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Abstract—Low-complexity improved-rate generalised spatial
modulation (LCIR-GSM) is proposed to mitigate the high com-
plexity of the mapping book design and demodulation of variable-
#0 GSM. Specifically, first of all, we propose two efficient
schemes for mapping the information bits to the transmit antenna
activation patterns, which can be readily scaled to massive
MIMO setups. Secondly, we derive a pair of low-complexity
near-optimal detectors, one of which has a reduced search
scope, while the other benefits from a decoupled single-stream
based signal detection algorithm. Finally, the performance of the
proposed LCIR-GSM system is characterised by the improved
error probability upper bound. Our simulation results confirm
the improved error performance of our proposed scheme, despite
its reduced signal detection complexity.

Index Terms—Generalised spatial modulation, maximum like-
lihood detection, bitwise spatial mapping, antenna selection.

I. INTRODUCTION

Spatial modulation (SM), constitutes a promising tech-
nique for the next-generation multiple-input multiple-output
(MIMO) system, which has attracted substantial research inter-
ests [1]. More explicitly, for the SM scheme, the indices of the
transmit antenna (TA) are exploited as an extra dimension for
transmitting information besides the conventional amplitude-
phase shift keying (APSK) symbols [2]. Since only a single
TA is activated in SM-MIMO at any time instant, the inter-
channel interference (ICI) and the inter-antenna interference
(IAI) of conventional MIMO techniques are mitigated, which
results in the simplified transceiver design and a reduced signal
detection complexity [1], [2]. Specifically, the MIMO power
consumption is effectively reduced since only a single power
amplifier is required [3]. As a further advance, the SM scheme
can be flexibly configured for challenging communication
scenarios, such as the downlink MIMO systems having a rank-
deficient channel matrix.

Inspired by the aforementioned advantages, the space shift
keying concept was introduced in [4] as a low-complexity
implementation of SM, where only the TA indices convey
information. Furthermore, the principle of SM has also been
extended to the time/frequency/code domain to exploit multi-
ple degrees of freedom [5], [6]. As a result, the generalised
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concept of index modulation has gained widespread interest
in both academia and industry [7]–[9]. Besides, both the
analytical studies, numerical simulation, as well as real-world
experiments have verified that SM-MIMOs have the inherent
potential of outperforming many state-of-art MIMO schemes,
provided that a sufficiently high number of TAs are available
at the transmitter [10].

In order to improve the achievable rate of single-RF SM
schemes, generalised spatial modulation (GSM) was pro-
posed upon activating multiple TAs simultaneously [11]. Fur-
thermore, conventional full-RF diversity- and multiplexing-
oriented MIMO schemes have been combined with GSM
[12], [13] to achieve a beneficial diversity/multiplexing gain
at the cost of using a reduced number of RF chains. Recently,
the QSM mapping of [14] has been further improved in
[15]–[17] by increasing the system’s rate and/or reducing the
bit error probability (BEP). However, all the aforementioned
GSM-homologous schemes always employ a fixed number
#0 of TAs, which inevitably results in the well-known rate
limitation of the family of GSM schemes. In order to eliminate
this rate limitation, the variable-#0 GSM (VGSM) concept
was proposed for increasing the spatial constellation size by
employing a variable number #0 of activated TAs [18], [19],
which, however, results in high complexity of the mapping
book design and demodulation.

Against this background, we present a low-complexity
improved-rate generalised spatial modulation (LCIR-GSM)
scheme. For the sake of illustration, features of the new LCIR-
GSM scheme are compared to the existing GSM schemes in
Table I. More explicitly, the contributions of the paper are as
follows:
• Firstly, in order to alleviate the scalability problem of the

existing VGSM codebook designs, we conceived three
novel mapping arrangements, where the first two of which
are proposed to mitigate the inherent problem of the
so-called molecule shift keying (MoSK) scheme of [24]
where no signal is transmitted for the special case of the
all-zero bitstream. Furthermore, in order to maximize the
Euclidean distance between spatial constellation points,
the look-up table (LUT) arrangement of [18], [19] is
further extended to our proposed scheme.

• Secondly, in order to mitigate the VGSM detection
complexity, we propose a pair of low-complexity detec-
tors based on the classical maximum likelihood detector
(MLD). Explicitly, a two-step near-maximum likelihood
detector (TMLD) is derived, which substantially nar-
rows the search scope. Furthermore, a decoupling based
maximum likelihood detector (DMLD) is conceived for
decomposing a two-dimensional joint search into a pair
of one-dimensional single-stream based searches, while
still maintaining the optimal detection performance.

• Thirdly, we derive a tighter performance upper bound
(UB) based on the framework of [27] for the proposed
LCIR-GSM system. Explicitly, the improved performance
bound reflects the impacts of the LCIR-GSM scheme’s
signal constellation diagram, spatial constellation diagram
and their interactions, respectively. Finally, our simulation
results confirm the improved spectral efficiency (SE),
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TABLE I
THE CONTRIBUTION OF THE PROPOSED LCIR-GSM SCHEME COMPARED WITH OTHER GSM SCHEMES.

Contributions LCIR-GSM [20] [21] [22] [9] [15] [23] [24] [18] [12] [25] [26]
Flexibility in the number of TAs X X × X X X X X X X X X
Multiple active TAs X X × X X X X X X X X X
Multiple streams × X × X X X X × × X × X
Variable number of active TAs X × × × × × × X X × X ×
Improved bitwise spatial mapping X × × × × × × × × × × ×
Joint spatial and classic symbol alphabet X X X × X × X × × X × ×
Low-complexity detectors X X × × × × × × × X × ×
Improved upper bound X × X × × × × × × × × ×. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

reduced signal detection complexity and improved BEP
performance of our proposed LCIR-GSM scheme.

The rest of this paper is structured as follows. Sec. II
presents the LCIR-GSM system model and spatial mapping
schemes. Our detection algorithms are conceived in Sec. III.
Sec. IV analyses the theoretical BEP and computational com-
plexity of the LCIR-GSM system, while the BEP performance
of our LCIR-GSM systems is presented in Sec. V. Finally, Sec.
VI concludes the paper.

II. SYSTEM MODEL

A. LCIR-GSM Transmission

In LCIR-GSM systems, the incoming data bits are first
grouped per < = <B + <0 bits. Following this, the grouped
block of bits b) is split into <B spatial bits b)B and <0 APSK
modulated symbol bits b)0 , i.e., b) =

[
b)B

�� b)0 ] . The first <B
spatial bits are assigned to select the TA activation pattern
following the spatial mapping procedures. The remaining <0
bits are modulated using "-APSK with the modulation order
of " = 2<0 . In contrast to the classic GSM, which activates a
fixed number of TAs at each slot, the number of activated TAs
in the LCIR-GSM scheme is variable [18], [19] for the sake of
utilizing all legitimate TA activation patterns. The total number
#< of all legitimate TA activation patterns is given by #< =

�0
#C
+�1

#C
+ · · · + �#C

#C
= 2#C , where �0

#C
corresponds to the

spatial bit sequence having all zeros. Assuming that the case
of b)B = 0 is disabled, the maximum value of <B becomes1

<B = blog (#< − 1)c =
⌊
log

(
2#C − 1

) ⌋
= #C − 1. In summary,

the total number of source bits conveyed by the LCIR-GSM
design is given by < = <0 + <B = log" + #C − 1, which is
evidently higher than that of GSM given by log"+

⌊
log�#0

#C

⌋
,

where #0 is the number of RF chains.
In the LCIR-GSM system, the transmit signal x ∈ C#C×1

is transmitted over an #C × #A MIMO Rayleigh flat fading
wireless channel, H = [h1 · · · h#C ]. The entries of H are
generated by i.i.d. complex Gaussian random variables having
zero-mean and unit-variance. As a result, the signal y received
at any instant is given by

y = Hx + n = hS: B + n, (1)

where B ∈ "-APSK is the modulated symbol, while S:
is the :-th TA activation combination associated with : ∈{
1, · · · , 2#C−1}. The mapping mechanism of {S1, · · · ,S2#C−1 }

1We note that <B is increased beyond this rate limit by the first of our
spatial mapping schemes proposed in Sec. II-B, namely in DTAA-R, where
we have <B = log

(
2#C

)
= #C .

will be detailed in Sec. II-B. Furthermore, the channel vector
can be expressed as hS: =

∑
:∈S: h: , which is the summation

of all channel vectors corresponding to the :-th TA activation
patterns. Moreover, n is an AWGN vector associated with
zero-mean and variance of f2

= in each dimension.

B. LCIR-GSM spatial mapping scheme

Next, we introduce three spatial mapping arrangements for
LCIR-GSM systems, which are: 1) direct TA activation relying
on constellation rotation (DTAA-R), 2) direct TA activation
relying on a dedicated TA (DTAA-D) and 3) LUT. More
specifically, DTAA-R and DTAA-D are the improved schemes
of the bitwise activation scheme of the MoSK [24], while
LUT uses the same mapping design as VGSM of [18], [19],
which we include aims to share the low-complexity detectors
proposed in Sec. III.

1) DTAA-R: The motivation of the DTAA-R scheme is to
establish a direct mapping between the spatial bits and the TA
activation pattern, which does not require a large LUT. The
simplest way is to assign each spatial bit to independently
control the ON/OFF state of the TAs. However, as mentioned
before, when all spatial bits of bB are zeros, no TAs are
activated to transmit the classic "-PSK/QAM symbol, which
constitutes a challenge in our DTAA-R design. In order to
solve this problem, we propose the following revised DTAA-
R mapping rule: {

bB) ≠ 0⇔ x = bB × B
bB) = 0⇔ x = 1 × ) (B), (2)

where 1 is a #C ×1 column vector of ones. In this way, all TAs
are activated, when the spatial bits are all zeros. Moreover,
since the TA activation pattern corresponding to b)B = 0
becomes exactly the same as in the case of b)B = 1, we propose
to apply a transformation ) (·) to the APSK constellation.
Explicitly, for an "-PSK symbol, a simple phase rotation is
applied to the APSK symbol, when all the TAs are activated
for b)B = 0, which can be expressed as: )%( (B) = 4 9

c
" B. By

contrast, when "-QAM is employed instead of "-PSK, the
above phase rotation no longer maximises the distance in the
constellation. Instead, we propose the following transforma-
tion: )&�" (B) = 4

9 c
"= B, where "= represents the mode of

the QAM amplitude set. For example, we have "= = 8 and
"= = 12 for normalised 16QAM and 64QAM constellation,
respectively.

2) DTAA-D: Instead of implementing a phase rotation to the
APSK constellation, in this section, we propose the DTAA-D
mapping method, which assigns a dedicated TA to be uniquely
turned on only for the all-zero spatial bitstream. As a result,
the ON/OFF states of the (#C − 1) TAs are decided by the
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(#C − 1) non-all-zero spatial bits without any ambiguity, hence
eliminating the dependence of the DTAA-R scheme on the
constellation rotation. More explicitly, the DTAA-D mapping
rule is defined by

b)B ≠ 0⇔ x =
[

b)B 0
]) × B

b)B = 0⇔ x =

[
0)(#C−1)×1 1

])
× B.

(3)

where the last TA is activated for the special case of b)B = 0.
3) LUT: The DTAA-D arrangement is capable of achieving

the full LCIR-GSM rate without any constellation rotation,
but unfortunately, the distance between the legitimate TA
activation patterns has not been maximised. Against this back-
ground, the LUT arrangement is introduced to further optimize
the DTAA-D scheme’s spatial constellation, but suffer from the
high complexity of the mapping design [18], [19]. In summary,
the LUT arrangement is exemplified by:

b)B ⇔ x = U (bB) × B, (4)

where U (·) returns a column vector having entries of 0 or
1, thus ensuring that the binary vectors {U (bB)}∀bB have the
maximum possible Hamming distance [18], [19].

III. SIGNAL DETECTION

In this section, we proceed to devise low-complexity signal
detectors for the LCIR-GSM receiver. We first consider the
optimal MLD in Sec. III-A, followed by a pair of reduced-
complexity detectors in Sec. III-B and III-C, respectively.

A. Maximum Likelihood Detection
From the detector’s perspective, let us represent the tentative

transmitted signal vector as x:,; with : denoting the :-th TA
activation pattern and ; denoting the ;-th "-APSK symbol.
We assume that perfect CSI is available at the receiver. As a
result, the MLD finds the estimate of x by performing a full
search over all legitimate indices : and ; formulated as [28]:[

:̂"!� , ;̂"!�
]
= arg min

:,;

‖y − g: B; ‖2 , (5)

where B; represents the ;-th symbol of the constellation, and
g: is the :-th column of the equivalent # × #A LCIR-GSM
channel matrix G, where we have # = 2#C for DTAA-R and
# = 2#C−1 for DTAA-D and LUT. In summary, the equivalent
channel matrix G is defined as follows

G�) ��−' =

[
HbB,1 · · · HbB,#−1 H14 9

c
"=

]
G�) ��−� =

[
H

[
bB,1

0

]
· · · H

[
bB,#−1

0

]
H

[
0
1

] ]
G!*) =

[
HU

(
bB,0

)
HU

(
bB,1

)
· · · HU

(
bB,#−1

) ]
,

(6)

where "= = " for "-PSK, and bB,0 = 0 denotes the spatial
bitstream with all zeros. Observe seen from (5) that the LCIR-
GSM system is now equivalent to an SM system with # TAs,
where all of the three mapping arrangements share the same
detector structure.

B. Two-stage near-Maximum Likelihood Detection
The MLD has to jointly search through # TA activation

patterns and " symbols, hence its complexity order is given by
O ("#), which grows exponentially both with the number #C
of TAs and number <B of modulated bits. In this section, we
conceive the low-complexity TMLD scheme, which follows a

similar philosophy to the sphere decoder of [29]. This two-
stage TMLD first detects the modulated symbol index ; from
the reduced search space as follows:

;̂ = arg min
;

‖y − h:′ B; ‖2 . (7)

We note that the range of : ′ is given by : ′ ∈ {1, 2, · · · , #C },
which is reduced from : ∈ {1, 2, · · · , #}.

Then, the TMLD relaxes the range of ; appropriately based
on the estimated ;̂, which means several ; values can be
selected based on (7), instead of a single ;̂, since a single
one would unlikely to be the globally optimal one. Therefore,
TMLD defines the reduced candidate set of ; using ;̂ in (7) as
j) "!� =

{
; | ‖y − h:′B; ‖2 ≤ 2



y − h:′B;̂


2

}
, where 2 ≥ 1 is a

constant controlling the cardinality of j) "!� .
Following this, the second stage of TMLD is performed

based on (5) as:[
:̂) "!� , ;̂) "!�

]
= arg min
:,;∈j)"!�

‖y − g: B; ‖2 . (8)

The MLD guarantees that the solution is optimal by search-
ing through all the elements in the available set. By contrast,
TMLD searches for : and ; in a reduced region by relaxing the
rough estimate of ;, which is similar to the sphere decoding
philosophy of [29]. As 2 goes to infinity, TMLD becomes
equivalent to MLD.

C. Decoupling Based Maximum Likelihood Detection
In this subsection, we propose the novel DMLD, which

firstly obtains the optimum modulation indices for all TA
activation pattern candidates and then detects the optimal TA
activation pattern with the aid of the demodulated "-APSK
symbol. More explicitly, for each tentative TA combination
index : , the LCIR-GSM detection in (5) can be simplified to

;̂: = arg min
;

{
|B; − ?: |2

}
, (9)

where the demodulator’s decision variable is given by ?: =

g�
:

y
/
‖g: ‖2 [30]. In this way, the optimum modulated symbol

index ;̂: associated with all TA activation indices may be
directly obtained by demapping ?: to the closest constellation
point, assuming that a regular APSK constellation is used.

When "-PSK is employed, the demodulation of (9) may
be performed by rounding the phase of the decision variable
to the nearest "-PSK index as [30]

B̂: = exp
{
9

[
c

2

⌊
(∠?: − q0)

2
c

⌉
+ q0

]}
, (10)

where q0 is the phase of the first "-PSK symbol associated
with all-zero bits. Similarly, the QAM slicing can be per-
formed as shown in [31], which is omitted here for the sake
of brevity.

Thus we obtain the total number # of demodulated symbols
(<8= = {B̂1, · · · , B̂# } associated with the # hypotheses. As a
result, we have

:̂�"!� = arg min
:

‖y − g: B̂: ‖2 . (11)

Once :̂�"!� is estimated, we have B̂�"!� = B̂:̂�"!� , which
is the :̂�"!�-th element of (<8=.

The DMLD’s complexity order does not grow with the mod-
ulation levels, which constitutes the most appealing benefits,
especially for high-order "-PSK/QAM schemes.
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IV. PERFORMANCE ANALYSIS

In this section, we present analytical results for characteris-
ing the error performance of the uncoded LCIR-GSM system,
where the MLD is assumed to obtain the optimal reference
bound. A tight UB on the BEP is derived. Additionally, we also
discuss the computational complexity of the proposed LCIR-
GSM detectors.

A. Uncoded Error Performance
1) Classic Union Bound: First of all, the analytical per-

formance of our LCIR-GSM system is evaluated using the
well-known union bounding technique. More specifically, the
average BEP of LCIR-GSM is given by: [28]

%1 ≤
1
"#

∑
:,:̃

∑
;,;̃

#x:,;→x:̃,;̃ `
#A
U

#A−1∑
==0

�=
#A−1+= (1 − `U)

=, (12)

with `U = 1
2

(
1 −

√
f2
U

1+f2
U

)
and f2

U = 1
4f2

=

(
|B; |2 +

��B;̃ ��2) .

2) Improved Upper Bound: The theoretical UB above is
derived based on the conventional SM study of [28], which
does not take into account the specific effects of the spatial
constellation and symbol constellation. To avoid these limita-
tions, an improved UB paradigm is proposed in [27], based on
which we derive our improved performance bound for LCIR-
GSM. Specifically, Proposition 1 gives the improved UB of
our LCIR-GSM system under Rayleigh flat fading.

Proposition 1: The average BEP of LCIR-GSM can be
tightly upper bounded as follows:

%1 ≤ %1,B86=0; + %1,B?0C80; + %1, 9>8=C , (13)

where %1,B86=0; , %1,B?0C80; , %1, 9>8=C are defined as the similar
form in [27].

As shown in Proposition 1 of [27], in order to obtain
the ABEP upper bound characterized by (13), the moment
generating functions of W

(
bB,: , bB,:̃

)
and W

(
x:,; , x:̃ ,;̃

)
have

to be derived for our proposed GSM design. According to
[19], we have:

W

(
bB,: , bB,:̃

)
=
⌣g
)

[
I# ⊗

(
e: − e:̃

) (
e: − e:̃

)� ]
⌣g
∗
, (14)

W

(
x:,; , x:̃ ,;̃

)
=
⌣g
)

[
I# ⊗

(
x:,; − x:̃ ,;̃

) (
x:,; − x:̃ ,;̃

)� ]
⌣g
∗
, (15)

where e: is the #C × 1 unit vector associated with only the
:-th entry of 1, and ⌣g = vec

(
G)

)
is a #A# × 1 vector

obtained by the vectorization of G) . Although the canonical
i.i.d. Rayleigh fading scenario is investigated, the equivalent
LCIR-GSM channels are correlated. In light of this, the MGFs
of W

(
bB,: , bB,:̃

)
and W

(
x:,; , x:̃ ,;̃

)
are derived based on the

methodology of [19] as

"
W

(
bB,: ,bB,:̃

) (C) = det
[
I#A# + CC⌣g (I# ⊗

(
uu�

))]−1
, (16)

"
W

(
x:,; ,x:̃,;̃

) (C) = det
[
I#A# + CC⌣g (I# ⊗

(
vv�

))]−1
, (17)

where we have u = e: − e:̃ and v = x:,; − x:̃ ,;̃ , while
det (S) denotes the determinant of the matrix S. Furthermore,
C⌣g = 1

#A
I#A ⊗ E

(
G)G∗

)
is the covariance matrix of ⌣g,

which is determined by the particular spatial mapping scheme

introduced in Sec. II-B. More specifically, the
(
:, :̃

)
element

of CG) = 1
#A
E

(
G)G∗

)
is equal to the number of activated

TAs shared by the :-th and :̃-th TA activation patterns. After
substituting (16) and (17) into (7) ∼ (8) of [19], we arrive at
%1,B?0C80; and %1, 9>8=C , respectively. Interested readers might
like to refer to our full manuscript [32] for the closed-form
expression, which is omitted here for the sake of brevity.
We note that the numerical integrals therein can be further
simplified upon leveraging the Chernoff bound [19].

On the other hand, %1,B86=0; can be further simplified to

%1,B86=0; =
log"

log ("#) %
'0H;486ℎ

1,"$�
, (18)

where %'0H;486ℎ
1,"$�

can be obtained following the steps in [33]
for PSK and QAM constellations, respectively.

The theoretical analysis provides useful insights into the per-
formance of LCIR-GSM systems. For example, it shows that
the bit mapping of the PSK/QAM constellation diagram plays
an important role in %1, 9>8=C . In particular, while conventional
bit mappings based on the Euclidean distance of the signal
constellations turn out to be optimal for minimising %1,B86=0; ,
additional constraints may be imposed onto the best choice
of the signal constellation diagram and onto the related bit
mapping for minimising %1,B86=0; and %1, 9>8=C simultaneously.

B. Complexity Analysis
In this part, we compare the computational complexity

of the detectors proposed for our LCIR-GSM scheme. The
detection complexity is quantified in terms of the number of
real-valued multiplications required. The complexity of GSM

in [11] is given by X�(" = 6"#A2
⌊
log�#0

#C

⌋
. Similarly, for the

proposed LCIR-GSM scheme, the detection complexity of the
full-search based MLD of (5) is given by

X"!� = 6"#A#, (19)

since one complex-valued multiplication and modulo square
operations are carried out for each dimension.

Following the same philosophy, when the near-optimal
reduced-scope TMLD of (8) is used, the LCIR-GSM scheme’s
complexity becomes

X) "!� = 6"#A#C + 6V"#A#, (20)

where 1
"
≤ V ≤ 1 is a parameter that increases with the

constant 2. More specifically, we have V = 1
"

for 2 = 1
and V → 1 for 2 → ∞, respectively. We note that as
2 →∞, the complexity of TMLD becomes higher than that of
MLD, which is because TMLD does not reduce the cardinality
of the symbol constellation for a large 2, but increases the
complexity of the first step. However, in practice, a small value
of 2 is adequate for achieving near-ML performance at a low
complexity.

When the single-stream-based DMLD of (9)-(11) is in-
voked, the LCIR-GSM detection complexity encountered for a
given : consists of three parts: 1) the computation of ?: in (9)
requires (6#A + 2) real-valued multiplications [31]; 2) 2 and
4 real-valued multiplications are required for obtaining B̂: in
PSK and QAM, respectively; 3) 6 real-valued multiplications
are required for performing (11). Therefore, the LCIR-GSM
detection complexity is reduced to

X�"!� =

{
(6#A + 10) #, %( 

(6#A + 12) #, &�"
, (21)
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Fig. 1. ABEP of LCIR-GSM (#C = 6) versus �</#0 under our three types
of spatial mapping rules. (a) QPSK; (b) 16QAM.
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Fig. 2. ABEP of LCIR-GSM (#C = 6) versus �</#0 for our three types
of detectors. The LUT is used to illustrate the compatibility of the proposed
low-complexity detectors. (a) QPSK; (b) 16QAM.

V. SIMULATION RESULTS

In this section, the BEP performance of LCIR-GSM systems
is investigated for different numbers of TA/RAs and using
different modulation schemes. For the sake of clarity, the
parameters used for generating the results in this section are
detailed in the figures. Please bear in mind that the LUT-based
scheme actually represents the existing VGSM scheme of [18].

Fig. 1 contrast our simulations and theoretical derivations
for the LCIR-GSM system, where the MLD is adopted.
Although the three mapping arrangements only exhibit modest
performance differences in Fig. 1, the DTAA-R is shown to
have a worse BEP than DTAA-D and LUT, since it transmits
one more bit using the same number of TAs. By contrast, the
LUT performs the best, which, however, has to rely on a pre-
defined codebook thus imposing a higher design complexity.
Moreover, it is demonstrated that the improved theoretical
bound is about 1.5dB tighter than the conventional bound.
Furthermore, as the number of RAs increases, the performance
advantage of LUT over DTAA-R/DTAA-D improves, and the
UB also becomes tighter.

Fig. 2 compares the performance of different detectors for
our LCIR-GSM system having #C = 6. As discussed in Sec.
IV-B, the TMLD exhibits a lower detection complexity, but it
also imposes a performance loss compared to the MLD and
DMLD, as confirmed by Fig. 2. We note that the constant 2
in TMLD is set to 1.5 in Fig. 2, which may be increased for
improving the performance but resulting in a higher detection
complexity. Moreover, Fig. 2 shows that TMLD suffers from
an error floor, which moves down upon increasing #A because
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Fig. 3. The performance comparison between LCIR-GSM (QPSK) and GSM
for different #0 . (a) #C = 5 is used to maintain an overall rate of 6bpcu; (b)
#C = 6 is used to maintain an overall rate of 7bpcu.
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Fig. 4. Complexity comparison of different detectors for LCIR-GSM with
#A = 6, where DTAA-D and LUT are adopted.

the channels between different TAs tend to become more
orthogonal for an increased number of RAs. Hence the index
of the modulated symbol found in the first step becomes
more accurate. Fortunately, DMLD always maintains the same
performance as MLD, which benefits from the fact that for
a regular constellation, the rounding-based detector and the
exhaustive search return the same result.

The BEP performance comparisons between GSM and
LCIR-GSM are offered in Fig. 3. In Fig. 3(a), the number
of TAs is set to #C = 5 and QPSK is used for LCIR-GSM.
In order to maintain the overall rate of 6bpcu, 16QAM and
8QAM are used for GSM with the fixed number of active
TAs #0 = 1 and #0 = 2, respectively. It can be seen in Fig.
3(a) that LCIR-GSM outperforms GSM for #0 = 2 by about
2dB for different numbers of RAs. When GSM associated with
#0 = 1 is considered, a 4dB performance gain can be observed
in Fig. 3(a). Fig. 3(b) portrays the performance comparisons
between GSM and LCIR-GSM for the case of #C = 6. The
QPSK constellation is also adopted for LCIR-GSM, while
16QAM and 8QAM are used for GSM at #0 = 2 and #0 = 3,
respectively, hence maintaining an overall rate of 7bpcu. The
2dB performance gain compared to GSM using #0 = 3 can
also be observed in Fig. 3(b) to verify the advantage of the
proposed LCIR-GSM scheme.

Finally, Fig. 4 compares the computational complexity of
different detectors, where we set 2 = 1 for TMLD. As seen in
Sec. IV-B, the complexity of MLD is prohibitive and increases
exponentially with #C , while our proposed detectors achieve
lower complexity for all the scenarios considered. Specifically,
the TMLD’s complexity is lower than DMLD for a small
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constellation, and the complexity difference will widen as the
number of TAs increases. By contrast, for a moderate number
of TAs, the DMLD is more competitive in conjunction with
high-order modulation, which is because the complexity of
the DMLD does not increase with the constellation size " .
In summary, the proposed low-complexity TMLD detector
strikes an attractive BEP performance vs. detection complexity
tradeoff and can be applied flexibly in various scenarios.
Moreover, we emphasize that the DMLD is always optimal but
it is only suitable for regular constellations, while the TMLD
is suboptimal.

VI. CONCLUSIONS

A novel LCIR-GSM scheme was proposed in order to
improve the GSM mapping mechanism and reduce the de-
tection complexity. More specifically, for the LCIR-GSM
mapping, the DTAA-R, DTAA-D and LUT arrangements are
conceived to facilitate a flexible MIMO deployment, with
special attention dedicated to the all-zero spatial beam stream.
Furthermore, as for the LCIR-GSM signal detection, we have
developed the low-complexity TMLD and DMLD approaches,
where the former adopts the sphere decoding philosophy for
the sake of striking a compelling performance vs complexity
trade-off. By contrast, the latter is capable of achieving the ML
performance at a single-stream detection complexity that does
not escalate with the number of modulation levels. Further-
more, an improved theoretical UB is derived for the proposed
LCIR-GSM, which is confirmed by our simulations to be
about 1.5dB tighter than the existing conventional solution.
Finally, our simulation results demonstrate that the proposed
LCIR-GSM scheme achieves improved performance over the
conventional GSM, despite its lower complexity than that of
VGSM.
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