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Abstract—We propose a unitary precoding scheme, namely
polar-precoding, to improve the performance of polar-coded
MIMO systems. In contrast to the traditional design of MIMO
precoding criteria, the proposed polar-precoding scheme relies
on the polarization criterion. In particular, the precoding matrix
design comprises two steps. After selecting a basic matrix for
maximizing the capacity in the first step, we design a unitary
matrix for maximizing the polarization effect among the data
streams without degrading the capacity. Our simulation results
show that the proposed polar-precoding scheme outperforms the
state-of-the-art DFT precoding scheme.

Index Terms—Polar-coded MIMO system, polarization crite-
rion, precoding, unitary matrix.

I. INTRODUCTION

TRANSMIT precoding (TPC) is a channel-adaptive tech-
nique of precompensating the deleterious channel effects

about to be encountered based on the knowledge of channel
state information (CSI) at the transmitter (CSIT) [1]. Given
the limited bandwidth of control channels in practical com-
munication systems, typically codebook-based TPC schemes
relying on a low-rate CSI-feedback are used [2], [3]. The
pivotal design aspects are the codebook design and the CSI-
entry selection criterion. The simplest codebook design relies
on selecting a specific antenna subset [4], [5]. By contrast,
the Fourier codebook proposed in [6] appropriately rotates
the transmit signal in a high-dimensional complex space.
Furthermore, the authors of [7] and [8] transform the codebook
design into packing subspaces into the Grassmann manifold
relying on the projection two-norm and Fubini-Study dis-
tances, respectively. As for the CSI selection criterion, the
popular capacity criterion or the maximum-likelihood (ML)
criterion [8] may be used for selecting the TPC matrix from
the codebook. However, these codebooks and their selection
criteria were designed for uncoded MIMO systems with an
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emphasis on the MIMO detection performance. In reality,
coded MIMO systems have to be used, where we focus on
the performance of the decoded bits.

In this context, the polar-coded MIMO (PC-MIMO) systems
proposed by Dai et al. [9] have been shown to closely approach
the capacity of MIMO system with the aid of successive inter-
ference cancellation (SIC), outperforming their turbo/LDPC-
coded MIMO counterparts. The PC-MIMO system of [9]
was designed for fast-fading channels without exploiting the
CSIT. However, harnessing the knowledge of CSIT is capable
of further improving the performance. Since the polarization
effect of data streams is an important factor influencing the
performance [9], the PC-MIMO TPC should be designed on
the basis of explicitly exploiting the polarization effect.

Table I boldly contrasts our novel contributions to the state-
of-the-art both in terms of the selection criterion and the
polarization effect, showing the novelty of this work explicitly.
The polarization effect is introduced by the successive cancel-
lation (SC) structure. The bit-polarization was first proposed
by Arıkan [10] for designing polar codes. Then, the bit-
polarization was extended to symbol polarization and a 2m-ary
multilevel polar-coded modulation scheme was proposed in
[11]. Furthermore, Dai et al. designed the PC-MIMO [9] using
antenna polarization. Inspired by these papers, we conceive
data stream polarization to design a unitary precoding scheme.

In this compact letter, a unitary polar TPC is proposed for
improving the performance of PC-MIMO systems. Since the
polarization of the substreams directly affects the PC-MIMO
performance [9], the proposed polar TPC scheme stems from
the polarization criterion used for maximizing the polariza-
tion effect, which constitutes a radical departure from the
traditional TPC design. Given the codebook, the TPC matrix
selection comprises two steps. In the first step, a basic TPC
matrix is selected for maximizing the capacity. In the second
step, we post-multiply the basic matrix by a unitary matrix,
which is specifically designed for maximizing the polarization
of substreams without eroding the capacity optimized by the
basic TPC matrix. Moreover, the optimal polar TPC of the
PC-MIMO system is derived under the polarization criterion
and a method to design the polar TPC codebook is proposed
based on the DFT TPC. Our simulation results illustrate that
the proposed polar TPC scheme outperforms the state-of-the-
art DFT TPC scheme.

Notational Conventions: In this letter, scalars are denoted by
the lowercase letters (e.g., x). The calligraphic characters, such
as X , are used to denote sets. The bold capital letters, such as
X, denote matrices. The j-th column of matrix X is written as
Xj and Xj

i represents the matrix [Xi, · · · ,Xj ]. The element
in the i-th row and the j-th column of matrix X is written as
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TABLE I
BOLDLY CONTRASTING OUR CONTRIBUTIONS TO THE STATE-OF-THE-ART PAPERS.

2004 [4], [5] 2005 [7] 2005 [8] 2009 [10] 2013 [11] 2018 [9] 2020 [16] This work
SNR criterion X X
ML criterion X X
Capacity criterion X X
Polarization criterion X
Bit polarization X X X X X
Symbol polarization X X
Antenna polarization X X
Data stream polarization X

Xi,j . XT and X∗ are used to denote the transposition and the
conjugate transposition of X, respectively. The bold lowercase
letters (e.g., x) are used to denote column vectors. Notation xji
denotes the column subvector (xi, · · · , xj)T and xi denotes
the i-th element of x. Given an index set A, xA is a subvector
composed of xi, i ∈ A. We use U(MT ,M) to denote the
set of MT ×M matrices with orthonormal columns, IM to
denote an M ×M identity matrix, λi(X) to denote the i-th
smallest singular value of X and diag(x1, · · · , xM ) to denote
an M × M diagonal matrix. Throughout this letter, log (·)
means “base 2 logarithm”.

II. PRELIMINARIES

A. Polar-Coded MIMO System

In this section, we introduce the PC-MIMO system of [9]
by intrinsically amalgamating it with a unitary TPC scheme.
The K information bits are first encoded and modulated into
QPSK symbols, which are then precoded by the codebook
and transmitted via the MIMO channel using MT -transmit
antennas, MR-receive antennas and M bitstreams within N
time slots. We focus on block-fading channels, where the
channels remain constant for N time slots.

At the transmitter, the source sequence u2MN
1 composed

of uA and uAc with information set |A| = K and code
rate R = K

2MN is demultiplexed into M different bitstreams
and each bitstream is fed into a polar encoder. Then, the
2N -dimensional encoded sequence v2Ni1+2N(i−1), 1 ≤ i ≤
M , is mapped into an N -dimensional modulated sequence
sNi1+N(i−1) using QPSK modulation. Next, the M ×N symbol
matrix S = [sN1 , s

2N
N+1, · · · , sNMN(M−1)+1]T is multiplied by a

MT × M TPC matrix F and produces the transmit signal
matrix X =

√
Es
M FS, where Es is the total transmit energy.

Hence, the received signal matrix Y at the output of block
fading channels is

Y = HX + Z =

√
Es
M

HFS + Z, (1)

where H is the channel response matrix having i.i.d entries
in CN (0, 1) and the elements of Z are i.i.d. complex circular
Gaussian random variables with zi,j ∼ CN (0, N0). Perfect
channel estimation is assumed at the receiver. To simplify the
analysis, we rewrite the system model (1) by omitting the time
slot as

y =

√
Es
M

HFs + z. (2)

At the receiver, a joint multistage detection and decod-
ing receiver is used, which is similar to the SC decoding

rules of polar codes [10], [12], [13]. Hence, other SC-like
decoding schemes, such as the successive cancellation list
(SCL) decoder [14]–[16], the successive cancellation stack
decoder [17], [18] and the CRC-aided SCL (CA-SCL) decoder
[19], can also be used in the PC-MIMO system to improve
the performance. The MIMO detection order proceeds from
substream 1 to M . A substream is first demodulated into bit
log-likelihood ratios (LLRs) and the LLRs are then fed into
the polar decoder. Then, the decoded bitstream is entered into
the polar encoder to retrieve the QPSK symbols. After the bits
in the substream have been estimated, they are fed back to the
MIMO detector in order to perform interference cancellation.

B. Unitary Precoding

The receiver selects a TPC matrix F from the codebook
set F with |F| = 2B , where F ⊂ U(MT ,M) and B bits
of feedback are available. The DFT-based TPC designed for
spatial multiplexing systems in [6], [7] is formulated as:

F =
{

FDFT,ΘFDFT, · · · ,Θ2B−1FDFT

}
, (3)

where the entry of FDFT at (k, l) is 1√
MT

e
i
(

2π
MT

)
kl and Θ is

the diagonal matrix

Θ = diag
(
ei(2π/2

B)a1 , · · · , ei(2π/2
B)aMT

)
. (4)

In (4), the vector a = [a1, · · · , aMT
] is:

a = arg max
Z

min
1≤l≤2B−1

d
(
FDFT,Θ

lFDFT

)
, (5)

where Z =
{
a ∈ ZMT |0 ≤ ak ≤ 2B − 1,∀k

}
and d(A,B) =

1√
2
‖AA∗ −BB∗‖. Then, random testing of the values of

a ∈ Z is used to optimize the cost function for training the
codebook.

The capacity maximization criterion is used to select the
TPC matrix F from F yielding:

F = arg max
F∈F

I (y; s|HF) , (6)

where I (y; s|HF) = log det
(
IM + Es

MN0
F∗H∗HF

)
is the

capacity of the unitary TPC-aided system.

III. POLAR PRECODING

In this section, we first illustrate the polarization effect of
substreams. Then, the polarization criterion is provided and the
optimal unquantized TPC satisfying this criterion is derived.
Finally, the method of designing the polar TPC codebook is
proposed.
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Fig. 1. The capacity of substreams relying on DFT TPC for MT = 8,
MR = 8 and M = 6 at Es

N0
= 0dB.

A. Polarization Effect of Substreams

Given G = HF, the system model (2) is simplified to

y =

√
Es
M

Gs + z. (7)

Then, due to the SC structure at the receiver, the system model
associated with the 1-st to the (i− 1)-st substreams known is
formulated as:

y −
√
Es
M

Gi−1
1 si−11︸ ︷︷ ︸

=:yi

=

√
Es
M

GM
i s

M
i + z. (8)

According to the chain rule of mutual information, the capacity
of the PC-MIMO system is decomposed into

I (y; s|HF) =

M∑
i=1

I
(
y; si|HF, si−11

)︸ ︷︷ ︸
=:Ii

(9)

and Ii is the capacity of the i-th substream with SC structure,
which is calculated by

Ii = I
(
y; sMi |HF, si−11

)
− I

(
y; sMi+1|HF, si1

)
= I

(
yi; s

M
i |GM

i

)
− I

(
yi+1; sMi+1|GM

i+1

)
.

(10)

Similar to [9], [10], the SC structure also introduces the
polarization effect of substreams, i.e., the capacity difference
among Ii, i = 1, · · · ,M . Fig. 1 is an example illustrating the
polarization effect for MT = 8, MR = 8 and M = 6 at
Es
N0

= 0dB using DFT TPC. In Fig. 1, the capacities of the
M = 6 substreams are increasing from I1 to I6. Based on that,
I1, I2 and I3 are lower than the average capacity and I4, I5
and I6 are higher than the average capacity. Thus, a capacity
difference occurs among I1 to I6 and the polarization effect
is introduced by the SC structure.

B. Polarization Criterion

In PC-MIMO systems, drastic polarization leads to better
performance when the capacity is identical [9]. Thus, maxi-
mizing the system capacity

F = arg max
F∈F

I (y; s|HF) (11)

and simultaneously maximizing the polarization effect among
the substreams

F = arg max
F∈F

M∑
i=1

(
Ii − Ī

)2
(12)

are both necessary for our polar TPC, where Ī is the average
capacity of the M substreams, i.e., Ī = I(y;s|HF)

M . However,
it is a challenge to directly find a suitable F satisfying both
(11) and (12).

Then, since I (y; s|HF) remains unchanged when F is
multiplied by a unitary matrix, F is partitioned into two
matrices W ∈ U(MT ,M) and Q ∈ U(M,M), and we have

I (y; s|HF) = I (y; s|HWQ) = I (y; s|HW) , (13)

where F = WQ.
Based on (13), we can find a matrix W for maximizing

I (y; s|HW), which is equivalent to maximizing I (y; s|HF).
When W is determined, I (y; s|HF) remains unchanged for
∀Q ∈ U(M,M). Thus, Q can be used for maximizing the po-
larization effect without affecting the system capacity. Hence,
F = WQ can satisfy both (11) and (12). The polarization
criterion is defined as

W = arg max
W∈W

I (y; s|HW)

Q = arg max
Q∈Q

M∑
i=1

(
Ii − Ī

)2
,

(14)

where W ⊂ U(MT ,M) and Q ⊂ U(M,M) are the code-
books for W and Q, respectively.

C. Optimal Unquantized TPC

According to the polarization criterion, the system model
(2) is transformed into

y =

√
Es
M

HWQs + z. (15)

Let the singular value decomposition of a matrix A be given
by

A = UAΣAV∗A, (16)

where UA and VA are unitary matrices and ΣA is a diagonal
matrix with λk(A) denoting the k-th smallest singular value
of A at entry (k, k).

Then, based on (15), we first derive Qopt ∈ U(M,M) that
maximizes the polarization effect with W.

Lemma 1. The optimal TPC matrix Qopt ∈ U(M,M) with
W is Qopt = VHW.

Proof: For the system model (8), we have GM
i =

HWQM
i . In [8], it has been proved that QM

i = VHW
M
i

can maximize I
(
yi; s

M
i |GM

i

)
, where VHW

M
i is a matrix

constructed from the last (M−i+1) columns of VHW. Thus,
Qopt maximizes I

(
yi; s

M
i |GM

i

)
=
∑M
k=i Ik, i = 1, · · · ,M .

Let Ik denote the capacity of the k-th substream optimized
by Qopt and I1 ≤ I2 ≤ · · · ≤ IM . We transform the proof
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into linear programming as follows:

max f (x1, x2, · · · , xM ) =

M∑
k=1

(
xk − Ī

)2
,

s.t.

M∑
k=i

xk ≤
M∑
k=i

Ik, 2 ≤ i ≤M,

M∑
k=1

xk = MĪ.

(17)

Then, since f (x1, x2, · · · , xM ) is a convex function, the
maximum value is on the boundary and the point is xk = Ik,
1 ≤ k ≤ M . Thus, Qopt = VHW is the optimal TPC matrix
with W.

According to Lemma 1, we can readily derive the optimal
TPC matrix Fopt for satisfying the polarization criterion.

Lemma 2. The optimal TPC matrix Fopt ∈ U(MT ,M) is a
matrix constructed from the last M columns of VH.

Proof: In [8], it has been shown that FoptQ is the optimal
TPC maximizing I (y; s|HFoptQ), where Fopt is composed
of the last M columns of VH and ∀Q ∈ U(M,M). Then,
according to Lemma 1, the optimal polar TPC associated with
fixed Fopt is Qopt = VHFopt = IM . Thus, the optimal polar
TPC matrix is Fopt, which is constructed from the last M
columns of VH.

D. Polar TPC Codebook Design

The codebook of the polar TPC is F =
{F|F = WQ,W ∈ W,Q ∈ Q} with |F| = 2B , |W| = 2B1 ,
|Q| = 2B2 and B = B1 + B2. The codebook design is
divided into two steps, which are summarized as follows:

1) W is designed by the DFT TPC of [6], [7], i.e.,

W =
{

WDFT,ΘWWDFT, · · · ,Θ2B1−1
W WDFT

}
,

(18)

where the entry of WDFT at (k, l) is 1√
MT

e
i
(

2π
MT

)
kl

and the diagonal matrix ΘW is

ΘW = diag
(
ei(2π/2

B1)a1 , · · · , ei(2π/2
B1)aMT

)
.

(19)
The vector a = [a1, · · · , aMT

] in (19) is

a = arg max
Z

min
1≤l≤2B1−1

d
(
WDFT,Θ

l
WWDFT

)
.

(20)
2) Q is also designed by the DFT TPC, i.e.,

Q =
{

QDFT,ΘQQDFT, · · · ,Θ2B2−1
Q QDFT

}
. (21)

Hence, the entry of QDFT at (k, l) is 1√
M
ei(

2π
M )kl and

the diagonal matrix ΘQ is

ΘQ = diag
(

1, ei(2π/2
B2), · · · , ei(2π/2

B2)(M−1)
)
.

(22)
For polar TPC, the optimization of B1 and B2 is important.

In this paper, B1 and B2 are selected empirically and we just
provide a compact insight into the optimization. According to

Fig. 2. The capacity of substreams for the fixed channel response of (23)
and different TPCs, where MT = 3, MR = 3 and M = 2.

Fig. 3. The BLER of PC-MIMO systems using different TPC schemes,
where MT = 3, MR = 3, M = 2, N = 64 and R = 1/4.

the polarization criterion (14), B1 and B2 affect the capacity
and the polarization effect, respectively. Then, a higher B1 or
a lower B2 leads to higher capacity and lighter polarization
effect, and vice versa. Explicitly, both factors have an influence
on the PC-MIMO performance. Thus, the polar TPC codebook
has to strike a trade-off between the capacity and the polariza-
tion effect, and both B1 as well as B2 should be optimized.

IV. PERFORMANCE EVALUATION

In this section, we first provide the capacity of the sub-
streams for the fixed channel matrix

H =

 0.61− 0.92i −0.93 + 0.56i −1.24 + 0.35i
0.93− 1.30i −0.21− 0.15i −0.51− 0.60i
0.01 + 0.35i −0.64− 0.44i 0.78 + 0.04i

 .
(23)

Then, the block error rate (BLER) performance of the pro-
posed polar TPC is provided for the channel response in (23).
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Finally, we provide the BLER performance of polar TPC under
block-fading channels. The PC-MIMO system is constructed
by the Gaussian approximation (GA) [20]. The polarization
criterion maximizes both the capacity and the polarization
effect simultaneously. To allow the system performance ap-
proach the capacity, ML detection is considered. Furthermore,
since the polarization effect is catalyzed by the SIC structure
of the PC-MIMO system, ML-SIC detection is used in this
paper.

Fig. 2 shows the capacity of the substreams for different
TPC schemes and for the fixed channel response in (23),
where MT = 3, MR = 3 and M = 2. In Fig. 2, I1 and
I2 are the capacities of the first and the second substreams,
respectively. We can observe that by introducing the TPC
matrix Q, the polarization effect of the polar TPC for B1 = 3
and B2 = 1 is higher than that of the DFT TPC with B = 3.
Thus, the proposed polar TPC enhances the polarization effect
among the substreams, which improves the BLER of the PC-
MIMO system shown in Fig. 3. Then, the polar TPC using the
optimal TPC Qopt also shows more significant polarization
effect compared to the polar TPC with B1 = 3 and B2 = 1.
Similarly, the more significant polarization effect improves the
BLER in Fig. 3 as well.

Fig. 3 illustrates the BLER of PC-MIMO systems for
different TPC schemes, where MT = 3, MR = 3, M = 2,
N = 64 and R = 1/4. ML-SIC detection and SC decoding
are used for the PC-MIMO system. Then, in order to make
the comparison fair, the performance of the DFT and polar
TPCs having identical number of feedback bits is provided,
i.e., B = 4 for the DFT TPC, and B1 = 3 as well as
B2 = 1 for the polar TPC. In Fig. 3, we can first observe
that the GA bound, widely used in [9], [20], is still an
upper bound of the performance of PC-MIMO TPC schemes
under SC decoding. Moreover, the GA bound coincides with
the corresponding BLER performance in the high signal-to-
noise ratio (SNR) regions. Furthermore, as expected, both the
DFT and the polar TPCs outperform the “no-TPC” system.
Hence, TPC efficiently improves the performance of PC-
MIMO. Additionally, since the proposed polar TPC has better
polarization effect than the DFT TPC, it has about 0.45dB
performance gain at BLER 10−4. Moreover, due to the better
polarization effect shown in Fig. 2, the performance of the
polar TPC relying on the optimal TPC Qopt achieves about
0.4dB gain over the polar TPC with B1 = 3 and B2 = 1
at BLER 10−4. Therefore, better polarization leads to a better
PC-MIMO performance using the proposed polar TPC instead
of other known TPCs.

Fig. 4 provides the BLER of PC-MIMO systems using
CA-SCL decoding [19] and polar TPC under block-fading
channels, where MT = 4, MR = 4, M = 3, N = 128 and
R = 1/2. The ML-SIC MIMO detection is used and the list
size of the CA-SCL decoder is 8, where the 6-bit CRC of [21]
is used. In Fig. 4, the performance of the polar TPC using the
optimal TPC Fopt is provided, which can be treated as the
best-case bound of the polar TPC, since Fopt maximizes the
polarization effect of polar TPC. Then, we can observe that
the performance of polar TPC using limited feedback is close
to the performance of polar TPC using Fopt as B1 increases.

Fig. 4. The BLER of PC-MIMO systems using CA-SCL decoder and polar
TPC, where MT = 4, MR = 4, M = 3, N = 128, R = 1/2 and the list
size of CA-SCL is 8.

Specifically, the polar TPC using B1 = 4 and B2 = 1 has
almost identical BLER to that of Fopt in the high SNR regions.
Thus, the polar TPC has the potential of approaching the
optimal performance, despite of limited feedback.

Fig. 5 and Fig. 6 portray out BER and BLER performance
comparisons, respectively, where we have MT = 4, MR = 4,
M = 3, N = 64 and R = 1/3. For the PC-MIMO system,
the CA-SCL decoder having a list size of 8 and 6-bit CRC
[21] is used, where the MIMO detector is ML-SIC. For the
low-density-parity-check (LDPC)-coded MIMO (LC-MIMO)
system, the LDPC encoder and the rate-matching algorithm
are those of 5G [21], the sum-product algorithm having 25
iterations and layered scheduling are used for the LDPC
decoder [22], and the MIMO detector uses the linear minimum
mean square error (LMMSE) algorithm. In Fig. 5 and Fig. 6,
we can observe that the PC-MIMO system using polar TPC
has better BER and BLER performance than the LC-MIMO
system associated with DFT TPC. Specifically, at BER 10−4

and BLER 10−3, the PC-MIMO system has 1.6dB and 1.1dB
performance gain over the LC-MIMO system, respectively.

Since the codebook is designed offline, selecting an ap-
propriate precoding matrix from the codebook dominates
the complexity of precoding. The complexity of calculating
the capacity is on the order of O (MTMRM). Hence, the
complexity of the DFT TPC relying on the capacity cri-
terion is O

(
2BMTMRM

)
. For polar TPC, the complex-

ities of selecting W and Q are O
(
2B1MTMRM

)
and

O
(
2B2MTMRM

2
)
, respectively. Then, the complexity of

polar TPC is O
(
(2B1 + 2B2M)MTMRM

)
.

V. CONCLUSION

In this compact letter, we proposed the polar TPC of PC-
MIMO systems relying on the new polarization criterion,
which is quite different from other design criteria. Based on
this new polarization criterion, the optimal TPC was derived
and the method of designing the polar TPC codebook was
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Fig. 5. The BER comparison between PC-MIMO system with polar TPC
and LC-MIMO system with DFT TPC, where MT = 4, MR = 4, M = 3,
N = 64 and R = 1/3.
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Fig. 6. The BLER comparison between PC-MIMO system with polar TPC
and LC-MIMO system with DFT TPC, where MT = 4, MR = 4, M = 3,
N = 64 and R = 1/3.

proposed. The simulation results illustrate that the proposed
polar TPC outperforms its DFT-based counterpart.
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