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Abstract—Predicting the future trajectories of surrounding
agents has become an crucial problem to be solved for the safety
of autonomous vehicles. Recent studies based on Long Short Term
Memory (LSTM) networks have shown powerful abilities to model
social interactions. However, many of these approaches focus on
spatial interactions of the neighborhood agents but ignore temporal
interactions that accompany spatial interactions. In this paper,
we propose a Hierarchical Spatio-Temporal Attention architecture
(HSTA), which activates the utilization of spatial interactions with
different weights, and jointly considers the temporal interactions
across time steps of all agents. More specially, the graph attention
mechanism (GAT) is presented to capture spatial interactions, the
multi-head attention mechanism (MHA) is conducted to encode
temporal correlations of interactions and a state gated fusion (SGF)
layer is used to integrate spatial and temporal interactions. We
evaluate our proposed method against baselines on both pedestrian
and vehicle datasets. The results show that our model is effective
and achieves state-of-the-art achievements.

Index Terms—Trajectory prediction, autonomous driving,
spatio-temporal modeling.

I. INTRODUCTION

A S THE central problem of fully autonomous driving ve-
hicles (AVs), anticipating possible future trajectories of

surrounding vehicles has received considerable critical attention.
As a bridge between perception and decision making blocks,
it promotes AVs to better understand their surroundings and
make safe as well as efficient decisions [1]. Traditionally, early
works use a hand-crafted, explicit dynamical model to generate
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future trajectories with the position, velocity, and acceleration
of target agents, such as the constant velocity model (CV),
the constant acceleration model (CA) and Kalman filter-based
(KF) [2]. However, human drivers infer surrounding vehicles’
trajectories not only with their past states, such as positions,
directions, and speeds, but also interactions among vehicles and
traffic environments. Recently investigators have examined the
effects of interactions on trajectories anticipating, and a large
number of studies have been introduced [3], [4].

This observation has led the community to turn to RNN-
based methods, which have shown great success in processing
temporal dependencies between the input sequence elements.
Therefore, several studies [5]–[7] use an LSTM-based encoder
decoder architecture to model temporal sequences, which can be
called agent-centric approaches. While LSTM-based methods
have the ability to capture temporal dependencies, they lack the
spatial interactions between surrounding agents. Then, [8]–[11]
introduce a novel pooling mechanism that couples the LSTMs
corresponding to neighboring agents to capture spatial depen-
dencies, which can be called spatial-centric approaches. Due to
the pooling scheme is restricted by spatial proximity, [12]–[14]
propose an attention mechanism to assign unequal importance
of neighboring agents. Such approaches, however, have failed
to tackle spatio-temporal interactions and complex temporal
dependencies. For spatial interaction, it is not only related to
the Euclidean distance between agents, but also the topological
relationship between agents within the whole scene has to be
considered. For temporal dependencies, each frame in the ob-
served trajectory plays a different role in predicting the future
trajectory, and the model needs to assign attention to each frame
rather than processing the sequence frames step by step.

According to previous work, we propose HSTA to solve their
limitations, which is a Hierarchical Spatio-Temporal Attention
network consisting of three scales to capture spatial and temporal
interactions for trajectories prediction. In spatial attention layer,
instead of the pure attention mechanism [12], [14], we adopt the
Graph Attention networks (GAT) [15] which is more suitable
to capture spatial interactions among agents at each time step.
Specifically, we model all vehicles in the scene (Fig. 1), the nodes
represent vehicles, and edges between two nodes denote the
spatial relationships. In temporal attention layer, in contrast to
LSTM-based in [16], we propose a multi-head attention (MHA)
mechanism to deal with complex temporal dependencies, which
could parallel the computation for all agents. Finally, we use a
gate fusion layer to adaptive control influence of spatial and
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Fig. 1. HSTA is a spatio-temporal attention scheme. To execute this, our
approach integrates the spatial dependencies of whole neighborhood vehicles in
spatial attention layer, and the temporal dependencies of object agent in temporal
attention layer.

temporal features at each time step. And the future trajectories
are inferred by an LSTM-based encoder decoder scheme.

This paper is devoted to interactions among vehicles and
pedestrians. Quantitative and qualitative experiments are con-
ducted to show the contribution of model, results of quantitative
experiments indicate that the accuracy of the proposed method
is superior than state-of-the-art methods in complex interactive
scenes. On the other hand, the qualitative experiments indi-
cate that our model has the ability to learn different motion
behaviours. The primary of our work was listed on the below:
� A novel spatio-temporal attention architecture HSTA that

can be trained in an end-to-end fashion is proposed, which
uses GAT to model the topological relationship between
agents in the whole scene and captures temporal depen-
dencies with MHA. We believe that the learned spatial and
temporal attention can help the model to obtain accurate
predictions in crowded scenarios.

� Our model is capable of modeling spatio-temporal interac-
tions simultaneously, which bridges the gap between agent-
centric and spatial-centric trajectory prediction paradigms.

� We conduct experiments on two different trajectory pre-
diction task, pedestrian and vehicle datasets, and achieve
state-of-the-art results for both. This shows that our model
can improve generalization by reducing the variance of the
predicted trajectory distributions, with the ability to learn
different agent types and motion behaviours.

II. RELATED WORK

The problem of trajectory prediction has been studied from
different perspectives. Therefore, there are a large number of
trajectory prediction models in the literature. Here, we mainly
focus on modeling interactions and draw on two main lines of
trajectories prediction research: spatial interactions with neigh-
bor agents and temporal interactions in history trajectories.

A. Spatial Interactions With Neighbor Agents

The common pattern in trajectory prediction is basically fo-
cused on spatial interactions modeling. The pioneering model

can be tracked back to the Social Force model [17], which
superimposes attractive forces from a goal vehicle with repulsive
forces from other vehicles. Then, the hand-crafted approaches
have been applied, such as continuum dynamics [18], Discrete
Choice framework [19], Gaussian processes [20] and Bayesian
model [21]. It has been demonstrated that they are insufficient to
capture interactions in complex scenarios. Recently, data-driven
based models have shown enormous potential in spatial inter-
actions modeling. Social LSTM [8] introduces a social pooling
layer to model the interactions of people in a neighborhood. [9]
proposes a social GAN model, the correlation of all the agents
were taken into consideration by training adversarial against a
recurrent discriminator in a particularly scene.

Conversely, [12], [22], [23] propose a novel attention-based
scheme. It focuses on the agents, which has highest correla-
tion between neighbor agents and targeted agents, but they
ignore the inherent topology between vehicles. Therefore, in-
spired by graph convolutional networks (GCN) [24], [16], [25]
adopt GAT to capture spatial interactions which assign different
weights to graph nodes by the LSTM hidden states, and achieve
superior performance on public human trajectory forecasting
benchmarks. In our case, we also borrow ideas from GAT to
model spatial interactions in spatial attention layer, and it is
very convenient to be a plug and play block. Compared to prior
work, we learn spatial features from their ground-truth input
embedding. In order to maintain stability in training, we do a
Layer Normalization (LN) on it. Our experiments suggest that
these components speed up and stabilize training processing and
improve the quality and generalizability of trained models.

B. Temporal Interactions in History Trajectories

Compared with spatial interactions, most of temporal interac-
tions methods [8]–[10], [26] adopt Recurrent Neural Networks
(RNN) and its variant that are tailored for temporal sequences,
such as LSTM [27] and Gated Recurrent Units (GRU) [28].
Since [29], recent works [30]–[32] adopt convolutional neural
networks (CNN) which could alleviate the gradient vanishing
and exploding made by RNN, and they support increased par-
allelism and effective temporal representation. In this work, we
incorporate the multi-head attention (MHA) mechanism [33]
which is widely used in Natural Language Processing (NLP)
research. It can also be executed in parallel and have lighter struc-
tures. Therefore, our models use the attention mechanism instead
of sequential processing model and could more efficiently and
robustly capture the temporal dependencies.

C. Spatio-Temporal Interactions for Trajectory Prediction

The spatio-temporal scheme which is based on GNNs has
become more and more popular in trajectory prediction, after
their strong performance in action recognition [34], [35], visual-
spatiability tasks [36], robotic manipulation [37] and traffic
prediction [38]. In the field of trajectory prediction, [31] directly
extracts spatio-temporal features from the graph representing
G = (V,A) by the Spatio-Temporal Graph Convolution Neural
Network (ST-GCNN) [39]. [32] proposes a Spatio-Temporal
Graph interaction framework, which adopts temporal CNNs
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Fig. 2. Architecture for our proposed HSTA model. The encoder was mainly consist of three layers: (a) The spatial attention layer with GAT for spatial interactions;
(b) The temporal attention layer with MHA for temporal interactions; (c) The state fusion layer, which concatenates the above two layers. The generated trajectory
is mainly through the encoder-decoder framework based on LSTM.

to capture temporal dependencies and GAT to model spatial
interaction. [16] builds a novel STAGT, the interactions between
temporal correlations were measured by an extra LSTM. [40]
presents STAR, a Spatio-Temporal grAph tRansformer frame-
work, which uses the transformer to capture spatial and temporal
interactions respectively. However, these methods still have dif-
ficulties in capturing temporal dependencies of long sequences,
and the computational efficiency is not ideal. Our method com-
bines spatial graph attention networks and temporal multi-head
attention networks, which considers both spatio-temporal fea-
tures and computational efficiency. Moreover, it can adaptively
control influence of spatial and temporal features at each time
step with a state gate fusion layer.

III. HIERARCHICAL SPATIO-TEMPORAL ATTENTION MODEL

To get insight of the spatial interactions and complex temporal
dependencies in trajectory prediction, we develop a hierarchical
spatio-temporal attention model to forecast the trajectories of
agents.

Fig. 2 shows the structure of our model, HSTA is an encoder-
decoder architecture. Before entering into the encoder, the his-
torical features Vt is transformed to ΔVt, then embedding into
a higher dimension vector Xemb(t) with a multilayer percep-
tion (MLP). The encoder is consist of three layers: a temporal
attention layer with a Multi-Head Attention (MHA) module
for embedding temporal interactions (Section III-B), a spatial
attention layer with a Graph Attention Network (GAT) for
capturing spatial interactions (Section III-C), and a gate fusion
attention mechanism layer to fusion temporal features htep and
spatial features hspa at each time step as the input for the
LSTM-based module (Section III-D). In the decoder module,
we use LSTMs to generate diverse feasible trajectories in future
timesteps (Section III-E). More details of our framework will be
elaborated in the following sections.

A. Problem Definition

We assume that a scene at timestep t containsN agents, repre-
sented by a set {V i

t }Ni=1, where V i
t = (xi

t, y
i
t) denotes absolute

coordinates of the i-th agent V i at timestep t. Then the set V i
t

of agent i = 1, 2, . . ., N at time steps t = 1, 2, . . ., Tobs as the

Fig. 3. Temporal attention layer with multi-head attention. The values V and
keys K are concatenated from history time steps, and the query Q is produced
by the current time step. It allows HSTA to learn on which position in the past
is most important for predicting the future trajectories.

input of model, the problem evolves into forecasting the future
trajectories (x̂i

t, ŷ
i
t), where t = Tobs+1, Tobs+2, . . ., Tpred.

B. Temporal Attention Layer Modeling

The temporal attention layer is used to extract the temporal
interactions in each agent independently. Inspired by [33], we
find that the multi-head attention is similar to CNN and does not
depend on the calculation of previous moments. Unlike the RNN
variants that calculate hidden states step by step, the module
can be calculated in parallel to capture sequence non-linearities.
In addition, it can also capture long-distance dependencies.
Therefore, we propose to use a multi-head attention to model
temporal dependencies as illustrated in Fig. 3.

Xemb(t) = MLPemb (ΔVt,Wemb) (1)

where the ΔVt denotes relative features. According to [9], [16],
[25], we embed the agent’s relative dynamic features ΔVt into a
high-dimensional vector Xemb(t) through a multilayer percep-
tion (MLP), Wemb is the embedding weight ( (1)). Then using
the input embedding Xemb(t) and three parameter matrices
WQ, WK , WV to generate the queries Q = Xemb(t)WQ, keys
K = Xemb(t)WK and values V = Xemb(t)WV , and the pa-
rameter matricesWQ ∈ Rdmodel×dk ,WK ∈ Rdmodel×dk ,WV ∈
Rdmodel×dv , where Q, V represent current frame, K represents
all frames in the observed trajectory, then the attention weight
of all frames to the current frame is obtained by a scaled
dot product. The output is then used to weight the V , which
represents the specific value of each frame. The final attention
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Fig. 4. Spatial attention layer with graph attention network, �hi is the feature
vector of i-th agent. It allows assigning different weights to neighborhood agents.

matrix can be written as (2) that divides each by
√
dk to scale the

dot product attention and use a softmax function to normalize
it.

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2)

Instead of performing a single scaled dot product attention
block with dmodel-dimensional queries, keys and values, we di-
videdmodel intohparts, anddk = dv = dmodel/h. Then we exe-
cute the attention block in parallel forh times, these independent
attention outputs are concatenated and dynamically weighted to
capture different feature representation by W o ∈ Rhdv×dmodel .
Then the obtained resultshm is processed by layer normalization
to get htep

hm = M(Q,K, V ) = Concat (head1, . . ., headh)W
o

where headh = Attention (Qh,Kh, Vh) (3)

In this work, we utilizeh = 8 parallel heads and dmodel = 32.
Although the dimension of each attention block has decreased,
the overall computational cost is similar to the single scaled dot
production attention with dmodel dimension.

C. Spatial Attention Layer Modeling

Acquiring the complex spatial interaction is a key problem
in trajectory prediction. The early LSTM-based method used
Euclidean distance to describe the interactions between agents,
which sometimes ignores agents that really need attentions.
Because the topological mechanism between agents is similar
to the graph structure, and prior works [16], [25] have shown
that graph attention network (GAT) [15] has been successfully
used in capturing the spatial relationships among surrounding
vehicles, we adopt GAT as a part of our spatial attention layer.

As shown in Fig 4, we use an undirected graph G = {H,E}
to represent spatial interactions among agents. Node set H
consists of each agent in the scene at each time-step, which is
defined asH = {�hi

t | i = 1, . . ., N, t = 1, . . ., tobs}, whereN is
the number of observed agents in a scene, and tobs is the history
time steps. The �hi

t is the feature vector of i-th agent, it is the
embedding output of {ΔV i

t }Ni=1. In this paper, we define G is
a complete graph, and the edge set E = {�hi

t
�hj
t | (i, j ∈ Ni)},

where Ni indicates the neighbor set of node i.

Fig. 5. State gate fusion layer with fusion gate, it combines spatial and
temporal interactions via gated fusion.

According to the graph-structured data obtained above, we
extract spatial features by the GAT, which is composed of
stacking graph attention layers. The input is the feature vector
setHt = {�h1

t ,
�h2
t , . . .,

�hN
t },�hi

t ∈ RF at time step t, which repre-
sents the feature of all nodes, and the dimension ofHt isN × F .
Then we use a shared attention mechanism a to extract feature,
and first calculate the attention coefficients αij of each node. In
order to better calculate and compare, we perform softmax on the

αij and calculate the output features �hi
′ of every node. Finally,

to stabilize the learning processing of self-attention, we execute
K independent attention mechanisms to obtain the output of
multi-head attention. In our implementation, spatial attention is
obtained by two graph attention layers, and to reduce the effect of
covariate shift, layer normalization is used to process the output
�h′
i of spatial attention layer. The output of the graph attention

layer is a new feature set Ht
′ = {�h′1

t ,
�h′2

t , . . .,
�h′N

t }, �h′i
t ∈ RF ′

,
F ′ and F can be unequal, and is processed by layer normal-
ization. Then the results of layer normalization hspa will be
concatenated with embedding of input Xemb(t) and temporal
attention htep.

D. State Gate Fusion Layer

To fuse spatial and temporal features, we proposed a gate
fusion layer to adaptively control the influence of spatial and
temporal attention at each time step. As shown in Fig. 5, for
hidden features hfusion, including spatial features hspa and
temporal features htep by fusion gate z.

hfusion = z � hspa + (1 − z)� htep (4)

with

z = σ (hspaWz,1 + htepWz,2 + bz) (5)

where Wz,1, Wz,2 and bz are learnable parameters, � represents
the element-wise product, σ(·) denotes the sigmoid activation, z
is the fusion gate which is computed by (5). Then we concatenate
the fusion features hfusion and input embedding Xemb(t), and
new features Hfusion as the input of E_LSTM (LSTM for
encoder).

Hfusion = Xemb(t) ‖ hfusion

et = E_LSTM (et−1, Hfusion,We) (6)

where Xemb(t) is from Eq. (1), We is the weight of E_LSTM,
|| denotes the concatenate operation. To stabilize the training
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process and prevent the gradient from vanishing or exploding,
we add a LSTM layer between the encoder and the decoder. It
converts the encoded spatio-temporal features to generate hidden
representations as the input of the decoder.

E. Future Trajectory Prediction

By the above spatio-temporal attention mechanism, we get a
hidden vector etobs . Considering the uncertainty of the future
trajectory, a random Gaussian noise G is added to the hidden
vector. Then the relative position of the next time step is ob-
tained by the D_LSTM (LSTM for decoder) and a multi-layer
perceptron σ(·).

Etobs = etobs ‖ G (7)

ΔŶtobs+1 = σ (D_LSTM(dtobs , Etobs ,Wd)) (8)

Following the strategy to compute variety loss in [9], we select
the smallest distance between predicted relative positions ΔŶt

and ground-truth relative positions ΔYt to calculate loss. Eq9
and Eq.10 is our loss function for training, which calculate L2
loss Lh for k possible future trajectories, then the variety loss
Lvariety is obtained by the minimum Lh.

Lh

(
ΔŶ

)
=

∑N
i=1

∑Tpred

t=tobs+1

∥∥∥ΔŶ i
t −ΔY i

t

∥∥∥2

2

NTpred
(9)

Lvariety = min
k

(
LhΔŶ (k)

)
(10)

IV. EXPERIMENTAL RESULTS

We evaluate our model, which we call HSTA, on two different
kinds of public datasets that include pedestrian datasets and
vehicle datasets. Quantitative and qualitative results are also
presented for further analysis. We have also conducted ablation
studies to understand the efforts of each proposed module and
hope to contribute to the structural design of model in the
trajectory forecasting.

As a brief summary, we show that: 1) HSTA has better perfor-
mance than the attention-based SOTA model on pedestrian and
vehicle datasets; 2) the temporal attention improves the accuracy
of long-term prediction compared to attention-based methods;
3) the hierarchical spatio-temporal attention model improves
sophisticated interaction modeling and model reasoning is faster.

A. Datasets and Metrics

The pedestrian datasets include ETH [41] and UCY [42],
which consist of five sets, four scenarios named ETH, HOTEL,
UCY, ZARA-01 and ZARA-02. They contain thousands of
pedestrian trajectories with rich interactive behaviors, and the
recording frequency is 2.5 Hz (Δt = 0.4 s). We adopt an evalu-
ation strategy similar to [9], which is called the leave-one-out.

Considering that these datasets mentioned above only contain
pedestrian trajectories, and we also evaluate our experiments
on two publicly available vehicle datasets: NGSIM [43], [44],
and highD [45]. The NGSIM includes US-101 and I-80 dataset,
which is recorded on real freeway traffic by multiple overhead

TABLE I
EFFECTS OF DATA AUGMENTATIONS, BASIC REPRESENTS NO OPERATION AND

ABSOLUTE COORDINATES, REL REPRESENTS RELATIVE COORDINATES,
ROT+REL REPRESENT RELATIVE COORDINATES AND RANDOM ROTATIONS

cameras in the US in 2005, each dataset contains 45 minutes of
vehicle data at 10 Hz. HighD is a real-world vehicle dataset
recorded by a camera-equipped drone on German highways
in 2017 and 2018. It includes more than 110 500 vehicles,
each vehicle’s trajectory, including vehicle position, velocity,
acceleration, type, and size. Following the similar methodology
as [10], which the datasets are divided into 70% training, 10%
validation, and 20% testing.

Evaluation Metric: Following reporting conventions [4], [9],
[10], [12], we report our results in two error metrics:

1) Average Displacement Error (ADE): the mean square
error (MSE) over all prediction trajectories and ground-
truth.

2) Final Displacement Error (FDE): the distance between
prediction trajectories and ground-truth at Tpred.

Implementation Details: Our evaluation results are based
upon the position information Xt

i = (xt
i, y

t
i). We use a single-

layer MLP to map the inputs to 32 dimensions ( (1)). In spatial at-
tention layers, we use two graph attention layers, and the number
of features of each node F = 16, the attention heads K = 4, 1
corresponds to the first and second layer respectively, the parallel
heads h = 8 in temporal attention layer. Layer Normalization is
applied to the output of spatial and temporal attention layers. The
dropout value was selected as 0.2 to avoid the risk of overfitting.
We use the ReLU as the activation function σ across our model.
To acquire the parameters of our network, the Adam optimizer
and learning rate was set as 100 epochs and 0.0001, separately.
Our model is built using Python with a Pytorch backend and
trained with a NVIDIA GTX-1080Ti.

B. ETH and UCY Datasets

1) Data Pre-Processing: We first conduct experiments on
two pedestrian datasets ETH and UCY, then adopt data pre-
processing methods in [9], [46], [47]. According to the de-
scription in [47], the trajectories of the Hotel scene is different
with other scenes, and it is extremely important to narrow this
inconsistency. As can be seen from Table I, we use Vanilla LSTM
(LSTM) and our model (HSTA) to verify the importance of data
augmentations. Basic means that no operation is performed by
default, and absolute coordinates are used. Rel represents the
first modification that we use relative coordinates as input instead
of absolute coordinates. Rot+Rel as the second modification
with relative positions and random rotations to reduce directional
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TABLE II
ABLATION STUDY ON HSTA. GAT DENOTES THE SPATIAL ATTENTION LAYER, THE ATTENTION HEADS K = 4, 1 CORRESPONDS TO THE FIRST AND SECOND

LAYER RESPECTIVELY, MHA DENOTES THE TEMPORAL ATTENTION LAYER, THE HEADS h = 8, SGF DENOTES THE STATE GATED FUSION LAYER. WE REPORT ON

TWO METRICS ADE/FDE FOR tpred = 12 (4.8 S) IN METERS

Fig. 6. Quantitative ADE and FDE results for variants on ETH and UCY
datasets, HSGF, HSA and HTA represent the variants of ID = 2, 3, 4 in Table II,
respectively. The lack of any component will reduce the accuracy of the model.
(a) Average ADE results for five scenes. (b) Average FDE results for five scenes.

bias. To ensure the fairness of comparison, we only sample
angles from N(0, σ2) with σ = 180◦ in the training dataset.

The results are displayed in Table I, they show that the metric
of Hotel in the Basic is much larger than the average metric, and
the performance can be greatly improved through relative and
rotation operations. We adopt data augmentations (Rot+Rel) in
the following experiments.

2) Component Analysis: We verify the effectiveness of each
component by ablation experiments, including the spatial atten-
tion layer (GAT) (Section III-C), the temporal attention layer
(MHA) (Section III-B), and the state gate fusion layer (SGF)
(Section III-D). As we consider all neighbors in the scene,
and we take the first 8 frames (3.2 seconds) as the history
trajectories, then predict the next 12 frames (4.8 seconds) as
future trajectories. The quantitative results of various model
variants are shown in Table II.

In order to find out which component plays a role in improving
long-term prediction, we perform trajectory prediction at differ-
ent time steps. As shown in Fig. 6, the lack of any component

TABLE III
DIFFERENT ATTENTION HEADS, K REPRESENTS THE HEADS OF THE FIRST

LAYER IN GAT, H REPRESENTS THE HEADS OF MHA. WE REPORT THE

AVERAGE PERFORMANCE ON TWO METRICS ADE/FDE

will reduce the accuracy of the model. An interesting thing is
that MHA performs best in short-term predictions, because of
its higher accuracy in the Hotel scene, which may be the Hotel
is more time-dependent.

Attention heads: Before performing ablation studies, we first
select the appropriate attention heads of GAT and MHA. As
shown in Table III, K = 4, 8 represents the number of heads
of the first layer of GAT, H = 4, 8 represents the number of
heads of MHA. We can see that the increase of H is beneficial
to the improvement of average performance, but the more is not
the better. For example, the increase in K will decrease the
metrics (ID = 3, 4). We adopt parameter configuration of ID
1 in the following experiments.

State fusion gate: Performing the state fusion gate (4) and
considering the performance of two cases with gate (Variant 1)
and without gate (Variant 2). We can see that the average
accuracy of the model with component SGF is 8.7/5.7(%) better
than the model without SGF, which shows that the state fusion
gate can better integrate spatio-temporal features into a hidden
representation.

Spatial interaction refinement: Employing only the spatial
attention layer (Variant 3 with GAT) has the worst performance,
which shows that not only the spatial interaction of intra-frame,
but also the temporal interaction between inter-frame should be
considered for sequence data. The effect of temporal interaction
modeling is summarized in following paragraph.

Temporal interaction refinement: With attention headH fixed
as 8, only introducing the temporal interaction layer (Variant 4
with MHA) is resultful, which improves the performance by
10.6/7.8(%) compared to Variant 3. This shows that it is more
important for sequence data to model temporal interaction than
temporal interaction. In addition, it is worth noting that only
considering MHA (Variant 4) is better than considering both
MAH and GAT without SGF (Variant 2), which further indicates
the crucial of SGF.
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TABLE IV
EFFECT OF VARYING K, WE TRAIN AND TEST OUR MODEL WITH K SAMPLES. WE SEE THAT THE AVERAGE ERROR METRICS ADE/FDE ARE IMPROVING WITH

THE DECREASE OF K, AND OUR MODEL IS LEAST AFFECTED BY THE VARIETY LOSS, DUE TO LOWER DISTRIBUTION VARIANCES. AND TWO ERROR METRICS ARE

REPORTED FOR 12 FUTURE TIMESTEPS IN METERS (LOWER IS BETTER)

3) Comparison With Benchmark: We compare our model
with following baseline approaches: (1) V-LSTM: a vanilla
LSTM without modeling interactions, each pedestrian uses
an LSTM for modeling, and the parameters are shared be-
tween LSTMs. (2) S-LSTM [8], Social-Attention [13] and
STGAT [16]: methods that capture human-human interac-
tions with observed trajectory. (3) Social-BiGAT [25] and
MATF [48]: methods that capture human-human interactions
with observed trajectory and scene context.

Effect of variety loss: We represent 4 variants with differ-
ent control settings in Table IV, which are represented by
k = 1, 5, 10, 20. And S-GAN-P [9] is the first paper to propose
the variety loss, Sohpie [22] and Social-BiGAT [25] also used
variety loss in their paper and achieved SOTA at the time
of publication. Compared with k = 1 (essentially represents
without variety loss), the performance of all models has been
improved, indicating that the variety loss improves performance
by stimulating the network to generate multiple samples. Specif-
ically, the ADE and FDE of our model increase more slowly
with decreasing k, which is due to the architecture that encodes
both spatial and temporal attention reduces the variance of the
predicted trajectory distributions. From Fig. 7 we see that the
performance is improving with the increase of k, however,
our model is least affected by the variety loss, indicating that
the hierarchical spatio-temporal attention architecture in HSTA
can reduce the variance of the predicted trajectory distributions
to improve generalization. In addition, increasing the number
of samples without variety loss can also significantly improve
the test performance (HSTA1V-1 vs HSTA1V-20 in Table V).
However, as shown in Fig. 8, for the case without variety loss,
although simply adding samples at the beginning can improve
performance, it will not help to get better accuracy as the
samples increase. On the contrary, the accuracy can be improved
substantially with increasing k in the variety loss case.

HSTA vs various baselines: Table V shows the results of
our model and various baselines. By capturing interaction, the
S-LSTM and attention-based model are notably improved com-
pared to V-LSTM. But the attention-based baselines, which use
attention to model interactions, improve upon the S-LSTM by
assigning different weights to neighbors. In addition, we see
that integrating the spatio-temporal information is helpful for
performance improvement, especially for the accuracy of FDE.
Our model HSTA1V-1 is evaluated from one sample without
variety loss. Compared to V-LSTM, the performance of the
model is increased by 34.7/37.7(%).

4) Comparison With Different Prediction Horizon: We adopt
the same experimental setting and only change the prediction

Fig. 7. Effect of variety loss k. Results of S-GAN-P, Sophie, Social-BiGAT
refer to [25]. We find that HSTA is less affected by K, due to this architecture
reduces the variance of predicted trajectory distribution and improves general-
ization. (a) Average ADE results for five scenes. (b) Average FDE results for
five scenes.

horizon. Quantitative results are shown in Fig. 9. We com-
pare our model, HSTA20V-20, with V-LSTM and STGAT,
and HSTA20V-20 performs most prominently, especially in
longer prediction horizons (8-12 time steps). In addition, STGAT
and HSTA are both attention-based methods, but STGAT only
uses the attention mechanism for spatial interactions without
modeling temporal interactions. Our method models spatio-
temporal interaction simultaneously. Therefore, the accuracy of
our method is improved compared with STGAT.

5) Qualitative Results: The qualitative results are shown in
Fig. 10, we compare our model (HSTA-20V-20) with LSTM,
STGAT (STGAT-20V-20) and variants in the crowd scene. Cor-
responding to Section IV-B4, the first row (Fig. 10(a)–10(c))
represents the performance of different baselines. Benefiting
from the spatio-temporal attention, HSTA is able to capture
long-term predictions, which takes advantage from the temporal
dependence. And our model outperforms LSTM and STGAT, es-
pecially in the long-term prediction we can generate trajectories
closer to ground truth.
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TABLE V
COMPARISON WITH SEVERAL BASELINES, INCLUDING VANILLA LSTM AND ATTENTION-BASED MODELS. TWO ERROR METRICS ADE/FDE ARE REPORTED FOR

12 FUTURE TIMESTEPS IN METERS (LOWER IS BETTER), AND STGAT WITH k = 20 SAMPLES

Fig. 8. Effect of the number of samples. HSTA-1V-N represents our model
without variety loss during training and is sampled N times during testing.
HSTA-NV-N indicates the use of variety loss and uses N samples during both
training and testing. (a) Average ADE results for five scenes. (b) Average FDE
results for five scenes.

In order to explore the function of components in Table II,
we also visualize each variant. From the Fig. 10(d) and 10(e),
we can see that HSA is closer to the ground truth in the short-
term forecast, but HTA is more advantageous in the long-term
forecast. In addition, by comparing Fig. 10(c) and 10(f), we
find that the state gate fusion layer integrates spatio-temporal
interaction well. This conclusion is consistent with the former
in Fig. 6.

C. NGSIM and Highd Datasets

1) Baselines: We compare HSTA with the following models.
Constant Velocity (CV) and Vanilla LSTM (V-LSTM) are
the baselines without modeling interactions. S-LSTM [8], CS-
LSTM [10] and S-GAN [9] use the social pooling to capture
spatial interactions. NLS-LSTM [14] and MHA-LSTM [12]

Fig. 9. Quantitative ADE and FDE results for baselines on ETH and UCY
datasets, which in meters w.r.t. each future timestep in the prediction horizon
are reported. Orange line is the evaluation result of LSTM without modeling
interaction, grey for STGAT with spatial interaction, blue for HSTA that includes
spatial and temporal interactions. (a) Average ADE results for five scenes.
(b) Average FDE results for five scenes.

Fig. 10. Comparisons of our model (HSTA-20V-20) with LSTM, STGAT
(STGAT-20V-20) and variants. The red represents observed trajectory, the blue
represents ground truth, and the yellow represents predicted trajectory. HSA,
HTA and HSGF represent the variants of ID = 3,4,2 in Table II, respectively.
(a) LSTM. (b) STGAT. (c) HSTA. (d) HSA. (e) HTA. (f) HSGF.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 11,2022 at 09:52:27 UTC from IEEE Xplore.  Restrictions apply. 



WU et al.: HSTA: A HIERARCHICAL SPATIO-TEMPORAL ATTENTION MODEL FOR TRAJECTORY PREDICTION 11303

TABLE VI
QUANTITATIVE RESULTS OF BASELINES AND OUR HSTA ON THE HIGHD AND NGSIM DATASET. ALL RESULTS ARE REPORTED IN RMSE IN METERS (LOW

NUMERICAL RESULTS ARE BETTER). ALL MODELS TAKE AS AN INPUT 3 S (15 FRAMES). WE NOTICE THAT HSTA (INCLUDING HSTA2 AND HSTA6) HAS BETTER

PREDICTIONS THAN OTHER BASELINES

TABLE VII
THE QUANTITATIVE RESULTS OF VARIANTS. HTA AND HSA RESPECTIVELY

INDICATE WITHOUT SPATIAL ATTENTION LAYER AND TEMPORAL ATTENTION

LAYER. TO MEASURE RESULTS IN HIGHD, THE ERROR METRICS RMSE AND

FDE ARE APPLIED HERE

Fig. 11. Visualized prediction results in highD. The observed history (3 s),
ground truth in the future, and the predicted results (5 s) of HSTA model are
donated by red, blue, and yellow dashed line, respectively. (a) Keeping lane. (a)
Keeping lane.

are two main attention models, MATF [48] and PiP [49] are
two latest methods.

2) Quantitative Evaluation: Comparison with Existing
Works

We compare HSTA with various benchmarks in Table VI,
reporting the root of the mean squared error (RMSE) for different
time steps on the highD and NGSIM datasets. Overall, HSTA
exceeds baselines on the vehicle datasets, the previous state of
the art on the RMSE metric is PiP with an error of 2.63 at 5 s
and 0.17 at 1 s on highD. Our HSTA has an error of 0.54 at 5 s
and 0.10 at 1 s on highD, which is about 80% and 40% less than
the state of the art respectively.

From each time step, as we can observe from the results,
the two attention-based models NLS-LSTM and MHA-LSTM
are better than other baselines. However, HSTA shows the best
result in highD and NGSIM, which indicates that our GAT based
on graph structure can better capture spatial interactions than
grid-base attention in NLS-LSTM and MHA-LSTM. In terms
of long-term prediction (Tpred = 5 s), we find that the model

Fig. 12. Visualized prediction results in INTERACTION. Observed history is
1 s and predicted trajectories is 3 s.

Fig. 13. Attention visualization of the spatial and temporal attention model.
The solid dots indicate different time-steps and the arrows mark the direction of
trajectories. The target vehicle 1 with solid circles that represent the temporal
attention in time-steps. The circles on other vehicles show the spatial attention
of surrounding vehicles with respect to the target vehicle. The size of circles
represents the attention weight, the larger circle represents higher attention.

with MHA component has better performance because it can
better capture time dependencies.

Additionally, We notice the RMSE on the NGSIM dataset is
higher than that of the highD dataset. The reason may be the
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Fig. 14. Examples of complex interactions. (a)–(d) represent the cooperative behavior in the roundabout, (e)–(h) represent aggressive behavior of entering
roundabout, (i)–(l) represent conservative behavior of entering roundabout.

noise caused by incorrect annotations of the NGSIM dataset,
which leads to unsatisfactory results. Besides, all those methods
that incorporate interactions present a better performance than
the reference methods, which include the constant velocity and
the vanilla LSTM methods. This result indicates that the vehicles
in neighborhood have vital influence on the trajectory generation
of object vehicle.

Ablation Study: Here we conduct an ablation study to analyze
the components of HSTA, including the Graph Attention Net-
work (GAT) block (Section III-C) and the Multihead Attention
(MHA) block (Section III-B). To testify the capability of GAT
and MHA blocks, we respectively consider two variant models
HTA (without spatial attention layer) and HSA (without tempo-
ral attention layer), as well as train and test them in the highD
dataset. Moreover, two metrics are used to evaluate variants: the
root of the mean squared error (RMSE) and the final displace-
ment error (FDE) that considers only the prediction precision at
the end point. According to the quantitative results in Table VII,
our HSTA which combines GAT and MHA has achieved the
state of the art performance. For the RMSE metric, HSA has
better results than HTA because the graph structure could better
represent the relationships between vehicles. As expected, we
see that HTA outperforms HSA in the case of longer predictions
on the FDE metric. Interestingly, HTA has the least training
time, it achieves this result because it overcomes the limitation of

complex graph structures and could parallel the computation for
all vehicles.

3) Qualitative Evaluation: In order to better study the ability
of spatio-temporal model in modeling social behavior, we con-
duct qualitative analysis of the predicted trajectory in two typical
scenarios (highways and roundabout). Specifically, highways
comes from the highD dataset, and roundabout comes from the
INTERACTION dataset [50] that contains the highly interactive
behavior of heterogeneous traffic participants from different
countries.

Highways: Fig. 11(a) shows prediction results when perform-
ing a lane keeping in dense traffic. It could be noticed that there
are vehicles around vehicle 1, 2, 3 and 4, they actually have
no space to change lanes. The results are consistent with our
analysis, these vehicles keep going straight without changing
lanes. Notably, the future trajectories are close to the ground truth
at each time step, indicating that our model has mastered the ve-
locity and acceleration characteristic of the vehicles. Fig. 11(b)
shows another example in which the vehicle 2 turns right to
change lanes. In this case, turning right to change lanes is reason-
able because there is no vehicle in the right lane of vehicle 2 and
vehicle 1 is far away from it. Our model successfully predicts its
intention and maintained high accuracy in the first 10 time steps.

Roundabout: In order to verify that our model has the ability
to model complex interactions, we train and test our model in
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INTERACTION dataset, and choose the roundabout scene for
qualitative evaluation. From Fig. 12, we can observe that HSTA
achieves better performance on vehicle 2, 4, 5 that are already in
the roundabout, and there are errors for vehicle 1, 3 just entering
or leaving the roundabout. For vehicle 1 and 3, our model
can accurately predict their positions before 1 s, but predicted
trajectories overshoot after reaching the final point. The reason
might be that their velocities are lower and the relative distance
traveled within 1 s is short, however, the input of our model is
relative distances. If the relative distance is shorter, it will lead
to undesirable results.

We also visualize the learned attention weight in Fig. 13, our
model successfully assigns spatial attention to the surrounding
vehicles and temporal attention to the time-steps. In this case,
HSTA allocates more attention to the front vehicle 2, although
the rear vehicle 4 is at the same distance as the front vehicle
2, the importance is not as high as the front car, which is
consistent with the actual driving situation. In addition, despite
vehicle 3 is far away, it is still assigned a similar attention
weight to vehicle 4, which indicates that our model assigns
spatial attention not only considering the distance but also the
current state of the vehicle. On the other hand, HSTA assigns
different weights to each frame for the all available observa-
tion interval, with the first and last frames receiving higher
attention.

In addition, we analyze the cooperative behavior in the round-
about, the aggressive and conservative behavior of entering
roundabout in Fig. 14. As shown in Fig. 14(a)–(d), our model
has satisfactorily learned to cooperate with each other. They not
only keep safe driving in the roundabout, but also drive out of
roundabout in an orderly manner. From Fig. 14(e)–(h), vehicle
1 shows an altruistic behavior, which maximizes the reward
of vehicle 2 and does not consider its own outcome. And our
model has learned to yield to vehicle 2 when vehicle 1 entering
the roundabout. In Fig. 14(i)–(l), vehicle 1 performs an egoistic
behavior that maximizes its own outcome without concerning
of the reward of vehicle 2. Therefore, although vehicle 1 has
found that vehicle 2 is approaching, it still chooses to enter the
roundabout directly without considering the influence of vehicle
2. These successful cases show that HSTA have the ability to
capture complex interactions in different scenes.

V. CONCLUSION

In this paper, we propose HATS, a hierarchical spatio-
temporal architecture for forecasting trajectories that outper-
forms prior state-of-the-art methods on publicly available
datasets. Unlike previous researches, our model is not only
able to capture spatial interactions among agents, but is also
able to encode temporal dependencies. We combine graph at-
tention mechanisms with multi-head attention mechanisms to
extract better features, which is able to generate more accurate
future trajectories. Through our visualizations, we demonstrate
that HSTA is able to capture complex interactions to generate
more reasonable and socially acceptable trajectories in different
scenes. Future works will concentrate on the construction of

complex scene topology, we hope to fix neighborhood agents,
instead of considering all agents in the scene.
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[15] P. VeliČković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,
“Graph attention networks,” in Proc. Int. Conf. Learn. Representations,
2018, pp. 1–12.

[16] Y. Huang, H. Bi, Z. Li, T. Mao, and Z. Wang, “Stgat: Modeling spatial-
temporal interactions for human trajectory prediction,” in Proc. IEEE Int.
Conf. Comput. Vis., 2019, pp. 6272–6281.

[17] D. Helbing and P. Molnar, “Social force model for pedestrian dynamics,”
Phys. Rev. E, vol. 51, no. 5, pp. 4282–4286, 1995.

[18] A. Treuille, S. Cooper, and Z. Popović, “Continuum crowds,” ACM Trans.
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