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Abstract—Decentralized baseband processing (DBP) architec-
ture, which partitions the base station antennas into multiple
antenna clusters, has been recently proposed to alleviate the
excessively high interconnect bandwidth, chip input/output data
rates, and detection complexity for massive multi-user multiple-
input multiple-output (MU-MIMO) systems. In this paper, we
develop a novel decentralized Gaussian message passing (GMP)
detection for the DBP architecture. By projecting the discrete
probability distribution into a complex Gaussian function, the
local means and variances iteratively calculated in each an-
tenna cluster are fused to generate the global symbol beliefs
based on the proposed message fusion rule in the centralized
processing unit. We present the framework and analysis of
the convergence of the decentralized GMP detection based on
state evolution under the assumptions of large-system limit and
Gaussian sources. Analytical results corroborated by simulations
demonstrate that nonuniform antenna cluster partition scheme
exhibits higher convergence rate than the uniform counterpart.
Simulation results illustrate that the proposed decentralized
GMP detection outperforms the recently proposed decentralized
algorithms.

Index Terms—Massive multi-user multiple-input multiple-
output (MU-MIMO), decentralized baseband processing (DBP),
Gaussian message passing (GMP), message fusion, state evolu-
tion.

I. INTRODUCTION

MASSIVE multi-user multiple-input multiple-output
(MU-MIMO) systems, in which hundreds of antennas

are equipped at the base station (BS), have been extensively
investigated owing to the large gains in spectral efficiency,
capacity, and reliability over traditional small-scale MIMO
systems [1]. However, one of the most critical implementation
challenges is the excessively high amount of raw baseband
data that must be transferred between the BS radio frequency
(RF) units and the baseband processing unit [2], [3]. For
instance, the raw baseband data rates exceed 200 Gbit/s for a
massive MU-MIMO BS operating at 40MHz bandwidth with
128 BS antennas and 10-bit analog-to-digital converters [3],
[4]. Such high data rates exceed the bandwidth of existing
interconnect technologies and approach the limit of existing
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chip input/output interfaces [5], [6]. Furthermore, classical
detection algorithms typically rely on centralized baseband
processing. This centralized framework requires full channel
state information (CSI) and full received signal, which brings
excessively high computational complexity and power con-
sumption for massive MU-MIMO systems [3].

To mitigate this challenge, decentralized baseband pro-
cessing (DBP) [2]–[6] architecture has been recently pro-
posed for massive MU-MIMO systems. In this decentralized
architecture, the BS antennas are partitioned into multiple
antenna clusters with independent RF circuitry and computing
hardware. Each antenna cluster performs decentralized channel
estimation (CHEST) and signal detection, i.e., only the local
CSI and received signal are required in each antenna cluster. A
centralized processing unit is followed to generate the global
estimated symbols based on a given fusion rule for decod-
ing. Reference [2] detailed the decentralized maximum ratio
combining (MRC) and minimum mean square error (MMSE)
detections, and proposed an optimal fusion rule utilizing the
weighted average of local estimates. The MMSE algorithm
involves complicated matrix inversion whose computational
complexity is cubic to the user number, which is unfavorable in
practical implementation. Matrix inversion-less decentralized
conjugate gradient (CG) [3], [4], alternating direction method
of multipliers (ADMM) [3], and coordinate descent (CD) [5]
signal detections have been proposed to reduce the complexity
of MMSE detection. However, the bit error rate (BER) perfor-
mance of these detections only approaches the MMSE method.
The authors in [2], [6] proposed a nonlinear detection scheme
that builds upon the large-MIMO approximate message pass-
ing (LAMA) algorithm, which achieves a slight performance
gain over the decentralized MMSE. Note that all these DBP-
based detections consider the uniform antenna cluster partition,
in which the BS antennas are partitioned equally.

In this paper, we propose an efficient DBP-based detec-
tion scheme under the framework of the Gaussian message
passing (GMP) algorithm [7]–[9] for uplink massive MU-
MIMO systems. The GMP algorithm, which is operated on a
fully-connected loopy factor graph [10], has been extensively
studied for signal detection in massive MU-MIMO systems.
In the proposed decentralized GMP detection, each antenna
cluster executes independent CHEST and GMP detection in
parallel and propagates the local messages to the centralized
processing unit. A novel fusion rule is proposed based on
the message passing rule to form the global symbol beliefs
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and estimated symbols, rather than using the weighted average
scheme proposed in [2], [5]. To prove the convergence of the
proposed GMP algorithm, the state evolution is adopted to
track the variance variation under the assumptions of large-
system limit and Gaussian sources. Furthermore, we analyze
the antenna cluster partition scheme and demonstrate that
the nonuniform partition results in a smaller symbol belief
variance and higher convergence compared with the uniform
partition when fixing the antenna cluster number. Numerical
results illustrate that the nonuniform antenna cluster partition
scheme achieves performance gain over the uniform counter-
part. In addition, the proposed decentralized GMP detection
outperforms the recently proposed decentralized algorithms
and exhibits linear computational complexity.

The remainder of this paper is organized as follows. Section
II describes the system model of uplink massive MU-MIMO
with DBP architecture. In Section III, we present the proposed
decentralized GMP detection. Simulation results are illustrated
in Section IV. Finally, conclusions are drawn in Section V.

Notation: Boldface uppercase letter X and lowercase letter
x denote matrices and column vectors, respectively. (.)T , (.)H ,
(.)
−1, and (.)

∗ denote the transpose, conjugate transpose,
matrix inversion, and complex conjugate, respectively. N is
the set of positive integers. IN represents the identity matrix
with dimension N . xk represents the kth element of x.
The nth row and kth column element of X is denoted by
xn,k. E [.] represents the expectation operator. The complex
Gaussian probability distribution function (PDF) is denoted by
CN

(
x;µ, σ2

)
=
(
πσ2

)−1
exp

(
−|x− µ|2/σ2

)
with mean µ

and variance σ2.

II. SYSTEM MODEL

A. Uplink Massive MU-MIMO Systems

Consider an uplink massive MU-MIMO system with K
single-antenna users simultaneously transmitting to a BS with
N (N � K) antennas. The complex baseband input-output
relation of the uplink massive MU-MIMO channel is given by

y = Hx+ n, (1)

where y ∈ CN×1 denotes the received signal vector, H ∈
CN×K is the Rayleigh fading channel matrix whose elements
are assumed to be i.i.d. circularly symmetric complex Gaussian
distributed with zero mean and unit variance, x ∈ OK×1
represents the transmitted signal vector whose entries are
chosen independently from a power-normalized constellation
O with |O| = M , and n ∈ CN×1 models the additive white
Gaussian noise vector with zero mean and covariance matrix
σ2
nIN . The receiver is assumed to obtain perfect CSI.

B. Decentralized Baseband Processing

In the DBP architecture, the N BS antennas are partitioned
into C independent antenna clusters where C ∈ N. The cth
antenna cluster is equipped with Nc = ωcN antennas where
ωc ∈ [0, 1],

∑C
c=1 ωc = 1, and Nc ∈ N. Each antenna

cluster contains local computing hardware, which executes
local RF processing, CHEST, and detection in a decentralized
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Fig. 1. Uplink massive MU-MIMO system with DBP architecture.

fashion. A fusion node fuses the local information passed from
each detector and generates the global estimated symbols. By
partitioning the received signal vector as y =

[
yT1 , · · · ,yTC

]T
,

the local received signal associated with the cth antenna cluster
is modeled as [2]

yc = Hcx+ nc, (2)

where the channel matrix is partitioned row-wise into blocks
as H =

[
HT

1 , · · · ,HT
C

]T
, and the noise vector is partitioned

as n =
[
nT1 , · · · ,nTC

]T
. The massive MU-MIMO with DBP

architecture is equivalent to the conventional massive MU-
MIMO when C = 1. The block diagram of uplink massive
MU-MIMO systems with DBP is depicted in Fig. 1.

III. DECENTRALIZED GAUSSIAN MESSAGE PASSING
DETECTION FOR MASSIVE MU-MIMO

A. Decentralized Gaussian Message Passing Detection

The decentralized GMP detection is operated on a pairwise
factor graph [10] consisting of the prior nodes (PNs), variable
nodes (VNs), sum nodes (SNs), and fusion nodes (FNs), which
denote the mapping constraints, users, likelihood functions,
and message fusions, respectively. An example of a factor
graph for decentralized GMP detection is shown in Fig. 2
where N ×K = 6× 3 and C = 2 with uniform partition. Let
µtxk→fc,n (xk) and µtfc,n→xk

(xk) denote the messages sent
from the kth (k = 1, · · · ,K) VN to the nth (n = 1, · · · , Nc)
SN in the cth (c = 1, · · · , C) antenna cluster at the tth (t =
1, · · · , T ) iteration and in the opposite direction, respectively,
where T is the maximum number of iterations. Based on the
sum-product algorithm, the message updating rules are given
by [7], [10]

µtxk→fc,n (xk) = µφk→xk
(xk)

∏
n′ 6=n

µt−1fc,n′→xk
(xk), (3)

µtfc,n→xk
(xk)=

∑
x\xk

fc,n (yc,n|x)
∏
k′ 6=k

µtxk′→fc,n (xk′), (4)
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Fig. 2. Factor graph of decentralized GMP detection for N × K = 6 × 3
and C = 2 with uniform partition.

where x\xk denotes all the enumerations of x except for xk.
The a priori probability is given by µtφk→xk

(xk) = 1/M and
the likelihood function is expressed as

fc,n (yc,n|x)=
1

πσ2
n

exp

− 1

σ2
n

∣∣∣∣∣yc,n −∑
k

hc,n,kxk

∣∣∣∣∣
2
 , (5)

where yc,n denotes the nth element of yc, and hc,n,k denotes
the complex channel coefficient from the kth user to the nth
BS antenna in the cth antenna cluster. We next concentrate on
the decentralized GMP detection in the cth antenna cluster.

At the VNs, the summation in (4) contains a global search
over the joint space of constellation O of all users except
for the kth user, which results in exponential computational
complexity. To alleviate the computational complexity, xk is
considered as a continuous random variable and the message
µtfc,n→xk

(xk) is approximated as a complex Gaussian PDF

CN
(
hc,n,kxk;m

t
fc,n→xk

, vtfc,n→xk

)
. According to the prod-

uct rule of complex Gaussian PDFs [11], the message passing
in (3) is thus computed as

µtxk→fc,n(xk)≈µφk→xk
(xk)CN

(
xk;z

t−1
xk→fc,n,γ

t−1
xk→fc,n

)
. (6)

The variance and mean are calculated as

1

γt−1xk→fc,n
=
∑
n′ 6=n

|hc,n′,k|2

vt−1fc,n′→xk

, (7)

zt−1xk→fc,n

γt−1xk→fc,n
=
∑
n′ 6=n

h∗c,n′,km
t−1
fc,n′→xk

vt−1fc,n′→xk

, (8)

where m0
fc,n→xk

= 0 and v0fc,n→xk
→ +∞ are initial-

ized. The message µtxk→fc,n (xk) is also approximated as
a complex Gaussian PDF by minimizing the KL diver-
gence DKL

(
µtxk→fc,n (xk) ||CN

(
xk;m

t
xk→fc,n , v

t
xk→fc,n

))
for arbitrary prior probability. The mean and variance propa-
gated from VN to SN are obtained via moment matching

mt
xk→fc,n =

∑
α∈O

αµtxk→fc,n (xk = α), (9)

vtxk→fc,n =
∑
α∈O
|α|2µtxk→fc,n (xk = α)−

∣∣∣mt
xk→fc,n

∣∣∣2. (10)

At the SNs, the mean and variance propagated from SN to
VN are calculated as [8]

mt
fc,n→xk

= yc,n −
∑
k′ 6=k

hc,n,k′m
t
xk′→fc,n , (11)

vtfc,n→xk
= σ2

n +
∑
k′ 6=k

|hc,n,k′ |2vtxk′→fc,n . (12)

The means and variances are iteratively propagated between
VNs and SNs until T is reached. When the iterative detection
process is terminated, the FNs collect the local multiplicative
messages

∑
n µ

T
fc,n→xk

(xk), i.e., the local means mT
fc,n→xk

,
and variances vTfc,n→xk

from all the antenna clusters to form
the global estimation.

At the FNs, the kth VN gathers information from its
input (the kth PN) and the SNs of all the antenna clusters
to calculate the global symbol belief µxk

(xk), i.e., the a
posteriori probability. The global symbol belief is given by

µxk
(xk) ∝ µφk→xk

(xk)
∏
c

∏
n

µTfc,n→xk
(xk)

∝ µφk→xk
(xk) CN (xk; zk, γk) ,

(13)

where the variance and mean are computed as

1

γk
=
∑
c

∑
n

|hc,n,k|2

vTfc,n→xk

, (14)

zk
γk

=
∑
c

∑
n

h∗c,n,km
T
fc,n→xk

vTfc,n→xk

. (15)

The global symbol belief is then normalized as

µxk
(xk=α)=

µφk→xk
(xk=α)CN (xk=α; zk, γk)∑

α′∈O
µφk→xk

(xk=α′)CN (xk=α′; zk, γk)
,

(16)
and the global estimated soft symbol is calculated as

x̂k =
∑
α∈O

αµxk
(xk = α). (17)

The proposed decentralized GMP detection for uplink massive
MU-MIMO systems is summarized in Algorithm 1.

B. State Evolution Analysis

To analyze the state evolution of the proposed decentralized
GMP detection, we concentrate on the large-system limit (i.e.,
N → ∞, fixing the system ratio K/N , and fixing C) and
Gaussian sources (i.e., x ∼ CN

(
0, σ2

xIK
)
). With the symme-

try of all the variances [8], [9] in the cth antenna cluster, we
assume lim

t→+∞
vtxk→fc,n =v

c
x→f , lim

t→+∞
vtfc,n→xk

=vcf→x, and

E
[
|hc,n,k|2

]
≈1 for ∀k ∈ {1, · · · ,K} and ∀n ∈ {1, · · · , Nc}

in the large-system limit. When Gaussian sources are assumed,
the variance vtxk→fc,n of µtxk→fc,n (xk) (6) is computed as

1

vtxk→fc,n
=

1

σ2
x

+
∑
n′ 6=n

|hc,n′,k|2

vtfc,n′→xk

. (18)
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Algorithm 1 The Proposed Decentralized GMP Detection
1: Input: yc, Hc, σ2

n, ωc, T
2: Initialization: m0

fc,n→xk
= 0, v0fc,n→xk

→ +∞
3: Decentralized processing in each antenna cluster:
4: for c = 1, · · · , C do
5: for t = 1, · · · , T do
6: Compute µtxk→fc,n (xk) for each k and n via (6),

(7), and (8).
7: Compute mt

xk→fc,n and vtxk→fc,n for each k and
n via (9) and (10).

8: Compute mt
fc,n→xk

and vtfc,n→xk
for each k and

n via (11) and (12).
9: end for

10: end for
11: Centralized processing based on message fusion rule:
12: for k = 1, · · · ,K do
13: Compute µxk

(xk = α) for each α ∈ O via (13), (14),
(15), and (16).

14: Compute x̂k via (17).
15: end for
16: Output: x̂ = [x̂1, x̂2, · · · x̂K ]

When t → +∞, taking the expectations of (12) and (18)
results in [8]

vcf→x = σ2
n +Kvcx→f , (19)

1

vcx→f
=

1

σ2
x

+
ωcN

vcf→x
. (20)

Combining (19) and (20), we have the following equation

vcf→x
2+
(
ωcNσ

2
x −Kσ2

x − σ2
n

)
vcf→x−ωcNσ2

xσ
2
n = 0. (21)

The fix point is computed as the positive solution

vcf→x=
Kσ2

x−ωcNσ2
x+σ

2
n+

√
(ωcNσ2

x−Kσ2
x+σ

2
n )

2
+4Kσ2

xσ
2
n

2
.

(22)
When considering Gaussian sources, the global symbol belief
is also a Gaussian function whose variance v is calculated as

1

v
=

1

σ2
x

+
∑
c

ωcN

vcf→x
=

1

σ2
x

+

∑
c

2ωcN

Kσ2
x−ωcNσ2

x+σ
2
n+

√
(ωcNσ2

x−Kσ2
x+σ

2
n )

2
+4Kσ2

xσ
2
n

.

(23)

C. Partition Scheme of the Antenna Clusters

The variance of the symbol belief affects the convergence
rate of the proposed decentralized GMP detection. A smaller
variance results in a larger probability for the most probable
constellation symbol, which accelerates the convergence rate
of the symbol belief. We define the function f (x) as

f(x)=
2xN

Kσ2
x−xNσ2

x+σ
2
n+

√
(xNσ2

x−Kσ2
x+σ

2
n )

2
+4Kσ2

xσ
2
n

,

(24)

TABLE I
COMPUTATIONAL COMPLEXITY.

Algorithms Number of complex multiplications

GMP (6MTN + 8TN +N + 5M)K

LAMA (N + CT )K2 + (N + 5CMT + 2CT + 3C)K

MMSE 10
3
CK3 +

(
N + 7

2
C
)
K2 +

(
N + 13

6
C
)
K

MRC CK3 + (N + 3C)K2 + (N + 5C)K
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Fig. 3. Variance variation of symbol beliefs versus ω at SNR = 0 dB where
K = 16 and C = 3 with uniform partition.

where x ∈ [0, 1]. Note that f (x) is convex in x as the
second order derivative f ′′ (x) > 0. According to the Jensen
inequality, we obtain that

1

C

C∑
c=1

f (ωc) ≥ f

(
1

C

C∑
c=1

ωc

)
, (25)

where equality holds if ω1 = ω2 = · · · = ωC . This indicates
that the uniform partition results in the slowest convergence
rate of the symbol belief. From (25) we obtain

∑C
c=1 f (ωc) ≥

Cf (1/C ). We define the function g (x) = f (x)/x. Note that
g (x) is monotonically increased with the increase of x as the
first order derivative g′ (x) > 0. This indicates that a smaller
number of antenna clusters results in a faster convergence rate
of the symbol belief when using the uniform partition.

D. Computational Complexity Analysis
The computational complexity is analyzed in terms of the

required number of complex multiplications. The complexity
of the decentralized processing is NK +8TNK +6MTNK
while the centralized processing requires 5MK complex mul-
tiplications. The computational complexity of the proposed
decentralized GMP detection and the recently proposed de-
centralized algorithms is summarized in Table I.

IV. SIMULATION RESULTS

In this section, we evaluate the BER performance and com-
putational complexity of the proposed decentralized GMP de-
tection. The recently proposed decentralized LAMA, MMSE,
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Fig. 5. BER performance of detection algorithms where K = 8 and C = 3
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and MRC algorithms are compared as benchmarks. The BS is
equipped with N = 120 antennas. The convolutional code of
rate 1/2 is adopted. The maximum number of iterations for
the decentralized GMP and LAMA methods is set as T = 5.

Fig. 3 shows the variance variation of symbol beliefs versus
ω at SNR = 0 dB, where K = 16 and C = 3 with uniform
partition. This figure further illustrates that the uniform parti-
tion leads to the largest variances. Fig. 4 evaluates the BER
performance of the proposed decentralized GMP detection
with different antenna cluster partition schemes for C = 3.
The decentralized processing with nonuniform antenna cluster
partition outperforms the uniform counterpart and approaches
the centralized processing with acceptable performance loss.

To prove the efficiency of the proposed decentralized GMP
detection, the BER performance comparison with the state-of-
the-art decentralized algorithms is evaluated in equally-sized
antenna clusters which are desirable in practice as the uniform
partition minimizes the interconnect or chip input/output band-
width as well as the computational complexity per computing
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Fig. 6. BER performance of detection algorithms where K = 16 and C = 3
with uniform partition.

0 8 16 24 32 40 48 56 64
Number of users

0

0.5

1

1.5

2

2.5

3

3.5

N
um

be
r 

of
 c

om
pl

ex
 m

ul
tip

lic
at

io
ns

106

GMP
LAMA
MMSE
MRC

Fig. 7. Computational complexity comparison where C = 3 and QPSK.

fabric [2]. Fig. 5 and Fig. 6 illustrate that the proposed
decentralized GMP detection outperforms the other methods,
especially for high modulation order and large number of user.
For example, the decentralized GMP achieves gains of nearly
1.1 dB and 2.1 dB over the decentralized MMSE and LAMA
at BER of 10−3, respectively, for K = 16 and 16QAM.

Fig. 7 presents the complexity comparison which shows that
the proposed decentralized GMP detection behaves linear com-
plexity with the increase of user number. This indicates that the
implementation of the proposed algorithm exhibits hardware-
friendly complexity in the case of massive connection.

V. CONCLUSION

This paper proposed a novel decentralized GMP detection
for uplink massive MU-MIMO systems with DBP. The cen-
tralized processing executes the message fusion by gathering
the local messages propagated from each antenna cluster
in parallel. The convergence of the proposed algorithm is
characterized by state evolution under the assumptions of
large-system limit and Gaussian sources. We demonstrated
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that the nonuniform partition outperforms the uniform partition
for a fixed antenna cluster number. Simulation results showed
that the proposed decentralized GMP detection outperforms
the recently proposed methods and exhibits linear complexity.
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