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Abstract

The superior spectral efficiency (SE) and user fairness feature of non-orthogonal multiple access

(NOMA) systems are achieved by exploiting user clustering (UC) more efficiently. However, a random

UC certainly results in a suboptimal solution while an exhaustive search method comes at the cost of high

complexity, especially for systems of medium-to-large size. To address this problem, we develop two

efficient unsupervised machine learning (ML) based UC algorithms, namely k-means++ and improved

k-means++, to effectively cluster users into disjoint clusters in cell-free massive multiple-input multiple-

output (CFmMIMO) system. Using full-pilot zero-forcing at access points, we derive the sum SE in

closed-form expression taking into account the impact of intra-cluster pilot contamination, inter-cluster

interference, and imperfect successive interference cancellation. To comprehensively assess the system

performance, we formulate the sum SE optimization problem, and then develop a simple yet efficient

iterative algorithm for its solution. In addition, the performance of collocated massive MIMO-NOMA

(COmMIMO-NOMA) system is also characterized. Numerical results are provided to show the superior

performance of the proposed UC algorithms compared to other baseline schemes. The effectiveness of

applying NOMA in CFmMIMO and COmMIMO systems is also validated.
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I. INTRODUCTION

The tremendous growth in the number of emerging applications will certainly pose enormous traffic

demands with ultra-high connection density for next-generation wireless networks. It is approximated

that more than 19 billion devices are connected to the Internet in 2019, and this number is predicted

to exceed 22 billion devices by 2021 [1]. The global data traffic of mobile devices is expected to reach

49 exabytes per month by 2021 [2], and will further increase over the next decade. However, traditional

orthogonal multiple-access (OMA) techniques seem to reach their fundamental limits in the near future,

and therefore are no longer suitable to meet these requirements. Consequently, it calls for innovative

techniques that utilize radio resources more efficiently to attain the optimal performance.

Non-orthogonal multiple-access (NOMA) has been envisaged as a key enabling technology that signif-

icantly enhances spectral efficiency (SE) and user fairness of traditional wireless communication systems

[3]. In NOMA, multiple user equipments (UEs) are allowed to simultaneously transmit and receive their

signals in the same resources such as time/frequency/code domain by using different signal signatures (i.e.,

code-domain NOMA) or power levels (i.e., power-domain NOMA) [3]–[5].1 In particular, in a downlink

system the key benefit of NOMA is attributed to the fact that UEs with better channel conditions are

able to cancel interference caused by UEs with poorer channel conditions using successive interference

cancellation (SIC) technique. User fairness is then achieved by allocating a large portion of the total

power budget to weak UEs, which also guarantees the SIC’s feasibility at strong UEs.

Recently, cell-free massive multiple-input multiple-output (CFmMIMO), which is a scalable version

of massive MIMO networks, has been introduced to overcome the large propagation losses as well as

provide better quality-of-experience services for cell-edge UEs [6]–[8]. CFmMIMO comprises of a large

number of access points (APs) that are spatially distributed over a wide area to coherently serve multiple

UEs in the same time-frequency resources. All APs are coordinated by a central processing unit (CPU)

through fronthaul links. Each AP performs beamforming based on its local channel state information

(CSI) only, and this feature thus greatly reduces the complexity in terms of the fronthaul overhead.

Since each UE is coherently served by all APs, the effect of cell boundaries can be effectively removed.

It was shown in [6] and [9] that CFmMIMO is superior to small-cell and collocated massive MIMO

(COmMIMO) in terms of SE and energy efficiency (EE), respectively. However, the key advantages of

favorable propagation and channel hardening properties to multiplex numerous UEs are only achieved

in the case of multiple antennas at APs and/or low propagation losses [10]. From the aforementioned

1This paper will focus on power-domain NOMA, which is simply referred to as NOMA for short.
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reasons, it is of pivotal interest to study the combination of NOMA and CFmMIMO to reap all their

benefits, towards fulfilling the conflicting demands on high SE, massive connectivity with low latency,

and high reliability with user fairness of future wireless networks [11].

A. Related Work

Despite its potential, there are only a few research works investigating the benefit of NOMA in

CFmMIMO systems in the literature. NOMA for the downlink CFmMIMO system was first studied

in [12], where closed-form expression for the achievable sum rate was derived. Numerical results showed

the superior performance of NOMA compared to OMA. The authors in [13] investigated the impact of

NOMA in the uplink CFmMIMO system and derived the closed-form approximation for the sum SE

(SSE). Simulation results demonstrated that the CFmMIMO-NOMA system is capable of utilizing the

scarce spectrum more efficiently. In [14], different types of precoding techniques such as maximum ratio

transmission (MRT), full-pilot zero-forcing (fpZF), and modified regularized ZF (mRZF) at APs were

considered in downlink CFmMIMO-NOMA systems. It was shown that the downlink CFmMIMO-NOMA

system with mRZF and fpZF precoders significantly outperform the OMA with MRT in terms of the

achievable sum rate. These existing works mainly focused on characterizing the performance analysis in

CFmMIMO-NOMA systems, but did not show how UEs are paired/grouped.

To be spectrally-efficient, it is crucial to group a sufficiently large number of UEs with distinct channel

conditions that performs NOMA jointly [3]–[5], [15]. In the context of CFmMIMO-NOMA, Bashar et

al. [16] proposed three distance-based pairing schemes including near pairing, far pairing, and random

pairing to group UEs into disjoint clusters. It is not surprising to see that the close pairing, where two UEs

with the smallest distance between them are paired, provides worst performance, which is also aligned

with the NOMA principle [3], [4]. Another interesting study is to group a large number of UEs into one

cluster [17], referred to as user clustering (UC), in which a low complexity suboptimal method based on

the Jaccard distance coefficient was developed to find the most dissimilar UEs in the CFmMIMO-NOMA

system. Nevertheless, UC algorithms in the above-cited works were developed based on distances among

UEs only, while the learning features are missing, resulting in a suboptimal solution.

Recently, unsupervised machine learning (ML) techniques have been considered as an effective means

for different optimization targets, which exploit adaptive learning features. In this regard, the authors

in [18] proposed a kernel-power-density based algorithm to cluster multipath components of MIMO

channels into disjoint groups. A novel cluster-based geometrical dynamic stochastic model was proposed

in [19], where scattered nodes were grouped into different clusters according to the density of nodes in
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MIMO scenarios. In [20], a clustered sparse Bayesian learning algorithm was developed for channel

estimation in a hybrid analog-digital massive MIMO system by using the sparsity characteristic of

angular domain channel. Notably, the authors in [21] proposed a novel clustering scheme for machine-

to-machine communications in a time-division multiple access-based NOMA system in order to increase

the battery lifetime of machines, using the popular k-means algorithm [22]. This work was extended in

[23] to improve the network sum throughput by considering an enhanced k-means algorithm accompanied

NOMA. Further, the k-means algorithm was used to cluster UEs in mmwave-NOMA [24] and CFmMIMO

[25]. Although these works demonstrated the effectiveness of applying unsupervised ML in clustering

tasks for various wireless communication systems, its application for UC in CFmMIMO-NOMA has not

been previously studied.

B. Motivation and Main Contributions

In CFmMIMO-NOMA systems, the effects of network interference are increasingly abnormal and acute

as the number of APs becomes denser. Most existing works on CFmMIMO-NOMA systems [12]–[14]

focus on the performance analysis while they neglect the importance of UC, which has been shown to

significantly improve the performance of NOMA-based systems [3], [4], [26]. A direct application of

random UC schemes [4], [15] to CFmMIMO-NOMA systems would result in poor performance, even

worse than traditional linear beamforming without NOMA. In addition, a joint UC and beamforming in

[5], clustering UEs by means of the tensor model, is not very practical for CFmMIMO-NOMA due to

excessively high complexity in terms of computational and signalling overhead. Although the k-means

algorithm has been widely adopted for different clustering tasks [21]–[25], its main drawback is sensitivity

to the initialization of centroids.

Taking into account all these issues, in this paper we devise novel UC algorithms along with an

efficient transmission strategy so that the SSE of CFmMIMO-NOMA systems is remarkably enhanced.

In particular, our main contributions are summarized as follows:

• We propose two efficient unsupervised ML-based UC algorithms, including k-means++ and improved

k-means++, to effectively cluster UEs into disjoint clusters in CFmMIMO-NOMA. The proposed

k-means++ algorithms further address the limitation of k-means due to the randomness of initial

centroids.

• Adopting fpZF precoding at APs, we characterize the performance of the proposed CFmMIMO-

NOMA system, considering impacts of intra-cluster pilot contamination, inter-cluster interference,

and imperfect SIC. To that end, the closed-form expression of SSE is derived. Furthermore, we also
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present the analytical result for COmMIMO-NOMA, which serves as a benchmark.

• To further improve the SSE, we formulate optimization problems for both CFmMIMO-NOMA and

COmMIMO-NOMA systems by incorporating power constraints at APs and necessary conditions for

implementing SIC at UEs, which belong to the difficult class of nonconvex optimization problem.

Towards appealing applications, two low-complexity iterative algorithms based on inner approxima-

tion (IA) method [27] are developed for their solutions, which are guaranteed to converge to at least

a locally optimal solution.

• Extensive numerical results are provided to confirm the effectiveness of the proposed UC algorithms

on the SSE performance over the current state-of-the-art approaches (e.g., close-, far- and random-

pairing schemes [16], and Jaccard-based UC scheme [17]). They also show the significantly achieved

SSE gains of CFmMIMO-NOMA over COmMIMO-NOMA.

C. Paper Organization and Notations

The remainder of this paper is organized as follows. Section II describes the system model. In

Section III, two unsupervised ML-based UC algorithms are presented. The performance analysis for

CFmMIMO-NOMA is given in Section IV. The proposed iterative algorithms for CFmMIMO-NOMA

and COmMIMO-NOMA are provided in Sections V and VI, respectively. Numerical results are given in

Section VII, while Section VIII concludes the paper.

Notations: Bold uppercase letters, bold lowercase letters, and lowercase characters stand for matrixes,

vectors, and scalars, respectively. | · |, (·)H , (·)T , (·)∗, and || · ||2 correspond to the cardinality, the

Hermitian transpose, the transpose, the conjugate, and the l2−norm operators, respectively. E[·] represents

the expectation operation. CN (µ, σ2) stands for circularly symmetric complex Gaussian random variable

(RV) with mean µ and variance σ2.

II. SYSTEM MODEL

A. System Description

We consider an CFmMIMO-NOMA system, where the set M , {1, 2, · · · ,M} of M APs are

connected to the CPU through perfect wired backhaul links to serve the set N , {1, 2, · · · , N} of

N UEs via a shared wireless medium, as shown in Fig. 1. Each AP is equipped with K antennas, while

each UE has a single antenna. APs and UEs are assumed to be randomly distributed in a wide coverage

area. The communication between APs and UEs follows the time division duplex (TDD) mode. Each

coherence interval, denoted by τc, includes two phases: uplink training τp (τp < τc) and downlink data
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AP1

CPU

AP2

APm

Cluster lnl

Nl

APM

wired backhaul links

UEs

Fig. 1. An illustration of the CFmMIMO-NOMA system.

transmission (τc− τp). The total N UEs are grouped into L clusters and each UE belongs to one cluster

only. We denote the set of L clusters by L , {1, 2, · · ·L}. The set of UEs in the l-th cluster is defined

as Nl , {1l, · · · , nl, · · · , Nl} with |Nl| = Nl, where
⋃

l∈L |Nl| = N and Nl

⋂Nl′ = ∅ for l 6= l′.

B. Signal Model

1) Uplink Training

In the uplink training phase, all UEs send their training pilots to APs for channel estimation. Then,

downlink channels are achieved by leveraging the channel reciprocity property of the TDD mode. With

the aim of minimizing the channel estimation overhead in CFmMIMO-NOMA, UEs in the same cluster

share the same pilot sequence, and the pilot sequences among different clusters are pairwisely orthogonal

[12], [16] which requires τp ≥ L. In this paper, we assume that τp = L. Let us denote the pilot sequence

sent from the UEs in the l-th cluster by φl ∈ Cτp×1 with l ∈ {1, 2, . . . , τp}, satisfying the orthogonality,

i.e., ‖φl‖22 = τp and φH
l φl′ = 0 if l 6= l′. The channel vector from UE nl to APm is defined as

hm,nl
∈ CK×1. In this paper, we focus on slowly time-varying channels, and assume that the channel
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coefficients are static during the τc interval. The channel hm,nl
is generally modeled as follows:

hm,nl
=

√

βm,nl
h̄m,nl

, (1)

where βm,nl
represents the large-scale fading coefficient accounting for path loss and shadowing, and

h̄m,nl
∈ CK×1 is small-scale fading vector in which the components are independent and identically

distributed (i.i.d.) CN (0, 1) RVs. The training signals received at APm can be written as follows:

Yp
m =

∑

l∈L

∑

nl∈Nl

√
ρnl

hm,nl
φH
l + Wp

m, (2)

where ρnl
and Wp

m ∈ CK×τp are the normalized transmit power of UE nl and the additive noise matrix

at APm whose elements follow CN (0, 1), respectively.

Given Yp
m, APm estimates hm,nl

using the minimum mean square error (MMSE) criterion. The

projection ŷpm ∈ CK×1 of Yp
m at APm onto φl can be derived as follows:

ŷpm = Yp
mφl = τp

∑

nl∈Nl

√
ρnl

hm,nl
+ Wp

mφl. (3)

Hence, the MMSE estimate of hm,nl
is given as

ĥm,nl
=

E{hm,nl
(ŷpm)H}

E{ŷpm(ŷpm)H} ŷ
p
m = υm,nl

ŷ
p
m, (4)

where υm,nl
=

√
ρnl

βm,nl

τp
∑

n′
l∈Nl

ρn′
l
βm,n′

l
+ 1

. The estimation error vector of hm,nl
is given as

em,nl
= hm,nl

− ĥm,nl
, (5)

where em,nl
and ĥm,nl

are i.i.d. RVs distributed as CN (0, (βm,nl
− γm,nl

) IK) and CN (0, γm,nl
IK),

respectively, with γm,nl
=

τpρnl
β2
m,nl

τp
∑

n′
l∈Nl

ρn′
l
βm,n′

l
+ 1

. Note that there is no cooperation among APs to

exchange the channel estimate information.

Remark 1. The so-called pilot contamination exists when APs estimate the channels of UEs belonging

to the same cluster. The relationship of channel estimates of UE nl and UE n′
l in the l-th cluster with

nl 6= n′
l and nl, n

′
l ∈ Nl, at APm is expressed as follows:

ĥm,nl
=

√
ρnl

βm,nl√
ρn′

l
βm,n′

l

ĥm,n′
l
. (6)

2) Downlink Data Transmission

Under TDD operation, we consider the channel reciprocity to acquire CSI to precode the transmit

signals in the downlink [6], [9]. In this paper, we adopt fpZF precoding [28] to cancel inter-cluster

interference, but still take into account intra-cluster interference. Compared with the pure ZF [29], each

AP computes fpZF precoding using its local CSI only, leading to an implementable algorithm. From (2),
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the full-rank matrix H̃m ∈ CK×τp of fpZF precoder at APm is given by [28]

H̃m = Yp
mφ, (7)

where φ = [φ1,φ2, · · · ,φτp ] ∈ Cτp×τp denotes the collection of τp orthogonal pilot sequences. Hence,

from (4) and (7), the channel estimate ĥm,nl
is rewritten as

ĥm,nl
= υm,nl

H̃mϕl, (8)

where ϕl is the l-th column of the identity matrix Iτp . From (7) and (8), the beamforming vector

wm,l ∈ CK×1 oriented to the l-th cluster at APm can be expressed as follows:

wm,l =
H̃m

(
H̃

H

mH̃m

)−1
ϕl

√

E

{∥
∥H̃m

(
H̃

H

mH̃m

)−1
ϕl

∥
∥2

2

} . (9)

The transmitted signal xm ∈ CK×1 from APm is given by

xm =
∑

l∈L

∑

nl∈Nl

√
ρmnl

wm,lxnl
, (10)

where xnl
is the symbol intended for UE nl, and ρmnl

is the normalized transmit power (normalized by

the noise power at APm) allocated to UE nl at APm. Besides, xnl
and xn′

l′
for l, l′ ∈ L and nl, n

′
l′ ∈ N

must satisfy the following condition

E
{
xnl

(xn′

l′
)∗
}
=







1, if l = l′ and n = n′,

0, otherwise.

(11)

Then, the received signal at UE nl in the l-th cluster can be written as

ynl
=

∑

m∈M

hH
m,nl

xm + znl

=
∑

m∈M

√
ρmnl

hH
m,nl

wm,lxnl

︸ ︷︷ ︸

Desired signal

+
∑

m∈M

∑

n′
l∈Nl\{nl}

√

ρmn′
l
hH
m,nl

wm,lxn′
l

︸ ︷︷ ︸

Intra-cluster interference before SIC

+
∑

m∈M

∑

l′∈L\{l}

∑

nl′∈Nl′

√
ρmnl′

hH
m,nl

wm,l′xnl′

︸ ︷︷ ︸

Inter-cluster interference

+znl
, (12)

where znl
∼ CN (0, 1) is the additive white Gaussian noise (AWGN) at UE nl.

Without loss of generality, in the l-th cluster we consider a descending order of channel gain, i.e., UEs

1l and Nl are the users with strongest and weakest channel gains, respectively. By NOMA principle [3],

[4], UE nl in the l-th cluster first decodes the signals of UEs n′
l > nl with poorer channel conditions,

and then its own signal is successively decoded after removing the interference from those UEs. Denote

by SINRn′

l

nl
and SINRn′

l

n′
l

the signal-to-interference-plus-noise ratios (SINRs) in decoding the signal of

UE n′
l by UE nl and itself, respectively. Towards an efficient and implementable SIC, the following
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necessary condition is considered [16]

E

{

log2
(
1 + SINRn′

l

nl

)}

≥ E

{

log2
(
1 + SINRn′

l

n′
l

)}

, ∀nl < n′
l,∀l ∈ L. (13)

Remark 2. We note that perfect SIC is practically unattainable owing to the effects of intra-cluster pilot

contamination and channel estimation errors. Consequently, the received signal at UE nl in the l-th

cluster after SIC processing can be written as follows:

ȳnl
=

∑

m∈M

√
ρmnl

h
H
m,nl

wm,lxnl

︸ ︷︷ ︸

Desired signal

+
∑

m∈M

nl−1∑

n′
l=1

√

ρmn′
l
h
H
m,nl

wm,lxn′
l

︸ ︷︷ ︸

Intra-cluster interference after SIC

+
√

ζnl

∑

m∈M

Nl∑

n′′
l=nl+1

√

ρmn′′
l
h
H
m,nl

wm,lxn′′
l

︸ ︷︷ ︸

Intra-cluster interference due to imperfect SIC

+
∑

m∈M

∑

l′∈L\{l}

∑

nl′∈Nl′

√
ρmnl′

h
H
m,nl

wm,l′xnl′

︸ ︷︷ ︸

Inter-cluster interference

+znl
, (14)

where ζnl
is a general SIC performance coefficient at UE nl in the l-th cluster. In particular, ζnl

= 1

(ζnl
= 0) indicates no SIC (perfect SIC), while 0 < ζnl

< 1 means imperfect SIC.

III. CLUSTERING CELL-FREE MASSIVE MIMO-NOMA SYSTEM

In this section, we propose two unsupervised ML-based UC algorithms to effectively divide all UEs into

separate clusters, which are done at the CPU by exploiting the large-scale fading coefficients. Similarly to

[16] and [25], large-scale fading coefficients of UEs are assumed to be collected and shared with the CPU

before performing UC algorithms. We note that it is only necessary to estimate the large-scale fading

coefficients once every 40 τc intervals [12], and thus conveying these coefficients via the backhaul links

occurs much less frequently than data transmission. Denote by βn , [β1,n, β2,n, . . . , βM,n]
T ∈ RM×1

the set of large-scale fading coefficients from all APs associated to UE n,∀n ∈ N . The vector βn can

be considered as an effective feature-vector denoting the location of UE n.

A. The k-means Algorithm

The k-means algorithm for UC studied in [24] and [25] is one of the simplest unsupervised ML

algorithms to partition UEs in the coverage area into separate groups. The key idea is to find a user-

specified number of clusters L, which are represented by L centroids, one for each cluster. The number

of clusters L in the k-means algorithm can be predetermined. The principle of k-means algorithm is

given as follows. Firstly, L initial centroids are randomly selected. Secondly, each point is assigned to

the nearest centroid, and each mass of points assigned to the same centroid creates a cluster. Then, the

centroid of each cluster is updated according to the points associated to the cluster. The assignment and
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update processes of centroids are repeated until either there is no change in the clusters or centroids

remain similarly.

In the context of CFmMIMO-NOMA, the procedure of k-means can be summarized as follows:

• Step 1: L initial centroids are randomly selected from N UEs, where L is a predefined number. Let

us define the set of L cluster centroids as follows:

C = {cl, l ∈ L} , (15)

where cl represents the centroid of the l-th cluster.

• Step 2: Each UE n ∈ N is grouped to the nearest centroid, and hence, UEs assigned to the same

centroid creates a cluster:

l′ = argmin
∀l∈L

fd
(
βn,βcl

)
, (16)

where fd
(
βn,βcl

)
= ‖βn − βcl‖2 represents the Euclidean distance from UE n to centroid cl. As

shown in (16), UE n is grouped to l′-th cluster (denoted by centroid cl′) since the distance from UE

n to centroid cl′ is nearest.

• Step 3: The centroid of each cluster is recalculated under given UEs assigned to this cluster:

βcl =
1

|Nl|
∑

n∈Nl

βn,∀l ∈ L, (17)

where βcl represents the updated centroid for the l-th cluster, which can be calculated by the mean

of all UEs belonging to the l-th cluster.

• Step 4: Steps 2-3 are repeated until convergence, i.e., there is no change in the clusters or the

centroids remain the same.

The k-means algorithm for UC in CFmMIMO-NOMA is given in Algorithm 1. Note that k-means is

a greedy algorithm, which can converge to a local minimum since its performance highly depends on

the predefined number of clusters L and the centroid initialization process, i.e., how to select L initial

centroids.

B. Proposed k-means++ Algorithm

One drawback of the k-means algorithm is that it is sensitive to the initialization of the centroids

[30], [31]. If an initial centroid is a far point, it might not associate with any other points. Equivalently,

more than one initial centroids might be created into the same cluster which leads to poor grouping.

In this section, the k-means++ algorithm is developed to resolve this issue. It aims at providing a

clever initialization of the centroids that improves the quality of the grouping process. Except for the

improvement in the centroid initialization process, the remainder of k-means++ algorithm is the same
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Algorithm 1 The k-means Algorithm for UC in CFmMIMO-NOMA.

1: Input: L and βn,∀n ∈ N .

2: //**Identify L cluster centroids at random cl, ∀l ∈ L (Step 1)**//

3: Set C = ∅ and l = 1, where C denotes the set of cluster centroids.

4: while l ≤ L do

5: cl = generateRandom[1,N];
6: if cl 6∈ C then

7: C ← cl;
8: l = l + 1;

9: end if

10: end while

11: //**Main process**//

12: while C changes do

13: //**Identify Nl′ , ∀l′ ∈ L, containing the subset of UEs that are closer to cl′ than cl, with l′ 6= l
(Step 2)**//

14: for n ∈ N\C do

15: l′ = argmin
∀l∈L

fd
(
βn,βcl

)
, where fd

(
βn,βcl

)
= ||βn − βcl ||2;

16: Nl′ ← n;

17: end for

18: //**Recalculate cl of cluster Nl, ∀l ∈ L (Step 3)**//

19: for l = 1 : L do

20: βcl =
1

|Nl|

∑

n∈Nl

βn;

21: end for

22: end while

23: Output: Nl and cl, ∀l ∈ L.

as in the k-means. In the context of CFmMIMO-NOMA, the procedure of proposed k-means++ can be

summarized as follows:

• Step 1: The first initial centroid c1 is randomly selected from N UEs.

• Step 2: For each UE n (with n ∈ N and n 6∈ C), its distance from the nearest centroid is calculated

as follows:

fd
(
βn,βct

)
= ‖βn − βct‖2, (18)

where ct = argmin
∀cl∈C

fd
(
βn,βcl

)
.

• Step 3: The next centroid is selected from UEs (∀n ∈ N\C) such that the probability of selecting

a UE as a centroid is in direct proportion to its distance from the nearest and previously selected

centroid, i.e., the UE having the maximum distance from the nearest centroid is virtually to be

chosen next as a centroid:

cl = argmax
∀n∈N\C

fd
(
βn,βct

)
. (19)
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• Step 4: Steps 2-3 are repeated until L− 1 centroids are selected.

• The remaining process follows Steps 2-4 in the k-means algorithm.

The centroid initialization process of the proposed k-means++ ensures that chosen centroids are far

away from each other. This increases the opportunity of initially selecting centroids that are located in

different clusters. The proposed k-means++ algorithm for UC in CFmMIMO-NOMA is described in

Algorithm 2.

Algorithm 2 The k-means++ Algorithm for UC in CFmMIMO-NOMA.

1: Input: L and βn, ∀n ∈ N .

2: Set C = ∅ and c1 = generateRandom[1,N];
3: C ← c1 and set f = 0;

4: for l = 2 : L do

5: for n = 1 : N do

6: for t = 1 : l − 1 do

7: if n 6= ct then

8: dis (1, t) = fd
(
βn,βct

)
, where fd

(
βn,βct

)
= ‖βn − βct‖2;

9: else

10: dis (1, t) = NaN;

11: f = f + 1;

12: end if

13: end for

14: if f == 0 then

15: dist (1, n) = max dis;

16: else

17: dist (1, n) = NaN;

18: f = 0;

19: end if

20: end for

21: cl = argmax
∀n∈N\C

dist;

22: C ← cl;
23: end for

24: while C changes do

25: for n ∈ N\C do

26: l′ = argmin
∀l∈L

fd
(
βn,βcl

)
, where fd

(
βn,βcl

)
= ‖βn − βcl‖2;

27: Nl′ ← n;

28: end for

29: for l = 1 : L do

30: βcl =
1

|Nl|

∑

n∈Nl

βn;

31: end for

32: end while

33: Output: Nl and cl, ∀l ∈ L.
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C. The Improved k-means++ Algorithm

As shown in Sections III-A and III-B, the performance of the k-means algorithm can be enhanced

by selecting L initial centroids more effectively. Based on the characteristics of CFmMIMO-NOMA, we

propose the improved k-means++ algorithm which includes a new approach to cleverly select L initial

centroids. The procedure of improved k-means++ is summarized as follows:

• Step 1: Each AP identifies an associated UE, denoted by Λm, which has the best connection, i.e.,

highest large-scale fading coefficient βm,n:

Λm = argmax
∀n∈N

βm,n,∀m ∈ M. (20)

• Step 2: The CPU then selects a subset of APs, denoted by Υn, which have best connections to UE

n:

Υn = {APm : UE n == Λm} ,∀n ∈ N . (21)

• Step 3: The CPU selects a UE having the highest number of serving APs as a centroid:

cl = argmax
∀n∈N\C

|Υn|, (22)

where |Υn| denotes the cardinality of Υn.

• Step 4: Step 3 is repeated until L centroids are chosen.

• The remaining process follows Steps 2-4 in the k-means algorithm.

The centroid initialization process of the improved k-means++ for UC in CFmMIMO-NOMA is

described in Algorithm 3.

D. Complexity Analysis

As shown in [24], the complexity of the k-means algorithm is O (NLIM), where I denotes the total

number of iterations until convergence. We recall that compared to the k-means, the k-means++ and

improved k-means++ algorithms require the modification of centroid initialization process. All centroids

in the k-means algorithm are randomly chosen, which leads to the computational complexity of O (N).

The proposed k-means++ algorithm has to make a full search through all UEs for every centroid sampled,

resulting to the complexity of O (NLM) [32]. Similarly, the complexity of the improved k-means++

algorithm is O (MN +NM + LN), which is lower than that of the k-means++. In addition, although the

centroid initialization process in the proposed k-means++ algorithms is computationally more expensive

than the original k-means, the performance of the former is much better than the latter. This will be

elaborated in Section VII.
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Algorithm 3 Centroid Initialization Process of the Improved k-means++ Algorithm for UC in CFmMIMO-

NOMA.
1: Input: L and βn,∀n ∈ N .

2: for m = 1 : M do

3: Λm = argmax
∀n∈N

βm,n;

4: end for

5: for n = 1 : N do

6: for m = 1 : M do

7: if n == Λm then

8: Υn ← m;

9: end if

10: end for

11: end for

12: C = ∅, where C denotes the set of cluster centroids.

13: for l = 1 : L do

14: cl = argmax
∀n∈N\C

|Υn|;
15: C ← cl;
16: end for

17: Output: C.

IV. PERFORMANCE ANALYSIS

Given the UC algorithms in Section III, we now derive the SSE of CFmMIMO-NOMA. From (14),

the SINR of UE nl in the l-th cluster is given as

SINRnl
=

|DSnl
|2

E {|BUnl
|2}+

nl−1∑

n′
l=1

E {|ICInl
|2}+

Nl∑

n′′
l=nl+1

E {|RICInl
|2}+ ∑

l′∈L\{l}

∑

nl′∈Nl′

E {|UInl
|2}+ 1

,

(23)

where DSnl
= E

{
∑

m∈M

√
ρmnl

hH
m,nl

wm,l

}

, BUnl
=

(
∑

m∈M

√
ρmnl

hH
m,nl

wm,l−E
{

∑

m∈M

√
ρmnl

hH
m,nl

wm,l

})

,

ICInl
=

∑

m∈M

√
ρmn′

l
hH
m,nl

wm,l, RICInl
=

√
ζnl

∑

m∈M

√
ρmn′′

l
hH
m,nl

wm,l, and UInl
=

∑

m∈M

√
ρmnl′

hH
m,nl

wm,l′

are coherent beamforming gain (desired signal), beamforming gain uncertainty, intra-cluster interference

after SIC, residual interference due to imperfect SIC, and inter-cluster interference, respectively.

To simplify (23), we first compute the expectation term in the denominator of (9) [33]:

E

{∥
∥H̃m

(
H̃

H

mH̃m

)−1
ϕl

∥
∥2

2

}

=
υ2m,nl

γm,nl
(K − τp)

, ∀nl ∈ Nl. (24)

From (8), (9), and (24), we have

ĥ
H

m,ni
wm,l =

υm,ni

υm,nl

ϕH
i ϕl

√

γm,nl
(K − τp)
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=







√
γm,nl

(K − τp), if i = l,

0, if i 6= l.

(25)

Lemma 1. The closed-form expression for the SE of UE nl in the l-th cluster is given by

Rnl
=

(

1− τp
τc

)

log2

(

1 + SINRnl

)

=
(

1− τp
τc

)

log2

(

1 + min
n′

l=1,...,nl

SINRnl

n′
l

)

, ∀nl. (26)

By ρ , {ρmnl
}m∈M,nl∈Nl,l∈L, SINRnl

nl
and SINRnl

n′
l
, ∀n′

l < nl, are derived as follows:

SINRnl

nl
=

(K − τp)
(

∑

m∈M

√
ρmnl

γm,nl

)2

Inl
nl
(ρ) + 1

, (27)

SINRnl

n′
l
=

(K − τp)
(

∑

m∈M

√
ρmnl

γm,n′
l

)2

Inl

n′
l
(ρ) + 1

, (28)

where Inl

nl
(ρ) and Inl

n′
l
(ρ) are defined as

Inl

nl
(ρ) ,

∑

n′′
l∈Nl\{nl}

ηn′′

l′
(K − τp)

( ∑

m∈M

√

ρmn′′
l
γm,nl

)2

+
∑

l′∈L

∑

n′′

l′∈Nl′

∑

m∈M

ηn′′

l′
ρmn′′

l′
(βm,nl

− γm,nl
) ,

Inl

n′
l
(ρ) ,

∑

n′′
l∈Nl\{nl}

ηn′′

l′
(K − τp)

( ∑

m∈M

√

ρmn′′
l
γm,n′

l

)2

+
∑

l′∈L

∑

n′′

l′∈Nl′

∑

m∈M

ηn′′

l′
ρmn′′

l′
(βm,n′

l
− γm,n′

l
) ,

with

ηn′′

l′
=







1, if l′ 6= l or l′ = l and n′′
l ≤ nl,

ζnl
, otherwise.

Proof: The proof is given in Appendix A.

We define the virtual channel of UE nl in the l-th cluster as hnl
= [γ1,nl

, . . . , γM,nl
]T , ∀nl ∈ Nl. We

assume that UEs in the l-th cluster are sorted based on their virtual channels, such as ‖h1l
‖2 ≥ ‖h2l

‖2 ≥
. . . ≥ ‖hNl

‖2, ∀l ∈ L. From (26), the SSE of CFmMIMO-NOMA is expressed as

RΣ =
∑

l∈L

∑

nl∈Nl

Rnl
=

(

1− τp
τc

)∑

l∈L

∑

nl∈Nl

log2

(

1 + SINRnl

)

. (29)

From (27) and (28), it is clear that the SSE of CFmMIMO-NOMA highly depends on the power

allocation (PA) at all APs. Thus, it is necessary to optimize the transmit power at APs so that the SSE

of CFmMIMO-NOMA can be enhanced, which will be detailed next.
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V. THE SUM SPECTRAL EFFICIENCY MAXIMIZATION

We aim at optimizing the normalized transmit power ρ , {ρmnl
}m,nl,l to maximize the SSE under the

constraints of the transmit power budget at the APs and SIC conditions. The optimization problem can

be mathematically expressed as

max
ρ

(

1− τp
τc

)∑

l∈L

∑

nl∈Nl

log2
(
1 + SINRnl

)
(30a)

s.t.
∑

l∈L

∑

nl∈Nl

ρmnl
≤ Pm

max,∀m ∈ M, (30b)

ρmnl
≤ ρmnl+1, nl ∈ [1, Nl − 1] ,∀m ∈ M, l ∈ L. (30c)

Herein, constraint (30b) indicates that the total transmit power at APm is limited by the normalized

maximum power Pm
max, while constraint (30c) is the necessary condition to implement SIC in the l-th

cluster, ∀l ∈ L. We note that SINRnl
in (30a) is a nonconvex and nonsmooth function with respect to

ρ, making problem (30) intractable. Therefore, it may not be possible to solve the problem directly. In

addition, the globally optimal solution (e.g., exhaustive search) comes at the cost of high computational

complexity, and may not be suitable for practical implementation. In what follows, we develop newly

approximated functions using the IA framework [27], [34], and then propose a fast converging and

low-complexity algorithm.

Equivalent Optimization Problem: To apply the IA method, several transformations are necessary to

make (30) tractable. To do so, we introduce the auxiliary variables r ,
{
rnl

}

∀nl
and ϕ ,

{
ϕnl

}

∀nl
to

rewrite (30) equivalently as

max
ρ,r,ϕ

(

1− τp
τc

)∑

l∈L

∑

nl∈Nl

rnl
(31a)

s.t. ln (1 + ϕnl
) ≥ rnl

ln 2, ∀nl ∈ Nl, (31b)

SINRnl

n′
l
≥ ϕnl

, ∀n′
l < nl, ∀nl ∈ Nl, (31c)

SINRnl

nl
≥ ϕnl

, ∀nl ∈ Nl, (31d)

(30b), (30c). (31e)

It is clear that the objective function becomes linear. The equivalence between (30) and (31) is verified

by the following lemma.

Lemma 2. Problems (30) and (31) share the same optimal solution set and the same optimal objective

value. In particular, let (ρ⋆, r⋆,ϕ⋆) be the optimal solution to problem (31), then ρ⋆ is also the optimal

solution to problem (30) and vice versa.
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Proof: The proof is done by showing the fact that constraints (31b)-(31d) will hold with equality at the

optimum. We prove this statement by contradiction. Suppose that constraints (31c) and (31d) are inactive

at the optimum for some users, i.e., there exists ϕ′
nl

> 0 such as min
(
SINRnl

n′
l
,SINRnl

nl

)
= ϕ′

nl
> ϕ⋆

nl
.

It is clear that ϕ′
nl

is also a feasible point to (31), and r′nl
= ln

(
1 + ϕ′

nl

)
> ln

(
1 + ϕ⋆

nl

)
= r⋆nl

.

As a consequence, this results in a strictly larger objective value, i.e.,
(
1 − τp

τc

) ∑

l∈L

∑

nl∈Nl

r′nl
>

(
1 −

τp
τc

) ∑

l∈L

∑

nl∈Nl

r⋆nl
, which contradicts the assumption that (ρ⋆, r⋆,ϕ⋆) represent the optimal solution to

problem (31).

Inner Approximation (IA) for Problem (31): The nonconvex parts include (31c) and (31d). The direct

application of IA method is still not possible due to the complication of SINRnl

n′
l

and SINRnl

nl
. In the

following, we make the change of variable as ρmnl
= (ρ̂mnl

)2,∀nl ∈ Nl. Let us handle (31c) first by

rewriting SINRnl

n′
l

as

SINRnl

n′
l
=

(K − τp)
( ∑

m∈M
ρ̂mnl

√
γm,n′

l

)2

Inl

n′
l
(ρ̂) + 1

, (32)

where ρ̂ , {ρ̂mnl
}∀nl

and Inl

n′
l
(ρ̂) ,

∑

n′′
l∈Nl\{nl}

ηn′′

l′
(K − τp)

( ∑

m∈M
ρ̂mn′′

l

√
γm,n′

l

)2
+

∑

l′∈L

∑

n′′

l′∈Nl′

∑

m∈M

ηn′′

l′

(
ρ̂mn′′

l′

)2 (
βm,n′

l
- γm,n′

l

)
. By introducing the slack variables ̟ , {̟nl

nl
}∀nl

, τ , {τnl

nl
}∀nl

, and

θ , {θnl

nl
}∀nl

, constraint (31c) can be equivalently rewritten as

(31c)⇔







∑

m∈M

ρ̂mnl

√
γm,n′

l
≥ ̟nl

n′
l
, ∀n′

l < nl,∀nl ∈ Nl, (33a)

∑

m∈M

ρ̂mn′′
l

√
γm,n′

l
≤ τn

′

l

n′′
l
, ∀n′

l < nl, ∀nl ∈ Nl, (33b)

Inl

n′
l
(ρ̂, τ ) ≤ θnl

n′
l
, ∀n′

l < nl, ∀nl ∈ Nl, (33c)

(K − τp)

(
̟nl

n′
l

)2

θnl

n′
l
+ 1
≥ ϕnl

, ∀n′
l < nl, ∀nl ∈ Nl, (33d)

where Inl

n′
l
(ρ̂, τ ) ,

∑

n′′
l∈Nl\{nl}

ηn′′

l′
(K − τp)

(
τn

′

l

n′′
l

)2
+

∑

l′∈L

∑

n′′

l′∈Nl′

∑

m∈M
ηn′′

l′

(
ρ̂mn′′

l′

)2(
βm,n′

l
- γm,n′

l

)

is a quadratic function. Here, constraint (33d) remains nonconvex. We note that (̟nl

n′
l
)2/(θnl

n′
l
+ 1) is

the quadratic-over-linear function, which is convex with respect to (̟nl

n′
l
, θnl

n′
l
). Let (̟

nl,(κ)
n′

l
, θ

nl,(κ)
n′

l
) be

a feasible point of (̟nl

n′
l
, θnl

n′
l
) at the κ-th iteration of an iterative algorithm and by the IA principle,

constraint (33d) can be convexified as

(K − τp)
( 2̟

nl,(κ)
n′

l

θ
nl,(κ)
n′

l
+ 1

̟nl

n′
l
−

(
̟

nl,(κ)
n′

l

)2

(
θ
nl,(κ)
n′

l
+ 1

)2
(θnl

n′
l
+ 1)

)

≥ ϕnl
, ∀n′

l < nl, ∀nl ∈ Nl. (34)

Similarly, constraint (31d) can be iteratively approximated as
∑

m∈M

ρ̂mnl

√
γm,nl

≥ ̟nl

nl
, ∀nl ∈ Nl, (35a)
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∑

m∈M

ρ̂mn′′
l

√
γm,nl

≤ τnl

n′′
l
, ∀nl ∈ Nl, (35b)

Inl

nl
(ρ̂, τ ) ≤ θnl

nl
, ∀nl ∈ Nl, (35c)

(K − τp)
( 2̟

nl,(κ)
nl

θ
nl,(κ)
nl

+ 1
̟nl

nl
−

(
̟

nl,(κ)
nl

)2

(
θ
nl,(κ)
nl

+ 1
)2

(θnl

nl
+ 1)

)

≥ ϕnl
, ∀nl ∈ Nl, (35d)

where Inl

nl
(ρ̂, τ ) ,

∑

n′′
l∈Nl\{nl}

ηn′′

l′
(K − τp)

(
τnl

n′′
l

)2
+

∑

l′∈L

∑

n′′

l′∈Nl′

∑

m∈M
ηn′′

l′

(
ρ̂mn′′

l′

)2
(βm,nl

− γm,nl
).

In summary, the convex approximate program of (31) solved at iteration κ+ 1 is given as

max
ρ̂,r,ϕ,̟,τ ,θ

(

1− τp
τc

)∑

l∈L

∑

nl∈Nl

rnl
(36a)

s.t. (31b), (33a)−(33c), (34), (35a)−(35d), (36b)

∑

l∈L

∑

nl∈Nl

(ρ̂mnl
)2 ≤ Pm

max,∀m ∈M, (36c)

ρ̂mnl
≤ ρ̂mnl+1, nl ∈ [1, Nl − 1] ,∀m ∈ M, l ∈ L. (36d)

Conic Quadratic Program: Problem (36) is a mix of exponential and quadratic constraints, resulting

in a generic convex program. The major complexity in solving such a program is due to the logarithm

function in (31b). Therefore, the use of modern convex solvers (e.g., SeDuMi [35] and MOSEK [36])

becomes less efficient than standard ones. To bypass this issue, we use a lower bound of ln
(
1 +ϕnl

)
as

[4, Eq. (66)]

ln
(
1 + ϕnl

)
≥ ln(1 + ϕ(κ)

nl
) +

ϕ
(κ)
nl

ϕ
(κ)
nl

+ 1
− (ϕ

(κ)
nl

)2

ϕ
(κ)
nl

+ 1

1

ϕnl

, ∀ϕ(κ)
nl

> 0, ϕnl
> 0, (37)

which is a concave function. We note that (37) holds with equality at the optimum, i.e., ϕ
(κ)
nl

= ϕ
(κ+1)
nl

.

Next, by introducing new variables ϕ̄ , {ϕ̄nl
}∀nl

, the conic quadratic approximate program of (36) is

given as

max
ρ̂,r,ϕ,ϕ̄,̟,τ ,θ

(

1− τp
τc

)∑

l∈L

∑

nl∈Nl

rnl
(38a)

s.t. (33a)−(33c), (34), (35a)−(35d), (36c), (36d), (38b)

F (κ)(ϕ(κ)
nl

, ϕ̄nl
) ≥ rnl

ln 2, ∀nl ∈ Nl, (38c)

0.25 (ϕnl
+ ϕ̄nl

)2 ≥ 0.25 (ϕnl
− ϕ̄nl

)2 + 1, ∀nl ∈ Nl, (38d)

where F (κ)(ϕ
(κ)
nl

, ϕ̄nl
) , ln(1 + ϕ

(κ)
nl

) +
ϕ(κ)

nl

ϕ
(κ)
nl

+1
− (ϕ(κ)

nl
)2

ϕ
(κ)
nl

+1
ϕ̄nl

. We note that (38d) is a second-order cone

constraint and must hold with equality at the optimum. The proposed IA-based iterative algorithm is

summarized in Algorithm 4.

Convergence and Complexity Analysis: The proposed algorithm starts by randomly generating an initial

feasible point for the updated variables (̟(0),θ(0),ϕ(0)). In each iteration, we solve the convex program
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Algorithm 4 Proposed IA-based Iterative Algorithm to Solve Problem (30).

Initialization: Set κ := 0 and generate an initial feasible point (̟(0),θ(0),ϕ(0)).
1: repeat

2: Solve the conic quadratic approximate program (38) to obtain the optimal solution, denoted by

(ρ̂⋆, r⋆,ϕ⋆, ϕ̄⋆,̟⋆, τ ⋆,θ⋆);

3: Update (ϕ(κ+1),̟(κ+1),θ(κ+1)) := (ϕ⋆,̟⋆,θ⋆);

4: Set κ := κ+ 1;

5: until Convergence, i.e.,
(
∑

l∈L

∑

nl∈Nl

r
(κ)
nl
− ∑

l∈L

∑

nl∈Nl

r
(κ−1)
nl

)/
∑

l∈L

∑

nl∈Nl

r
(κ−1)
nl

< ǫ

6: Ouput: ρ⋆ with ρ
m,(⋆)
nl

= (ρ̂
m,(⋆)
nl

)2,∀nl ∈ Nl.

(38) to produce the next feasible point (ϕ(κ+1),̟(κ+1),θ(κ+1)). This procedure is successively repeated

until convergence, which is stated in the following proposition.

Proposition 1. Initialized from a feasible point (̟(0),θ(0),ϕ(0)), Algorithm 4 produces a sequence

{ϕ(κ),̟(κ),θ(κ)} of improved solutions to problem (38), which satisfy the Karush-Kuhn-Tucker (KKT)

conditions. In light of the IA principles, the sequence

{(
1 − τp

τc

) ∑

l∈L

∑

nl∈Nl

r
(κ)
nl

}∞

κ=1
is monotonically

increasing and converges after a finite number of iterations for a given error tolerance ǫ > 0.

Proof: Please see Appendix B.

The computational complexity of Algorithm 4 mainly depends on solving the approximate problem

(38), which is polynomial in the number of constraints and optimization variables. Problem (38) has

v = NM + 3N + 3
∑L

l=1
Nl(Nl−1)

2 scalar real variables and c = 8
∑L

l=1

(Nl(Nl−1)
2 + M(Nl − 1)

)
+M

quadratic and linear constraints. As a result, the worst-case computational cost of Algorithm 4 in each

iteration is O(v2c2.5 + c3.5).

VI. COLLOCATED MASSIVE MIMO-NOMA SYSTEM

In this section, we consider a COmMIMO-NOMA system, which serves as a benchmark for CFmMIMO-

NOMA. The main differences between CFmMIMO-NOMA and COmMIMO-NOMA systems are as

follows: i) in CFmMIMO-NOMA, in general βm,nl
6= βm′,nl

, for m 6= m′, whereas in COmMIMO-

NOMA, βm,nl
= βm′,nl

; and ii) in CFmMIMO-NOMA, a power constraint is applied at each AP

individually, whereas in COmMIMO-NOMA, a total power constraint is applied at the collocated AP

equipped with MK antennas. Unless otherwise specified, all notations and symbols given in the previous

sections will be reused in this section.
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A. Performance Analysis

Similar to Lemma 1, the closed-form expression for the SE of UE nl in the l-th cluster is given by

Rcol

nl
=

(

1− τp
τc

)

log2
(
1 + SINRcol

nl

)

=
(

1− τp
τc

)

log2
(
1 + min

n′
l=1,...,nl

SINR
nl,col
n′

l

)
, ∀nl ∈ Nl. (39)

By replacing ρmnl
with ρnl

,∀nl, SINRnl,col
nl

and SINR
nl,col
n′

l
, ∀n′

l < nl, are derived as follows:

SINRnl,col
nl

=
(K − τp)ρnl

γnl

Inl
nl
(ρ) + 1

, and SINR
nl,col
n′

l
=

(K − τp)ρnl
γn′

l

Inl

n′
l
(ρ) + 1

, (40)

where

Inl

nl
(ρ) ,

∑

n′′
l∈Nl\{nl}

ηn′′

l′
(K − τp)ρn′′

l
γnl

+
∑

l′∈L

∑

n′′

l′∈Nl′

ηn′′

l′
ρn′′

l′
(βnl
− γnl

) , (41)

Inl

n′
l
(ρ) ,

∑

n′′
l∈Nl\{nl}

ηn′′

l′
(K − τp)ρn′′

l
γn′

l
+

∑

l′∈L

∑

n′′

l′∈Nl′

ηn′′

l′
ρn′′

l′
(βn′

l
− γn′

l
) , (42)

and γnl
=

τpρnl
β2
nl

τp
∑

n′
l∈Nl

ρn′
l
βn′

l
+ 1

; ηn′′

l′
is defined as

ηn′′

l′
=







1, if l′ 6= l or l′ = l and n′′
l ≤ nl,

ζnl
, otherwise.

(43)

The SSE of COmMIMO-NOMA system is expressed as follows:

Rcol

Σ =
∑

l∈L

∑

nl∈Nl

Rcol

nl
=

(

1− τp
τc

)

log2
(
1 + SINRcol

nl

)
. (44)

The SSE maximization problem for COmMIMO-NOMA is stated as

max
ρ

(

1− τp
τc

)∑

l∈L

∑

nl∈Nl

log2
(
1 + SINRcol

nl

)
(45a)

s.t.
∑

l∈L

∑

nl∈Nl

ρnl
≤ Pmax, (45b)

ρnl
≤ ρnl+1, nl ∈ [1, Nl − 1] ,∀l ∈ L. (45c)

B. Proposed Solution to Problem (45)

By making the change of variable as ρnl
= (ρ̂nl

)2,∀nl ∈ Nl and following similar steps from (31) to

(36), problem (45) is equivalently transformed to the following tractable form

max
ρ̂,r,ϕ,θ

(

1− τp
τc

)∑

l∈L

∑

nl∈Nl

rnl
(46a)

s.t. ln (1 + ϕnl
) ≥ rnl

ln 2, ∀nl ∈ Nl, (46b)

Inl

n′
l
(ρ̂) ≤ θnl

n′
l
, ∀n′

l < nl, ∀nl ∈ Nl, (46c)
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Inl

nl
(ρ̂) ≤ θnl

nl
, ∀nl ∈ Nl, (46d)

(K − τp)(ρ̂nl
)2γn′

l

θnl

n′
l
+ 1

≥ ϕnl
, ∀n′

l < nl, ∀nl ∈ Nl, (46e)

(K − τp)(ρ̂nl
)2γnl

θnl
nl

+ 1
≥ ϕnl

, ∀nl ∈ Nl, (46f)

∑

l∈L

∑

nl∈Nl

(ρ̂nl
)2 ≤ Pmax, (46g)

ρ̂nl
≤ ρ̂nl+1, nl ∈ [1, Nl − 1] ,∀l ∈ L, (46h)

where

Inl

n′
l
(ρ̂) ,

∑

n′′
l∈Nl\{nl}

ηn′′

l′
(K − τp)(ρ̂n′′

l
)2γn′

l
+

∑

l′∈L

∑

n′′

l′∈Nl′

ηn′′

l′
(ρ̂n′′

l′
)2 (βn′

l
− γn′

l
) ,

Inl

nl
(ρ̂) ,

∑

n′′
l∈Nl\{nl}

ηn′′

l′
(K − τp)(ρ̂n′′

l
)2γnl

+
∑

l′∈L

∑

n′′

l′∈Nl′

ηn′′

l′
(ρ̂n′′

l′
)2 (βnl

− γnl
) .

The nonconvex constraints are (46e) and (46f). Let (ρ̂
(κ)
nl

, θ
nl,(κ)
nl

) be a feasible point of (ρ̂nl
, θnl

nl
) at

iteration κ. By (37), the conic quadratic approximate program for solving (46) is given as

max
ρ̂,r,ϕ,ϕ̄,θ

(

1− τp
τc

)∑

l∈L

∑

nl∈Nl

rnl
(47a)

s.t. (38c), (38d), (46c), (46d), (46g), (46h), (47b)

(K − τp)γn′

l
G(κ)(ρ̂nl

, θnl

n′
l
) ≥ ϕnl

, ∀n′
l < nl, ∀nl ∈ Nl, (47c)

(K − τp)γnl
G(κ)(ρ̂nl

, θnl

nl
) ≥ ϕnl

, ∀nl ∈ Nl, (47d)

where G(κ)(ρ̂nl
, θnl

n′
l
) ,

2ρ̂
(κ)
nl

θ
nl,(κ)
n′

l
+ 1

ρ̂nl
−

(
ρ̂
(κ)
nl

)2

(
θ
nl,(κ)
n′

l
+ 1

)2
(θnl

n′
l
+ 1) and G(κ)(ρ̂nl

, θnl

nl
) ,

2ρ̂
(κ)
nl

θ
nl,(κ)
nl

+ 1
ρ̂nl
−

(
ρ̂
(κ)
nl

)2

(
θ
nl,(κ)
nl

+ 1
)2

(θnl

nl
+ 1). The solution to problem (45) can be found by using Algorithm 4, in which we

replace problem (38) by problem (47) in Step 2. The worst-case computational complexity of solving

(47) in each iteration is O(v̄2c̄2.5 + c̄3.5), where v̄ = 4N +
∑L

l=1
Nl(Nl−1)

2 and c̄ =
∑L

l=1

(
Nl(Nl − 1) +

(Nl−1)2

2

)
+2N + 1 are scalar real variables and constraints, respectively.

VII. NUMERICAL RESULTS

We now quantitatively assess the performance of the proposed unsupervised ML-based UC algorithms

in CFmMIMO-NOMA system.
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TABLE I

SIMULATION PARAMETERS.

Parameter Value

Reference distances (d0, d1) (10,50) m
System bandwidth (B) 20 MHz
Number of APs (M ) 32
Number of UEs (N ) 10
Number of antennas per AP (K) 8
Total power budget for all APs 40 dBm
Power budget at UEs 23 dBm
Noise power at receivers -104 dBm
SIC performance coefficient at UEs 0.05
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Fig. 2. A system topology with M = 32 APs and

N = 10 UEs is used in numerical examples.

A. Simulation Parameters

A CFmMIMO-NOMA system including M = 32 APs and N = 10 UEs is considered as shown in

Fig. 2, where all APs and UEs are uniformly distributed within a circular region with a radius of 1 km.

The large-scale fading of all channels is modeled as [6] βm,nl
= 10

PL(dm,nl
)+σshz

10 , ∀m ∈ M, nl ∈ Nl,

where dm,nl
is the distance from APm to UE nl. The shadow fading is modeled as an RV z, which

follows CN (0, 1) with standard deviation σsh = 8 dB. The three-slope path loss model is considered as

[6], [29], [37]

PL(dm,nl
) = −140.7 − 35log10(dm,nl

) + 20a0log10

(dm,nl

d0

)

+ 15a1log10

(dm,nl

d1

)

, (48)

where dj , with j = {0, 1}, represents the reference distance and aj = max
{

0,
di−dm,nl

|di−dm,nl
|

}

. Note that

PL(dm,nl
) in (48) is measured in dB, while all distances are in km. Unless otherwise stated, other key

parameters are shown in Table I, where all APs are assumed to have the same power budget [6], [29].

The used convex solver is SeDuMi [35] in the MATLAB environment.

B. Selection of the Number of Clusters L

TABLE II

SILHOUETTE SCORE FOR CFMMIMO-NOMA AND COMMIMO-NOMA.

Number of clusters L 2 3 4 5 6 7 8 9

Silhouette Score
CFmMIMO-NOMA 0.86 0.08 0.52 0.97 0.23 0.36 0.52 0.89

COmMIMO-NOMA 0.90 0.85 0.67 0.99 0.65 0.78 0.88 0.93
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Fig. 3. The SSE of CFmMIMO-NOMA versus the total

power budget of all APs for the k-means, k-means++, and

improved k-means++ algorithms.
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Fig. 4. The SSE of CFmMIMO-NOMA and COmMIMO-

NOMA versus the total power budget of all APs.

The performance of the k-means based UC algorithms is highly affected by the value of number of

clusters L [24], [25]. Thus, it is essential to investigate the particular feature of the UEs’ distribution in

CFmMIMO-NOMA system to choose a proper number of clusters, such that the SSE is maximized. A

reliable and precise approach to validate the optimal number of clusters L is the silhouette score [38],

which is the mean silhouette coefficient of all UEs. The silhouette coefficient of an UE is calculated

as
c− b

max(c, b)
, where b denotes the mean distance to other UEs in the same cluster (so-called the mean

intra-cluster distance), and c represents the mean distance to UEs of the next closest cluster which is

the one that minimizes b, excluding the UE’s own cluster (so-called mean nearest-cluster distance). The

value of the silhouette coefficient ranges from -1 to +1. A coefficient close to +1 means that the UE is

well matched to its own cluster and far from other clusters. A coefficient close to 0 indicates that the

UE is near a cluster boundary, whereas a coefficient close to -1 implies that the UE is assigned to the

wrong cluster. Table II shows the silhouette score versus the number of clusters L. It is observed that

the optimal number of clusters for this setting is L⋆ = 5.

In what follows, we set L = 5 to verify the performance analysis in Section VII-C and to evaluate the

performance of the proposed algorithms in Section VII-D.

C. Numerical Results for the Performance Analysis

We now investigate the performance of the two proposed unsupervised ML-based UC algorithms with

fixed PA. The transmit power at each AP allocated to a specific UE follows the fixed PA scheme. Each
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Fig. 5. Convergence behavior of Algorithm 4 with different number of AP antennas, K.

AP allocates equal power to each cluster, and then, the fractional transmit PA [39] is used to allocate the

power to a specific UE in each cluster based on the virtual channel gains presented in Section IV. As a

benchmark, we also consider the COmMIMO-NOMA system, which is presented in Section VI.

Fig. 3 illustrates the SSE performance of CFmMIMO-NOMA versus the total power budget of all

APs for the proposed UC algorithms. For comparison, the performance of the k-means algorithm is

also plotted. It can be seen that the proposed UC algorithms significantly outperform the conventional

k-means one. On the other hand, the improved k-means++ achieves the best SSE among all algorithms.

This further confirms the importance of the effective initialization of centroids that improves the quality

of the grouping process; otherwise, the use of NOMA becomes less efficient. Next, the SSE performance

of the CFmMIMO-NOMA and COmMIMO-NOMA systems using the improved k-means++ algorithm

versus the total power budget of all APs is shown in Fig. 4. We can observe that the performance of the

CFmMIMO-NOMA system is better than that of COmMIMO-NOMA. This is attributed to the fact that

CFmMIMO with many distributed APs brings the service antennas closer to UEs which not only reduces

path losses but also provides higher degree of macro-diversity, compared to COmMIMO. Further, from

Figs. 3 and 4, simulation results are well matched with the derived closed-form expressions of SSE in

Section IV, verifying the correctness of our analytical results. In the following numerical results, unless

otherwise specified, the improved k-means++ algorithm is used for UC.

D. Numerical Results for Optimal Power Allocation (Algorithm 4)

In Fig. 5, we evaluate the convergence speed of Algorithm 4 for CFmMIMO-NOMA and COmMIMO-

NOMA with different values of K. The proposed algorithm converges within three iterations and the
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Fig. 6. The SSE of different UC algorithms.
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Fig. 7. SSE of CFmMIMO-NOMA and COmMIMO-

NOMA: with and without PA.

convergence speed of both systems is not sensitive to the number of AP antennas, K. As expected, the

SSE is monotonically increasing after each iteration. Compared to the results in Figs. 3 and 4 with fixed

PA at the power budget of 40 dBm, Algorithm 4 yields a significantly better performance in terms of

SSE. The results demonstrate the effectiveness of the proposed algorithm to achieve the optimal SSE.

Fig. 6 shows the impact of the proposed k-means++ and improved k-means++ algorithms on the

system performance of CFmMIMO-NOMA. For comparison, we also plot the SSE of the k-means (i.e.,

Algorithm 1) and the recently proposed UC approaches, including near pairing, far pairing, random

pairing [16], and the Jaccard-based UC [17]. The main result observed from the figure is that the proposed

unsupervised ML-based UC algorithms achieve better SSE performance compared to the baseline ones,

and the performance gaps are wider when Pmax increases. This implies that the two proposed UC schemes

are capable of exploiting UC more effectively, so that the SSE is remarkably enhanced. In Fig. 7, we

demonstrate the benefit of optimizing PA for CFmMIMO-NOMA and COmMIMO-NOMA systems. The

SSE of both systems is significantly enhanced with optimal PA compared to the fixed PA scheme. Hence,

this shows the necessity of optimizing PA for both systems, especially for the CFmMIMO-NOMA system.

Next, the effect of the SIC performance coefficient ζnl
on the SSE of CFmMIMO-NOMA and

COmMIMO-NOMA is examined in Fig. 8. We note that ζnl
= 1 (ζnl

= 0) indicates no SIC (perfect

SIC), while 0 < ζnl
< 1 means imperfect SIC. The system performance without NOMA/SIC is plotted.

It is clear that the SSE of CFmMIMO-NOMA degrades when ζnl
,∀nl increases. It implies that the SIC

performance coefficient requires to be small enough to exploit the full potential of NOMA in CFmMIMO.

Nevertheless, the SSE achieved by CFmMIMO-NOMA and COmMIMO-NOMA systems is much higher
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Fig. 9. The joint effect of the numbers of antennas K and

APs M on the average SSE of different UC algorithms.

than their counterparts without NOMA/SIC.

Finally, we investigate the joint effect of the numbers of antennas K and APs M on the average SSE

of different UC algorithms. We fix MK = 256 and select K from the set K ∈ [8, 16, 32, 64, 128, 256].

When K = 256, then M = 1, which represents COmMIMO-NOMA. From the figure, we see that

the SSE first increases and then decreases when K increases. This result reveals an interesting insight:

for extremely small K, the use of fpZF is less efficient in terms of canceling inter-cluster interference.

However, the higher the value of K, the lower the value of APs M . This not only increases path losses,

but also reduces the degree of macro-diversity. The results suggest that the optimal value of (M,K)

can improve the SSE of CFmMIMO-NOMA, e.g., (M,K) = (16, 16) for improved k-means++ and

(M,K) = (32, 8) for k-means++ in this setting.

VIII. CONCLUSION

In this paper, we have investigated downlink CFmMIMO-NOMA system, where two efficient unsuper-

vised ML-based UC algorithms are developed to effectively cluster users into disjoint clusters. Using the

fpZF precoding at APs, we have derived closed-form expressions for the SSE of CFmMIMO-NOMA,

taking into account effects of intra-cluster pilot contamination, inter-cluster interference, and imperfect

SIC. In addition, we have considered the problem of power allocation to maximize SSE. Since the

formulated problem is intractable, we have developed a low-complexity iterative algorithm based on the

IA framework for its solution. Numerical results have confirmed the effectiveness of the proposed UC
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algorithms, and show their superior performance compared to the baseline schemes. The proposed PA

algorithm converges fast, and significantly outperforms CFmMIMO-NOMA without optimizing PA and

COmMIMO-NOMA in terms of SSE.

APPENDIX A

PROOF OF LEMMA 1

1) Computation of |DSnl
|2: By using (5) and (25), the numerator in (23) is rewritten as

|DSnl
|2 =

∣
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∣
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2
= (K − τp)

( ∑

m∈M

√
ρmnl

γm,nl

)2
,

(49)

where the second equality is obtained due to the independence between the estimation error vector em,nl

and the channel estimate ĥm,nl
.

2) Computation of E
{
|BUnl

|2
}

: The first term of the denominator in (23) is reformulated as

E
{
|BUnl
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}
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∣
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According to (5) and (25), the first term in (50) is further derived as follows:

E

{∣
∣
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. (51)

Substituting (49) and (51) into (50), (50) can be rewritten as

E

{
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}
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( ∑
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3) Computation of
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E
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: Based on (51), the second term of the denominator in (23) is

computed as
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4) Computation of
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E
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: According to (51), the third term of the denominator in

(23) is rewritten as
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5) Computation of E
{
|UInl
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}

: From (51), the fourth term of the denominator in (23) is shown as

follows:
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∣
∣
∣

2}

=
∑

l′∈L\{l}

Nl′∑

nl′=1

∑

m∈M

ρmnl′
(βm,nl

− γm,nl
) , (55)

where the second equality in (55) is obtained due to the property of the fpZF precoding.

Finally, by substituting (49), (52), (53), (54), and (55) into (23), SINRnl

nl
is obtained as in (27). Following

the similar steps for deriving SINRnl

nl
, SINRnl

n′
l

can be easily derived as in (28).

APPENDIX B

PROOF OF PROPOSITION 1

By contradiction and IA principles, we can easily prove that constraints (33a)-(33c), (34), (35a)-(35d)

and (38d) must hold with equality at optimum. Let us define F(ϕnl
) , ln(1+ϕnl

). From (37), we have

F(ϕnl
) ≥ F (κ)(ϕ(κ), ϕ̄nl

), (56)

and

F(ϕ(κ)
nl

) = F (κ)(ϕ(κ), ϕ̄nl
). (57)

Thus, it is true that

F(ϕ(κ)
nl

) ≥ F (κ−1)(ϕ(κ), ϕ̄nl
) ≥ F (κ−1)(ϕ(κ−1), ϕ̄nl

) = F(ϕ(κ−1)
nl

). (58)

These results imply that (̟(κ),θ(κ),ϕ(κ)) is an improved solution to problem (38), compared to

(̟(κ−1), θ(κ−1),ϕ(κ−1)). By [27, Theorem 1], the sequence {̟(κ),θ(κ),ϕ(κ)} converges to at least

local optima which satisfy the KKT conditions. As a result, the objective value of problem (38) is
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monotonically increasing, i.e.,
(
1− τp

τc

) ∑

l∈L

∑

nl∈Nl

r
(κ)
nl
≥

(
1− τp

τc

) ∑

l∈L

∑

nl∈Nl

r
(κ−1)
nl

. In addition, the sequence

of the objective values is upper bounded due to power constraints (36c), which completes the proof.
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