interaction by environment. As can be seen in Fig. 3,
UAV 3 performs its action and schedules a ground sensor,
then receives its visiting record and consequently calculates
the time differences δ[] between its visiting time(t) and TV Rp.
δ[] is augmented to state and utilized in the learning process.
Therefore, each UAV learns to coordinate its action. The UAVs
that visited the same ground sensor would learn to improve their
scheduling process based on computed timing information. For
example, if the computed time differences are large the UAV
is encouraged to schedule the ground sensor for the next time.
Overall, our goal is to allow different UAVs schedule different
ground sensors (other ground sensors may have buffer overflow
probability) and if a ground sensor recently visited by an UAV
no other UAV visits that ground sensor. The proposed scheme
is described in Algorithm 1, which optimizes the actions based
on the multi-UAV DQN to solve the online resource allocation
problem.



Fig. 3. An overview of MADRL-SA, where the UAVs observe the current environment state by following their policy take actions.

Overall, two separate Q-networks are maintained with each
UAV, Q-network: Qi{Sβ,i | Sα,i, ai, a

t−1
u ; θQi} and target net-

work: Q′
i{Sβ,i′ | Sβ,i, a

′
i, a

′
u; θ

Q′
i}, with weights θQi and θQ

′
i

respectively. At first step, Q-network and associated target of
each UAV are initialized and then learning is ignited. Each UAV
samples its state and computes its local state Sα,i including δ[].
Each UAV receives the local state Sα,i and selects a random
action with probability ε or exploits its knowledge and produce
its action. Each UAV executes the selected action and computes
the vector of δ using t and TV Rp; then corresponding cost
and next state including δ[] are sampled. Then the associated
transition (Sα,i, Sβ,i, ai, C) is stored. θQi is learned by sampling
batches of transitions from the replay memory and minimizing
the squared temporal difference error:

Γ(θQi) = yi −Qi{Sβ,b | Sα,b, ab, aub; θ
Qi} (14)

where

yi = C{Sβ,b | Sα,b, ab, aub}
+ γmin

a′
b

Q′
i{Sβ,b′ | Sβ,b, a

′
b, a

′
ub; θ

Q′
i} (15)

finally for each agent the parameters of a Q-network θQi copied
into those of target network θQ

′
i after a constant number of

iterations. The proposed MADRL-SA can be readily repurposed
to support different objective functions. For example, it can be
potentially repurposed to maximize the energy efficiency, which
is the ratio of network throughput to the energy consumption.

D. Energy and Feasibility

UAVs are becoming increasingly less restrictive in terms of
energy due to new advancements of battery and energy harvest-
ing technologies. For example, Atlantik Solar has developed an
autonomous, solar-powered drone (UAV) that can fly up to 10
days continuously. A ground sensor can be equipped with solar

panels, wind power generators or other energy harvesting mech-
anisms to harvest renewable energy from ambient resources and
recharge its battery.

The UAVs select the optimal sensors to transmit data and
allocate their modulation schemes, by learning the states of the
ground sensors. The selected sensor uses the allocated modu-
lation to transmit data to the UAV, while updating the visiting
time of the UAV. In particular, the historical record of the visiting
time typically has a small size. Consider 100 UAVs, the size of
the historical record at the sensor is just seven bits. The time
for updating the record is negligible. Also, the sensors only
need to synchronize with the UAVs the recent historical record
of visits. The overhead is small. Therefore, the proposed deep
reinforcement learning based data collection requires a small
amount of computation at the sensors, which is feasible and
practical in real-world Multi-UAV-Assisted WSNs.

VI. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we first investigate complexity of MADRL-
SA, then we present network configurations and performance
metrics. Next, we evaluate the network cost of the proposed
MADRL-SA scheme with regard to the network size and varying
number of UAVs. Here, the network cost defines the amount
of packet loss due to the data queue overflow and the failed
transmission from the ground sensor to the UAV.

A. Complexity of MADRL-SA

The time complexity for training each network Qi that has Z
layers with zi neurons per layer is given by

O(MT × (ΣZ−1
i=1 zizi+1)) (16)

where M is the number of episodes and T is the number of
iterations. Therefore, the time complexity of MADRL-SA with



I networks of Qi is given by

O(I ×MT × (ΣZ−1
i=1 zizi+1)) (17)

The case of an equal number of neurons in each layer, the time
complexity can be written as

O(MT × (I ×MT × Z − 1 × z2) = O(I ×MT × z2)
(18)

B. Implementation of MADRL-SA

J number of ground sensors are randomly deployed, where J
increases from 20 to 120. Each ground sensor has the maximum
discretized battery capacity 50 Joules, the highest modulation
= 5, and the maximum transmit power 100 milliwatts. For
calculating P i

j (t) of the ground sensor, the two channel con-
stants, k1 and k2 are set to 0.2 and 3, respectively. The required
BER is 0.05, and the carrier frequency is 2000 MHz. ε is set
to 0.05. However, the value of ε can be configured based on

TABLE I
NOTATION AND DEFINITION

TABLE II
PYTORCH CONFIGURATION

the traffic type and quality-of-service (QoS) requirement of the
user’s data, as well as the transmission capability of the UAV.
Other simulation parameters are listed in Table II. Moreover,
the region of interest is set to be a square area with a size of
1000 x 1000 meters, where the ground sensors are distributed
in the targeted region. MADRL-SA is implemented in Python
3.5 using Pytorch (the Python deep learning library). A Lenovo
Workstation running 64-bit Ubuntu 16.04 LTS, with Intel Core
i5-7200 U CPU @ 2.50 GHz 4 and 8 G memory is used for the
PyTorch setup. Deep reinforcement learning trains MADRL-SA
for 1000 episodes. The discount factor and learning rate are set
to 0.99 and 0.001, respectively. We use 2-layer fully connected
neural network for each agent, which includes 400 and 300
neurons in the first and second layers, respectively. We utilize the
rectified linear unit (ReLU) function for the activation function.
The experience replay memory with the size of 106 is created
for each agent to store the learning outcomes in the format of
a quadruplet <state, action, cost, next state>. The memory is
updated by calling the function replay bufferi.add((state, action,
cost, next state)), and retrieves the experiences by using replay
bufferi.sample(batch size).

For performance evaluation, the proposed MADRL-SA is
compared with Random scheduling policy (RSA), Channel
scheduling policy (CHSA) and DRL-SA [14] algorithms.
� RSA randomly determines the velocities of the UAVs at

each waypoint, and one of the ground sensors within the
communication range of the UAV is randomly selected to



Fig. 4. The network cost at each episode of two versions of MADRL-SA with
I = 10 and DRL-SA.

Fig. 5. Comparison of packet loss by MADRL-SA and the baselines in term
of ground sensors.

transmit data. The velocity control and sensor selection
are independent of the batteries, data queue lengths of the
ground sensors, channel variation, and UAVs’ positions.

� CHSA allows the UAVs to move with the minimum veloc-
ity and schedule the ground sensors based on their channel
quality. Each UAV sends beacons along the trajectory.
Based on the sensors’ replies to the beacons, the UAV
measures the channel gains. The ground sensor with the
highest channel gain is selected to transmit.

� DRL-SA enables a single-agent DQN, where each UAV
leverages DQN to learn the optimal velocity control and
sensor selection strategy based on the data queue length,
energy level, channel variation and UAV’s positions. The
selection of the ground sensor, modulation scheme, and
velocity of the UAV is jointly optimized (independently of
the rest of the UAVs).

C. Performance Evaluation

Fig. 4 depicts the convergence of MADRL-SA with I = 10
for low and high SNR cases and DRL-SA. MADRL-SA with I
= 10 and high SNR show the best performance since it reduce
the overflow cost as well as the fading cost due to good SNR.
MADRL-SA with I = 10 and low SNR outperform the DRL-SA
which has the highest network cost. The reason is that when
multiple UAVs act it results in the reduction of overflow cost.

Fig. 5 depicts the network cost of MADRL-SA (data queue
length = 40) and the baselines in term of ground sensors.
MADRL-SA with I = 5 and I = 10 achieves a lower network

Fig. 6. Trade-off between the number of UAVs and ground sensors.

Fig. 7. Energy consumption of ground sensors.

cost in comparison to CHSA. The network cost of MADRL-SA
with I = 5 is lower than that of CHSA. Overall, MADRL-SA
with I = 5 and I = 10 outperforms CHSA. Particularly, when J
= 100 the packet loss of MADRL-SA with I = 5 and I = 10 is
lower than CHSA by around 21% and 40%, respectively.

Fig. 6 shows the trade-off between the number of ground
sensors and UAVs. Specifically, a large number of ground sen-
sors expedites the buffer overflows in MA-WSN and in turn,
increases the packet loss. On the other hand, increasing the
number of UAVs allows the ground sensors to be scheduled
in parallel, hence reducing the buffer overflow. A balance needs
to be struck between the numbers of UAVs and ground sensors
to minimize the packet loss.

Fig. 7 shows the energy consumption of the ground sensors
by varying the number of ground sensors and UAVs. For a
given number of UAVs, the energy consumption of the network
increases with the number of ground sensors. On the other hand,
the increasing number of UAVs helps increase the number of
ground sensors scheduled to transmit data, hence raising the
energy consumption of the ground sensor network.

Fig. 8 show the velocities and trajectories of different UAVs
for the MADRL-SA with I = 7. Fig. 8(a) demonstrates the
velocity of 7 UAVs given 20 waypoints. The color bar shows



Fig. 8. Velocities and trajectories of MADRL-SA with I = 7. (a) and (b)velocity and trajectory given number of waypoints = 20. (c) and (d) velocity and
trajectory given number of waypoints=40

the range of values for velocity and color map shows the actual
velocity of each UAV for each waypoint in color format. As can
be seen UAV 2 moves with the lowest velocity as confirmed
by its small trajectory in Fig. 8(b). In contrast, UAV 1 moves
with the highest velocity as confirmed by its trajectory. Overall,
for waypoints 1-12, UAV 3-7 move with the lowest velocity
witnessing subtle changes. After these waypoints the velocity
of these UAVs is increasing.

Fig. 8(c) is similar to Fig. 8(a) except that number of way-
points is increased to 40. Overall, the pattern for all UAVs except
UAV 5 is almost similar and all of them move with low or
moderate velocity witnessing high velocity at some points, this
can be confirmed by their associated trajectories in Fig. 8(d).
UAV 5 moves smoothly before waypoint 20. After this point its
velocity start increasing and hence a full trajectory is shaped as
can be seen in Fig. 8(d).

Fig. 9 evaluates the network cost with the increasing number
of UAVs, where the buffer size of MADRL-SA is set to 20 or
40 and the number of ground sensors is 40. For MADRL-SA
with buffer size of 40, increasing the number of UAVs from 3 to
10 leads to a reduction of the packet loss by 68%. In contrast,
when the buffer size is 20, a reduction of 77% in the packet loss
is witnessed. Fig. 9 also shows that MADRL-SA significantly
outperforms RSA by 80% when the buffer size is 40, and by
34% when the buffer size is 20.

Fig. 10 demonstrates the training performance with varied
learning rates(lr). After few episodes in the beginning, the net-
work cost have an obvious tendency to decrease and converge in
the case of lr = 1e-3 and lr = 5e-4. Nevertheless, the algorithm
may converge to a local optimum in case of large learning rate,
this situation can be seen in the case of lr = 1e-1 and lr = 1e-2.

Fig. 9. The network cost with an increasing number of UAVs, where the data
queue length of MADRL-SA is set to 20 and 40 and number of ground sensors
is 40.

Fig. 10. The training performance with varied learning rates.



VII. CONCLUSION

In this paper, we study the joint flight cruise control and data
collection scheduling in the MA-WSN. We formulate the prob-
lem using MMDP to minimize the packet loss due to buffer over-
flows at the ground sensors and fading airborne channels. We
propose MADRL-SA to solve the formulated MMDP, where all
UAVs utilize DQN to conduct respective decisions. In MADRL-
SA, the UAVs acting as agents learn the underlying patterns of
the data and energy arrivals at all the ground sensors as well
as the scheduling decisions of the other UAVs. We conduct
simulation using PyTorch deep learning library and results reveal
that the proposed MADRL-SA for MA-WSN reduces packet
loss by up to 54% and 46%, as compared to the single agent
case and existing non-learning greedy algorithm, respectively.
The joint online optimization of the trajectories, speed control,
and communication schedules will be our future work, where
we may consider other learning techniques to capture continuity
and smoothness of the trajectories and address issues, such as
collision avoidance.

APPENDIX A

The path loss of the LoS link is given by

PLLOS = 20 log d+ 20 log f + 20 log

(
4π
c

)
+ ηLOS (19)

The path loss of the non-LoS link is given by

PLNLOS = 20 log d+ 20 log f + 20 log

(
4π
c

)
+ ηNLOS

(20)
The LoS probability is given by

PrLOS =
1

1 + aexp(−b[ϕi
j − a])

(21)

Then, the NLoS probability is

PrNLOS = 1 − PrLOS (22)

The expectation of the path loss between UAV i and device j
can be obtained by

γi
j = PrLOS × PLLOS + PrNLOS × PLNLOS (23)

By substituting (22) into (23), we have

γi
j = PrLOS(PLLOS − PLNLOS) + PLNLOS (24)

Substituting (19), (20), (21) into (24) leads to

γi
j =

(ηLOS − ηNLOS)

1 + aexp(−b[ϕi
j − a])

+ 20 log d+ 20 log f+

20 log

(
4π
c

)
+ ηNLOS (25)

Rewriting 25 in term of ϕi
j and r, we finally obtain

γi
j =

(ηLOS − ηNLOS)

1 + aexp(−b[ϕi
j − a])

+ 20log(r sec(ϕi
j)) + 20 log(λ)

+ 20 log

(
4π
c

)
+ ηNLOS (26)

APPENDIX B

Let ε denote the bit error rate, L denote the data packet
length and λ denote the packet arrival probability. Depending
on the transmission status and arrival pattern, four transitions
may happen as presented in (7):

1) In the first case, the packet transmission is successful
(1 − ε)L and there is no packet arrival (1 − λ). The prob-
ability of such transition is (1 − ε)L × (1 − λ). Given
L=R(t)*T where T is the conversation time of UAV i and
ground sensor j, and T =

2di,j

v(t) . We have L =
2di,jR(t)

v(t) by
substituting T into L. Therefore, the transition probability

of the first case is (1 − ε)
2di,jR(t)

v(t) (1 − λ).
2) In the second case, the packet transmission is not suc-

cessful (1 − (1 − ε)L) and there is packet arrival λ. The
probability of such transition is (1 − (1 − ε)L)× λ. By
substituting T into L, we have L =

2di,jR(t)
v(t) . Therefore,

the transition probability of the second case is (1 − (1 −
ε)

2di,jR(t)

v(t) )λ.
3) In the third case, the packet transmission is successful (1 −

ε)L and there is packet arrival λ. The probability of such
transition is (1 − ε)L × λ. By substituting T into L, we
have L =

2di,jR(t)
v(t) . Therefore, the transition probability

of the third case is (1 − ε)
2di,jR(t)

v(t) λ.
4) In the fourth case, the packet transmission is not successful

(1 − (1 − ε)L) and there is no packet arrival (1 − λ). The
probability of such transition is (1 − (1 − ε)L)× (1 − λ).
We have L =

2di,jR(t)
v(t) . Therefore, the transition probabil-

ity of the fourth case is (1 − (1 − ε)
2di,jR(t)

v(t) )(1 − λ).
(8) investigates the transmission probabilities for unselected

ground sensors. These ground sensors do not transmit data. In
this case, the ground sensors either receive packet with transition
probability λ or no packet is received with transition probability
1 − λ.
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