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A Fluctuating Line-of-Sight Fading Model
with Double-Rayleigh Diffuse Scattering

Jesús López-Fernández, Pablo Ramı́rez Espinosa, Juan M. Romero-Jerez and F. Javier López-Martı́nez

Abstract—We introduce the fluctuating double-Rayleigh with
line-of-sight (fdRLoS) fading model as a natural generalization
of the double-Rayleigh with line-of-sight fading model, on which
the constant-amplitude line-of-sight component is now allowed to
randomly fluctuate. We discuss the key benefits of the fdRLoS
fading model here formulated over the state of the art, and
provide an analytical characterization of its chief probability
functions. We analyze the effect of the fading parameters that
define the model, and discuss their impact on the performance
of wireless communication systems.

Index Terms—Channel modeling, fading models, Rice, Rician
shadowed, second order scattering.

I. INTRODUCTION

The ubiquity of wireless systems has been enabled by the
combination of multipath propagation, reflection and diffrac-
tion that makes communications possible without the existence
of a line-of-sight (LoS) between the transmitter and receiver
ends. However, in many circumstances the existence of LoS
is an inherent characteristic of the propagation conditions in a
number of environments, especially as wireless systems move
toward higher frequencies [1, 2].

The most popular fading model for LoS propagation is
the classical Rician model [3]. It is based on the central
limit theorem (CLT), by assuming that a sufficiently large
number of multipath components arrive at the receiver end.
The direct path is identified with the LoS component and
the aggregation of the remaining waves is approximately
Gaussian. There are different ways to generalize Rician fad-
ing model in order to allow it to model a wider range of
propagation conditions. One of such generalizations is the so-
called second order scattering fading (SOSF) model introduced
in [4] and later formalized in [5], on which an additional
term associated to double-scattering was introduced. A special
case of this SOSF model is the double-Rayleigh with line-of-
sight (dRLoS) fading model, on which the Gaussian diffuse
component that arises from the CLT is not considered and
the overall scattering corresponds to double-scattering, which
in general implies a larger fading severity than its Rayleigh
counterpart [6]. Such propagation conditions occur in the
context of backscatter communications [7], or in the context
of optical wireless communications through the so-called I-K
distribution [8]. Further generalizations to incorporate multiple
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J. López-Fernández, F. J. López-Martı́nez and J. M. Romero-Jerez are
with Communications and Signal Processing Lab, Instituto Universitario de
Investigación en Telecomunicación (TELMA), Universidad de Málaga, CEI
Andalucı́a TECH, ETSI Telecomunicación, Bulevar Louis Pasteur 35, 29010
Málaga (Spain). (contact e-mail: jlf@ic.uma.es).

P. Ramı́rez-Espinosa is with the Connectivity Section, Department of
Electronic Systems, Aalborg University, Aalborg Øst 9220, Denmark.

scattering components of increasing order are available in the
literature [5, 9], at the expense of a much more sophisticated
mathematical formulation.

Another popular generalization of the Rician fading model
was introduced by Adbi et al. in [10], by allowing the
LoS component to randomly fluctuate. This model, usually
referred to as Rician shadowed fading model, has a number of
appealing properties: for instance, it does not only generalize
Rician fading model by adding an additional parameter that
models a more general propagation condition, but in some
cases, its mathematical representation is even simpler than the
original Rician fading model [11].

The goal of this paper is to introduce a different gener-
alization of Rician fading that includes both LoS fluctua-
tion and second-order scattering at the same time: we refer
to this distribution as the fluctuating double-Rayleigh with
line-of-sight (fdRLoS) fading model. We will see how the
consideration of the random fluctuations in the LoS compo-
nents allow to alleviate some of the limitations of the baseline
dRLoS fading model, such as its peaky behavior that is not
representative to real data which causes an overestimation of
the peak probability density [12]. We will also analyze how
the performance of wireless communication systems operating
over fdRLoS fading channels is affected by the different
propagation conditions captured by the model.

Notation: E{X} and |X| denote the statistical average
and the modulus of the complex random variable (RV) X
respectively. The RV X conditioned to Y will be denoted
as X|Y . The symbol ∼ reads as statistically distributed as.
The symbol d

= reads as equal in distribution. A circularly
symmetric normal RV X with mean µ and variance Ω is
denoted as X ∼ Nc(µ,Ω).

II. PHYSICAL MODELS

For the sake of comprehensiveness, and in order to allow for
a better understanding of the relationship between the fdRLoS
fading model with other state-of-the-art alternatives, we briefly
detail in the sequel the physical models for the most relevant
amplitude-based LoS fading models in the literature.

A. Physical model for Rician fading

The physical model for the received signal S under the
Rician fading model [3, 13] is given by

S = ω0e
jφ + ω1G1, (1)

where ω0e
jφ is the LoS component with average amplitude

ω0, φ is a RV uniformly distributed in [0, 2π), and G1 is a
zero-mean normal complex Gaussian RV, i.e. G1 ∼ Nc(0, 1).
The weighting factor ω1 is real and non-negative, and scales
the variance of G1. Besides its average power Ω = E{S2} =
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0 + ω2

1 , the Rician model is completely defined by the so-
called Rician K parameter, defined as

K =
ω2

0

ω2
1
∈ [0,∞), (2)

which accounts for the ratio between the powers associated to
the LoS and non-LoS components.

B. Physical model for Rician shadowed fading

The physical model for the received signal S under the
Rician shadowed fading model [10] is given by

S = ω0

√
ξejφ + ω1G1, (3)

where the parameters in (3) are equivalent to those in (1), and
ξ is a Gamma distributed RV with unit power and real positive
shape parameter m, with probability density function (PDF):

fξ(u) = mmum−1

Γ(m) e−mu, (4)

where Γ(·) is the gamma function. This variable ξ captures the
LoS fluctuations, ranging from very severe for low m to milder
ones as m grows. In the limit case of m→∞, ξ degenerates to
a deterministic unitary value and the LoS fluctuation vanishes,
then specializing to the conventional Rician fading model.

The Rician shadowed model is characterized by two param-
eters: K, as in (2), and m ∈ (0,∞).

C. Physical model for dRLoS fading

The physical model for the received signal S under dRLoS
fading is expressed as in [5]:

S = ω0e
jφ + ω2G2G3, (5)

where ω0 and φ inherit the same definitions as in the Rician
model, G2 and G3 are independent and identically distributed
(i.i.d.) zero-mean normal complex Gaussian RVs, i.e. Gi ∼
Nc(0, 1) for i = 2, 3. The component ω2G2G3 leads to a
double-Rayleigh (dR) fading component, and hence, it differs
from classical Rician fading for which the diffuse component
lead to a single-Rayleigh RV.

The parameters ω0 and ω2 are restricted to being real and
non-negative. As in the Rician fading model, the parameter K
suffices to completely define the distribution, i.e.,

K =
ω2

0

ω2
2
∈ [0,∞), (6)

The model in (5) includes the dR fading model when K = 0.

D. Physical model for fluctuating dRLoS fading

The physical model for the received signal S under the
dRLoS fading model with LoS fluctuations is a natural gen-
eralization of the dRLoS model introduced by Salo et al. [5],
as

S = ω0

√
ξejφ + ω2G2G3, (7)

where ω0e
jφ is the LoS component with constant amplitude

ω0, φ is a RV uniformly distributed in [0, 2π), G2 and G3 are
i.i.d. zero-mean normal complex Gaussian RVs, i.e. Gi is dis-
tributed as Nc(0, 1) for i = 2, 3, and ξ is a Gamma distributed
RV with unit power and real positive shape parameter m. As in
the Rician shadowed fading model, the fdRLoS fading model
is completely defined by two parameters K as in (6) and m.

III. STATISTICAL CHARACTERIZATION

In this section, we will derive analytical expressions for
the PDF and the cumulative distribution function (CDF) of
the instantaneous signal-to-noise ratio (SNR) γ under fdRLoS
fading. Assuming a normalized channel with E{|S|2} = 1, we
have that γ = γ|S|2, where γ is the average SNR. We will
base our derivations on the key findings detailed in [6], that
will allow us to connect the fdRLoS fading distribution with
an underlying Rician shadowed distribution.

Let us begin by considering (7), so that we have

γ = γ|ω0

√
ξejφ + ω2G2G3|2. (8)

Now, we express the complex Gaussian RV G3 as G3 =
|G3|ejΨ, where Ψ is uniformly distributed in [0, 2π). Because
G2 is a circularly-symmetric RV, the following equivalence in
distribution holds for γ

γ
d
= γ|ω0

√
ξejφ + ω2G2|G3||2. (9)

Conditioning on x = |G3|2, define the conditioned RV γx as

γx , γ|ω0

√
ξejφ + ω2

√
xG2︸ ︷︷ ︸

Sx

|2. (10)

We see that Sx is a Rician shadowed RV as in (3), with ω1 =
ω2
√
x. Hence, we have that γx is distributed according to a

squared Rician shadowed RV with parameters m,

γx = E{γx} = γ(ω2
0 + xω2

2) = γK+x
K+1 , (11)

Kx =
ω2

0

xω2
2

= K
x , (12)

where K = ω2
0/ω

2
2 is the Rician factor in the absence of the

RV x, i.e., as in (6). Hence, the PDF of γx is that of the SNR
of a Rician shadowed RV, i.e. [10, 14],

fγx(γ;x) = mm(1+Kx)
(m+Kx)mγx

e
− 1+Kx

γx
γ

1F1

(
m; 1; Kx(1+Kx)

Kx+m
γ
γx

)
,

(13)
where 1F1(·; ·; ·) denotes the Kummer confluent hypergeomet-
ric function [15, eq. (16.2)]. Noting that |G2|2 is exponentially
distributed with unitary mean, we can compute the distribution
of γ by averaging over all possible values of x as:

fγ(γ) =

∫ ∞
0

fγx(γ;x)e−xdx. (14)

Plugging (13) into (14), an integral expression for the PDF
of the fdRLoS model is derived. In order to obtain a simpler
expression for fγ(γ), we consider that the parameter m ∈ Z+.
We note that such restriction does not cause a major impact
unless the LoS fluctuation is very severe; as we will later
see, the practical benefits of the fdRLoS fading model will
become apparent precisely for mild and medium fluctuations
of the LoS component. Under this premise, the PDF of the
Rician shadowed fading model simplifies as [14, eq. (5)]

fγx(γ;x) =

m−1∑
j=0

Cj(x)
(m−j−1)!

γm−j−1

Ω(x)m−j e
− γ

Ω(x) , (15)

with Cj(x) =
(
m−1
j

) (
mx

mx+K

)j (
K

K+mx

)m−1−j
and Ω(x) =

γ K+mx
m(K+1) . Substituting (15) in (14), using the change of
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variables t = 1
m (K +mx) and taking into account that

(t−K/m)j =
∑j
r=0

(
j
r

)
tj(−K/m)j−r, the following ex-

pression for the fdRLoS PDF is derived:

fγ(γ) =

m−1∑
j=0

(
m− 1

j

)
(K/m)m−j−1(K+1)m−jeK/m

γm−j(m−j−1)!
γm−j−1×

j∑
r=0

(
j

r

)(−K
m

)j−r
Γ
(
r + j − 2m+ 2, Km ,

γ
γ (K + 1)

)
,

(16)

where Γ(a, z, b) =
∫∞
z
ta−1e−te

−b
t dt is a generalization of

the incomplete gamma function defined in [16].
The CDF of the fdRLoS fading model can also be obtained

by averaging the CDF of γx, i.e., the Rician shadowed CDF
over the exponential distribution:

Fγ(γ) =

∫ ∞
0

Fγx(γ;x)e−xdx. (17)

For the case of integer m, a closed-form expression for the
Rician shadowed CDF is presented in [14, eq. (10)], i.e.

Fγx(γ;x) = 1−
m−1∑
j=0

Cj(x)e−x/Ω(x)

m−j−1∑
r=0

1
r!

(
x

Ω(x)

)r
,

(18)
Plugging (18) into (17), the following expression for the
fdRLoS CDF is obtained:

Fγ(γ) = 1−
m−1∑
j=0

(
m− 1

j

)(
K
m

)m−j−1
eK/m×

m−j−1∑
r=0

1
r!

(
γ
γ

)r
(K + 1)r× (19)

m−j−1∑
s=0

(
j

s

)(−K
m

)j−s
Γ
(
s−m− r + 2, Km ,

γ
γ (K + 1)

)
.

In Fig. 1, we represent the evolution of the PDF of the fdRLoS
fading model using (16) as the LoS fluctuation severity m
changes, for K = 5 and γdB = 3dB (i.e., γ = 2). Monte Carlo
(MC) simulations are included in all instances to double-check
the corresponding theoretical expressions. We see that as m
is increased, i.e., the fading severity of the LoS component is
decreased, the SNR values are less disperse and lower SNR
values are less likely. We see that for large m, the PDF of
the fdRLoS fading model tends to behave as the PDF of the
dRLoS fading model (in black solid line); however, note that
the peaky behavior exhibited by the dRLoS fading model does
not appear in the fdRLoS case, which has a smoother shape.

IV. APPLICATION: OUTAGE PROBABILITY

The outage probability (OP) is defined as the probability that
the instantaneous SNR takes a value below a given threshold
γth, which is directly computed from the CDF in (19) as OP =
Fγ(γth). In the high-SNR regime, an asymptotic expression
for the OP can be obtained as follows: since the asymptotic
OP under Rician shadowed fading is given by [14]

OPRS (γth; γ,K,m) = t
γth

γ
(1 +K)

(
m

K+m

)m
, (20)

Fig. 1. PDF of the fdRLoS fading model for different values of m as a
function of γ (in linear form). Parameter values are K = 5 and γdB = 3dB.
Theoretical values (16) are represented with lines. Markers correspond to MC
simulations. The case m→ ∞ is the dRLoS PDF in [6, eq. (15)].

then using the same rationale as in Section III we have that

OP (γth; γ,K,m) =

∫ ∞
0

OPRS (γth; γ(x),K(x),m) e−xdx,

= γth
γ (1 +K)Γ(m)U (m, 1,K/m)︸ ︷︷ ︸

a

, (21)

where γ(x) = γK+k
K+1 and K(x) = K/x, and U (·, ·, ·) is

Tricomi’s confluent hypergeometric function [15, (13.1)].
We see that the OP in (21) decays with a diversity order

of 1, while the parameter a acts as power offset or cod-
ing gain as defined in [17]. Interestingly, such asymptotic
expression is not valid for the specific case of K = 0 as
limK→0 U (m, 1,K/m) → ∞. This corresponds to the dR
or Rayleigh product channel, and for which the assumptions
taken in [17] cease to hold, i.e., the OP for the pure dR case

does not behave as OPγ→∞ = a
t+1

(
γth
γ

)t
for any t > 0. In

Fig. 2, OP is depicted for K = 1, γth = 3dB and for different
values of m. As expected, the system performance improves
as the LoS fluctuation is reduced, i.e. the OP decreases for
higher values of m. Observe that for moderate values of m
the OP behavior is practically indistinguishable from that of
the deterministic LoS (see the zoomed box in the figure). This
reveals that the fdRLoS model quickly converges as m grows
to the baseline dRLoS starting model, a fact that is not so
evident from the PDF curves in Fig.1.

Next, a comparison between the fdRLoS (fluctuating LoS
and double-Rayleigh) and the Rician shadowed (fluctuating
LoS and Rayleigh) models is addressed. In the absence of
LoS component, it is known that a double-Rayleigh diffuse
component leads to a worsening of the system performance as
compared to a single-Rayleigh one. Surprisingly, this behavior
may change in the presence of a LoS component: in Fig. 3
the OP as a function of γ is evaluated for the fdRLoS (dashed
lines) and Rician shadowed (solid lines) fading models with
parameters K = 6, γth = 3dB and different values of m.
See that for m = {3, 5, 10} there is a range of γ for which
the OP of the fdRLoS model falls below that of the Rician
shadowed. This counterintuitive behavior is better reflected in



4

Fig. 2. OP plot. Parameter values are K = 1 and γth = 3dB. Dashed lines
correspond to fdRLoS fading. The case with m→ ∞ corresponds to dRLoS
fading [6, eq. (21)]. Dotted lines correspond to the asymptotic OP values in
(21). Markers correspond to MC simulations.

Fig. 3. OP comparison between fdRLoS (dashed lines) and Rician shadowed
(solid lines) fading models. OP vs γ (dB), for different values of m. Parameter
values are K = 6 and γth = 3dB. Markers correspond to MC simulations.

Fig.4 where the OP has been plotted as a function of K with
fixed parameters γth = 3dB and γ = 25dB. First, notice that
for K = 0 (no LoS) the Rician shadowed model effectively
yields a lower OP than the fdRLoS model in all instances. As
K grows this relation is reverted in a range of K whose size
is dependent on m. In particular, see that this range is wider
for moderate values of m, i.e. it is null for m = 1, grows for
m = 3 and decreases for m = 5 and m = 10.

V. CONCLUSION

We introduced and characterized a new family of fading
models consisting on a fluctuating LoS component with dR
diffuse component. This model generalizes a class of fading
models that arise fom the SOSF model, and also exhibits
a smoother behavior than its deterministic LoS counterpart,
thus avoiding one of the reported limitations of the dRLoS
model. We confirmed that in the presence of a moderate
LoS component, the performance of wireless communication
systems operating under dR-diffusely scattered fading can be
better than for the single-Rayleigh case. This does not happen
when the LoS magnitudes are either small or large.

Fig. 4. OP comparison between fdRLoS (dashed lines) and Rician shadowed
(solid lines) fading models. OP vs K for different values of m. Parameter
values are γ = 25dB and γth = 3dB.
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