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A Single-Layer 10-30 GHz Reflectarray Antenna
for the Internet of Vehicles

Long Zhang, Member, IEEE, Junxun Zhang, Yejun He, Senior Member, IEEE, Chunxu Mao, Member, IEEE,
Wenting Li, Sai-Wai Wong, Senior Member, IEEE, Peng Mei, and Steven Gao, Fellow, IEEE

Abstract—A novel ultra-wideband (UWB) reflectarray antenna
for the Internet of Vehicles (IoV) is introduced in this paper.
By simply connecting the neighboring reflectarray elements, the
proposed reflectarray antenna achieves a remarkable radiation
pattern bandwidth of 20 GHz, ranging from 10 GHz to 30 GHz.
To explain the operating principles of the proposed reflectarray
antenna, the equivalent circuit (EQC) model of the unit cell
is built, which also provides an efficient and rapid way to
analyze the performance of the proposed reflectarray element.
It is found from the EQC analysis that the connected elements
can achieve better reflection phase responses than conventional
separated elements, thereby improving the array bandwidth.
As a proof of concept, a 503-element reflectarray antenna
simultaneously covering the vehicle-to-satellite bands (12.25-12.75
GHz/14.0-14.5 GHz/19.6-21.2 GHz/29.4-31.0 GHz), the 24-GHz
short-range vehicle radar band (24.25-26.65 GHz) and the 5G
millimeter-wave band (27.5-28.35 GHz) is designed, fabricated,
and characterized. The experimental results demonstrate that
the presented reflectarray antenna can maintain undistorted
beams, high antenna gain, low cross-pol level, and moderate
aperture efficiency over a bandwidth of 100%, i.e., from 10
to 30 GHz. With its simple and planar aperture as well as
excellent performance, the proposed reflectarray antenna can
be a promising candidate for vehicles that require reliable high
data-rate satellite links and 5G millimeter-wave connections
simultaneously.

Index Terms—Internet of Vehicles (IoV), reflectarray antenna,
ultra-wideband (UWB) arrays.

I. INTRODUCTION

INTERNET of Vehicles (IoV) has drawn great attentions
from academic and industry because of its huge research

values and commercial interests over the past few years [1].
The development of the IoV can effectively alleviate or solve
various problems caused by the rapid growth of vehicles,
and greatly improves the transportation efficiency, safety and
intelligence level [2]. One of the key technologies for the
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Fig. 1. Demonstration of the different communication links for the IoV.

success of the IoV is building a reliable high-speed com-
munication system. Fig. 1 shows the different communication
links for the IoV. As can be seen, IoV uses a new generation
of information and communication technology to realize all-
round links including the vehicle-to-network (V2N), vehicle-
to-vehicle (V2V), vehicle-to-pedestrian (V2P), and vehicle-
to-infrastructure (V2I) [3]. To provide a safer and more
coordinated transportation network, additional communication
links can be used [4]. For example, satellite communication
has great potential in the application of the IoV due to the
advantages of wide coverage, bandwidth flexibility, and high
reliability [5]. Besides, the deployment of short-range vehicle
radars, and 5G communication systems on board of vehicles
also contributes to the functionality of IoV [6]. Short-range
vehicle radars can provide situational awareness by detecting
nearby objects in the form of distance, velocity and angle
information, which benefits vehicle safety for IoV [7]. Mean-
while, to enable high data rate for IoV, the 5G communication
systems play a pivotal role, which can improve the system
capacity, transmission scope, and spectrum efficiency [8]. As
these systems work at different frequencies, normally several
separate antennas need to be utilized for transmitting and
receiving signals for different systems. However, this brings
about several problems such as increased antenna blockage,
electromagnetic interference, and reduced system capacity [9].
To solve these problems, a broadband, high-gain, and shared
aperture antenna that can work at several frequency bands
simultaneously is highly desired.

Reflectarray antenna has proven to be a reliable candidate
for various applications due to their low profile, high gain,
low cost, and simplified feeding [10] and has already been
applied to automotive vehicles [11]. However, reflectarray
antennas generally have narrow bandwidth due to the inherent
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narrowband property of the elements and the differential
spatial phase delay. If an ultra-wideband (UWB) reflectar-
ray antenna can be realized, it would be a good candidate
for achieving multiple functions, such as short-range vehicle
radar, 5G mobile communication, and satellite communication,
within in one single radiating aperture [12], [13]. To improve
the bandwidths of the reflectarray antennas, various methods
have been proposed in recent years [14]–[17]. In [18] and
[19], the sub-wavelength unit cells were employed to broaden
the bandwidth of the reflectarray antennas. In [20]–[22], the
single-layer multi-resonance structures were used as the unit
cells to expand the gain bandwidth of the reflectarrays. The
multi-resonance unit cells can generate sufficient phase shift at
different frequencies, and thereby a reduced phase error was
achieved, resulting in an improved bandwidth.

As the bandwidths of the conventional reflectarray antennas
rarely exceed one octave, an alternative way to meet the
system requirement of multi-band operation is to employ the
multi-band reflectarray antennas [23]–[26]. There are several
methods that can be used to achieve a multi-band reflectarray
antenna, such as the adoption of sub-wavelength rectangular
grids at two bands [27], the Phoenix elements [28], the FSS
design techniques [29], and the unit cell with two equilateral
triangular patches of different sizes [11].

To date, there are few reported works focusing on reflectar-
rays that can support a multi-octave bandwidth. The concept
of tightly coupled dipole array (TCDA) was introduced in the
design of the reflectarray antenna in [30], which demonstrated
a breakthrough of 3:1 bandwidth for reflectarray design. How-
ever, non-planar array aperture and interleaved substrates are
used to implement the design concept, which results in rather
bulky and unreliable array configuration. In order to restore
the features of the planar array aperture, robust and reliable
array configuration, and low fabrication cost of the reflectarray,
it is highly desirable that the multi-octave bandwidth can be
achieved with a fully planar reflectarray aperture.

This paper proposes a fully planar, single-layer, linearly
polarized UWB reflectarray antenna that can cover the vehicle-
to-satellite bands (12.25-12.75 GHz/14.0-14.5 GHz/19.6-21.2
GHz/29.4-31.0 GHz), the 24-GHz short-range vehicle radar
band (24.25-26.65 GHz) and the 5G millimeter-wave band
(27.5-28.35 GHz), simultaneously. The proposed antenna can
be placed on the roof of the vehicles, similar to the scenario
introduced in [11]. To the best knowledge of the authors, this
is the first time that a single-layer reflectarray antenna can
provide continuous bandwidth coverage from the X-band to
the Ka-band with a single planar array aperture. Connected
dipole elements are used to constitute the proposed reflec-
tarray, which maintains undistorted beams and high antenna
gain from 10 GHz to 30 GHz. In addition, the equivalent
circuit (EQC) model of the unit cell is constructed to predict
the element performance quantitatively, which provides an
in-depth understanding of the antenna operating principles.
Furthermore, the phase errors caused by the phase center
variation of the feed horn and the differential spatial phase
delay are elaborately compensated to keep a good array
performance. With the merits of ultra-wide bandwidth, high
antenna gain, single-layer planar aperture, and low fabrication

(a) (b)

Fig. 2. Geometry of the proposed reflectarray unit cell. (a) Perspective view.
(b) Top view.

TABLE I
GEOMETRICAL PARAMETERS OF THE REFLECTARRAY UNIT CELL (UNIT:

MM)

w1 w2 r1 r2 dx dy h1 h2 d

0.2 0.1 2.1 1.75 6.8 3.9 0.813 2 0.2

cost, the proposed reflectarray antenna can be a promising
candidate for IoV application and 5G millimeter-wave con-
nections simultaneously. In this way, the vehicles can always
maintain a reliable link with the satellite, the 5G base stations,
and other vehicles.

The rest of this paper is organized as follows. The unit cell
design and analysis are presented in Section II. Section III
presents the design and analysis of the proposed reflectarray.
Simulated and measured results and comparisons with other
reported wideband reflectarrays are presented and discussed in
Section IV. Finally, a conclusion is drawn in Section V.

II. UNIT CELL DESIGN AND ANALYSIS

A. Geometry of the Reflectarray Unit Cell

The geometry of the proposed reflectarray unit cell is
illustrated in Fig. 2, which consists of an elliptical dipole, a
slot line, and a ground plane. The elliptical dipole and slot line
are printed on a 0.813 mm Rogers RO4003C substrate with
the relative permittivity and loss tangent of 3.55 and 0.0027,
respectively. By adjusting the length l of the slot line, different
phase shifts can be achieved. An air layer with a height of h2

is introduced between the substrate and the ground plane to
improve the bandwidth performance of the reflectarray. The
size of the unit cell is denoted by dx × dy. Good reflection
performance of the unit cell can be obtained within a wide
operating band by choosing an appropriate dy and h2. Notice
that there is no gap between the dipole end and the edge of
the substrate, the adjacent dipole elements of the proposed
reflectarray are thus directly connected with each other. With
this arrangement, the proposed reflectarray can achieve an
ultra-wide bandwidth, which will be discussed subsequently.

The geometrical parameters of the dipole unit cell are shown
in Table I. It is noted that the value of dy is chosen to be 3.9
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(a) (b)

Fig. 3. EQC models of the proposed reflectarray unit cell. (a) General EQC
model. (b) Simplified EQC model.

TABLE II
VALUES OF THE LUMPED CIRCUIT ELEMENTS

Ld Zsl Cd Cs R Cg

1.5451nH 175ohm 0.0112pF 0.0143pF 16ohm 0.01pF

mm for optimum unit cell performance, which is only 0.13λ
at 10 GHz.

B. Equivalent Circuit Analysis of the Unit Cell

In order to better understand the operating principles of the
proposed unit cell, an EQC model of the unit cell is established
and shown in Fig. 3(a). In the EQC model, the inductor Ld and
capacitor Cd in series are used to characterize the elliptical
dipole, where Ld is caused by the induced current on the
surface of the elliptical dipole. When the influence of the
supporting dielectric substrate is considered, a shunt capacitor
Cs is included to compensate the self-capacitance Cd [31].
The slot line is represented by an open-circuit transmission
line with the characteristic impedance Zsl and electrical length
θsl. In the EQC model, the resistor R is included to represent
the copper loss of the elliptical dipole and the dielectric loss
of the substrate. The numerical values of Ld, Cd, Cs, and R
in the equivalent circuit are individually calculated using the
cascaded transmission matrices approach reported in [32] and
[33]. It should be noted that the metallic ground plane is not
considered when determining the values of the components in
the EQC. In order to build a more accurate EQC model, the
capacitance effect between the elliptical dipole and the metallic
ground plane must be taken into consideration and thus a
shunt capacitor Cg is included. Besides, the Rogers RO4003C
substrate and the air layer are modeled by two transmission
lines, and their characteristic impedance Zd and electric length
θd can be calculated through the following formulas.

Zd =
Z0√
εrd

(1)

βd = k0
√
εrd (2)

θd = hdβd (3)

where the subscript d is replaced by 1 and 2 to represent
the substrate and the air layer, respectively. The characteristic

impedance of the free space is denoted by Z0, while k0 is
the free space wave number. The detailed values of each EQC
component are listed in Table II.

Based on the telegrapher’s equation [34], the EQC model
in Fig. 3(a) can be further simplified by replacing the trans-
mission line (Z1, θ1) with a series inductor L1 = µ0µrh1

and a shunt capacitor C1 = ε0εrh1/2 [35]. Notice that the
transmission line (Z2, θ2) is shorted by the ground plane, its
input impedance can be directly calculated and thus is not
replaced by inductors and capacitors for simplicity.

According to the transmission line theory [34], the input
impedance of the open-circuit slot line Zs and the grounded
air layer Zga can be individually expressed by

Zs = −jZsl cotβl (4)

Zga = jZ2 tanβ2h2 (5)

Fig. 3(b) shows the simplified EQC model, where Cp =
Cs‖Cd. As shown in Fig. 3(b), the EQC model of the unit cell
is mainly composed of three parts which are enclosed in the
three colored box. The circuit components in the red, green,
blue box are used to describe the characteristics of the elliptical
dipole and the slot line, the Rogers RO4003C substrate, and
the grounded air layer, respectively. According to the circuit
topology, the input impedance of the red colored part can be
calculated by

ZDipole = R+ jωLd + Zs +
1

jωCp

(6)

By connecting the input impedances of the three parts
together, the input impedance of the proposed unit cell can
be calculated as

ZRA =

{[(
R+ jωLd + Zs +

1

jωCp

)
‖

1

jωCg

]

+ jωL1

}∥∥∥∥∥ 1

jωC1

∥∥∥∥∥Zga

(7)

By denoting the input impedance in the complex form as
ZRA = RRA + jXRA, the reflection coefficient of the unit
cell can then be calculated by

Γ = |Γ|ej∠|Γ| =
ZRA − Z0

ZRA + Z0

r(ω, l) = 20 lg |Γ|

∠Γ = ϕ(ω, l) = arctan

(
2XRAZ0

R2
RA +X2

RA − Z2
0

) (8)

where r is the magnitude of the reflection coefficient, ϕ is the
phase of the reflection coefficient, ω is the angular frequency.
It is observed from (8) that both the magnitude and the phase
of the reflection coefficient depend on ω and l.

To explain why the connected element configuration is
selected in this work, Fig. 4 shows the reflection phase of
the unit cell with different element gaps (equals to 2d1). As
shown by the inset of Fig. 4, the distance between the dipole
tip and the unit cell boundary is denoted by d1. From Fig. 4, it
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Fig. 4. Calculated results of the reflection phase versus the slot line lengths l
at 28 GHz for different d1 of the element by the EQC model and the full-wave
simulation.
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Fig. 5. Calculated reflection phases against frequency for different slot line
lengths l by the EQC model and the full-wave simulation.

is observed that the decrease of d1 results in better reflection
phase response. When d1 = 0, the slope of the reflected phase

curve p =
∂ϕ(ω, l)

∂l
tends to be a nonzero constant, indicating

that the reflected phase curve becomes rather linear with the
increase of the slot line length l. The calculated results are
validated by the full-wave simulation, demonstrating that the
connected element arrangement (d1 = 0) can achieve a better
reflection phase response. It can be concluded from the EQC
analysis that the connected element decreases the element self-
inductance and increases the element self-capacitance. Conse-
quently, good element reflection performance is maintained
within an ultra-wide bandwidth.

C. Performance of the Reflectarray Unit Cell

The performance of the unit cell is evaluated by the EQC
model and then verified by the full-wave simulation using the
ANSYS HFSS. With the aid of the EQC model, the reflection
performance of the unit cell can be optimized efficiently. To
demonstrate the performance of the reflectarray unit cell, the
reflection phases of the unit cell against frequency for different
slot line lengths l are plotted in Fig. 5. As shown, the EQC
results agree well with the full-wave simulation results, which
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Fig. 6. Reflection magnitudes of the unit cell with different l.
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Fig. 7. Reflection magnitudes and phases of the unit cell under different
oblique incident angles at 20 GHz.

verify the validity and accuracy of the proposed EQC model.
Both the EQC results and the full-wave results demonstrate
that the unit cell can provide sufficient phase shift over a wide
frequency range. Fig.6 shows the reflection magnitudes of the
unit cell with different slot line length l. As shown in this
figure, the reflection loss is smaller than 0.5 dB over the whole
bandwidth when l is smaller than 1.5 mm. In other cases, the
average loss of the proposed unit cell is smaller than 1 dB.

Fig.7 shows the reflection magnitude and phase responses
of the unit cell under different oblique incident angles. As
shown in Fig. 7, the reflection magnitude variations are rather
small under oblique incidence with the incidence angle up to
30°. Considering that the maximum incident angle from the
horn to the aperture edge is smaller than 30°, the variation of
the reflection phase under oblique incidence is still acceptable
for most of the array elements.

III. REFLECTARRAY DESIGN AND ANALYSIS

A. Design of the Feed Antenna

To realize an UWB reflectarray, an UWB feed antenna
with stable phase center is required. In this work, a double-
ridged horn antenna (DRHA) is designed as the feed. The
configuration of the proposed DRHA is shown in Fig. 8. As
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(a) (b)

Fig. 8. Configuration of the DRHA. (a) Perspective view. (b) Side view.

TABLE III
PARAMETERS OF THE DRHA (UNIT: MM)

a1 b1 a2 b2 S1 S2 t

12.64 6.54 26.7 20.6 25 50 1.96

shown, two ridges are introduced to reduce the cut-off fre-
quency of the TE10 mode, thereby improving the bandwidth
of the horn antenna. By gradually increasing the ridge gap,
a broadband impedance matching is achieved. The detailed
geometry parameters of the DRHA are listed in Table III.
Using the computer numerical control (CNC) machining, the
DRHA is fabricated. The simulated and measured |S11| and
realized gains of the DRHA are shown in Fig. 9. As shown,
the feed horn can maintain |S11| <-15 dB from 10 GHz to 30
GHz. The measured realized gains are ranged from 10.14 to
17.16 dBi, which is reasonably consistent with the simulated
results.

Another issue to be concerned is the DRHA’s phase center,
which is changed with the frequency. To minimize the phase
errors, the position of the phase center p(x, y, z) of the feed
antenna is calculated using the following equation.

p(x, y, z) =

f2∑
f=f1

pf (x, y, z)

N
(9)

where pf (x, y, z) denotes the position of the phase center at
the frequency f and N is the number of sampling frequency
points from f1 to f2. By using the information of pf (x, y, z)
shown in Table IV, the phase center of the feed antenna can
be finally determined.

B. Equivalent Distance Delay for Ultra-wideband Phase
Compensation

The concept of equivalent distance delay has been pro-
posed in [30] and [36], which explains that the differential
spatial phase delay can be compensated appropriately in a
certain band if the calculated equivalent distance delay keeps
unchanged within the band. For a typical reflectarray, the
following equation can be used to calculate the required phase
distribution over the array aperture:

Φ (xi, yi) = −k0 sin θb (xi cos θb + yi sinϕb) +Rik0 (10)

where Φ (xi, yi) is the required phase shift of each reflectarray
unit cell, k0 is the wave number in free space, and (θb, ϕb)
is the beam direction of the reflectarray. The position of the
ith reflectarray element on the array aperture is denoted by
(xi, yi), and the distance between the element and the phase
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Fig. 9. Simulated and measured S11 and realized gains of the DRHA.
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Fig. 10. Calculated renormalized equivalent distance delay of the proposed
unit cell.

center of the feed antenna is Ri. In order to eliminate the
effects of the frequency, the equation (10) is divided by k0

and rewritten as

Φ (xi, yi) /k0 = − sin θb (xi cos θb + yi sinϕb) +Ri (11)

Let
d (xi, yi) = Φ (xi, yi) /k0 (12)

d′ (xi, yi) = d (xi, yi)− d (x1, y1) (13)

We could obtain

d′ (xi, yi) = − sin θb [(xi − x1) cos θb + (yi − y1) sinϕb]

+ (Ri −R1)
(14)

Here d (xi, yi) is named as the required equivalent distance
delay of the ith element, and d′ (xi, yi) is the renormalized
equivalent distance delay to the corner element. As d′ (xi, yi)
is independent of frequency, it can be used to compensate
the differential spatial phase delay of an UWB reflectarray
antenna.

The renormalized equivalent distance delay d′(l, f) pro-
duced by the proposed reflectarray unit cell at different fre-
quencies is also calculated according to (12) and (13), and
demonstrated in Fig. 10, where d′(l, f) = d(l, f) − d (l1, f),
l1 = 0 mm. Although the renormalized equivalent distance
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TABLE IV
POSITIONS OF THE DRHA PHASE CENTER AT DIFFERENT FREQUENCIES (UNIT: MM)

Frequency (GHz) 10 12 14 16 18 20 22 24 26 28 30

pf (x, y, z) (48.7,0,0) (48.3,0,0) (47.5,0,0) (47.0,0,0) (48.6,0,0) (47.9,0,0) (46.9,0,0) (44.6,0,0) (44.7,0,0) (44.8,0,0) (40.7,0,0)

Fig. 11. Configuration of the proposed reflectarray antenna.

(a) (b)

Fig. 12. Calculated element information across the array aperture. (a)
equivalent distance delay for each element. (b) length of the slot line for
each element.

delay of the proposed unit cell are not completely overlapped
at different frequencies, the deviation is very small, indicating
that the proposed element can satisfy (14) within an ultra-wide
frequency range.

To minimize the phase errors over an ultra-wide frequency
band, second-degree polynomial curve fitting in a least-squares
sense is used to determine the design function of d′(l) for the
reflectarray, which is derived as follows:

d′(l) = −0.0648× l2 − 2.5379× l + 0.5572 (15)

The curve of d′(l) versus l is also included in Fig. 10
and denoted by hollow dots. By using the d′(l) to design
the reflectarray, reduced phase error can be obtained over an
ultra-wide bandwidth. Therefore, the function d′(l) is used to
calculate the length l of the slot line of each reflectarray unit
cell.

C. Design of the Reflectarray Antenna

As a proof of concept, a primary-fed reflectarray antenna
with a diameter of 129 mm is designed by using the pro-

(a) (b)

Fig. 13. Prototype of the proposed reflectarray. (a) Perspective view. (b) top
view of the array aperture.

Fig. 14. Measurement setup of the proposed reflectarray.

posed reflectarray unit cell. The configuration of the proposed
reflectarray antenna is shown in Fig. 11. As shown, 503
connected dipole elements are printed on the top-layer of the
supporting substrate. An inset of the array aperture details the
connection of neighboring elements. The distance between the
array aperture and the DRHA aperture (denoted by F2) is
115.5 mm, while the distance between the phase center of
the DRHA and the array aperture (denoted by F1) is 119 mm,
leading to a focus/diameter (F/D) ratio of 0.92. With this F/D
ratio, a proper illumination is realized and the average aperture
efficiency (AE) can be improved.

The required renormalized equivalent distance delays of
all reflectarray elements are calculated according to (14) and
shown in Fig. 12(a). Accordingly, the required lengths of the
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Fig. 15. Simulated and measured normalized radiation patterns of the proposed reflectarray antenna. (a) 10 GHz. (b) 14 GHz. (c) 18 GHz. (d) 22 GHz. (e)
26 GHz. (f) 30 GHz.

slot lines are calculated via (15) and shown in Fig. 12(b). With
this information, the array can be finalized.

IV. RESULTS AND DISCUSSION

To verify the design concept, the proposed reflectarray
antenna is prototyped and fabricated, as shown in Fig. 13. A
CNC machined DRHA is placed above the array aperture with
the support of three plastic pillars. The radiation performance
of the reflectarray is measured in an anechoic chamber, with
the measurement setup shown in Fig. 14.

A. Radiation Patterns

The simulated and measured normalized radiation patterns
are shown in Fig. 15. To fully demonstrate the UWB perfor-
mance of the proposed reflectarray, the radiation patterns are
provided with a frequency step of 4 GHz. As shown, a linearly
polarized well-shaped pencil beam directed in the broadside
direction is obtained from 10 to 30 GHz. Within this frequency
range, the radiation patterns are not distorted and good cross-
pol performance is achieved. Although the proposed antenna
is linearly polarized, a circularly polarized counterpart may be
realized with increased complexity and cost.

The measured cross-pol levels are around -25 dB over most
of the operating bands except for the low frequency region (10
GHz). It is also noted that the simulated cross-pol levels in the
E-plane are rather low (<-40 dB) and thus are not shown in
most of the figures. The reason for the low cross-pol levels in
the E-plane is mainly attributed to the pure reflected electric
fields along the direction of dipole elements (y-direction),
which is caused by the connected-element configuration. This
kind of element arrangement imitates the Munk’s current sheet
array [37], and thus continuous current is maintained along
y-direction, leading to a pure radiation in y-direction. As the
element is separately placed along x-direction, discrete current
distribution occurs along this direction and higher cross-pol
level than that in the E-plane is resulted in the H-plane (xz-
plane). The rise of the measured cross-pol levels is due to the
fabrication errors of the feed horn and the scattering of the
cables.

The sidelobe level (SLL) is around -10 dB over majority of
the bandwidth and reaches -15 dB in the middle of the band.
The relatively high sidelobe level is mainly due to the phase
errors over the array aperture, measurement errors, fabrication
errors of the feed horn, and the scattering from the feed horn
fixture and the measurement cables. With focusing on the
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TABLE V
COMPARISON OF THE PROPOSED REFLECTARRAY WITH OTHER REPORTED WIDEBAND REFLECTARRAY DESIGNS

Reference
No. Bandwidth

Aperture Size
(mm)(electrical
size at center

freq.) and Shape

Aperture
Profile (mm)

(electrical size
at center freq.)

Fabrication
and

Assembling
Difficulty

Measured
Peak
Gain
(dBi)

Measured
Peak
AE
(%)

Average
AE
(%)

Average
Cross-Pol

Level
(dB)

Bandwidth
Improvement

Method

[15]
1-dB gain: 12.94%

(39.5-45 GHz)
Φ140.4(19.89λ),

Circular 1.016(0.14λ) Moderate 32.83 51.18 44 -30.1
Using substrate

integrated coaxial
true-time delay lines

[16]
3-dB gain: 38.5%
(9.24-13.64 GHz)

Φ266(8.87λ),
Octagonal 2.8(0.11λ) Simple 26 50 - -26 Spiral-shaped phase

delay lines

[17]
3-dB gain: 37.4%

(8.7-12.7 GHz)

288 ×
288(9.6λ×

9.6λ), Square
5.1(0.18λ) Simple 24.2 20 17 -20

Exploiting the
polarization rotating

unit cell

[24]∗

3-dB gain: 33%
(6.85-9.55
GHz)/30%

(11.22-15.18 GHz)

Φ250(9.6λ/11λ),
Circular 6.813(0.19λ/0.3λ) Simple 23.4/25.7 46.7/33 - -25 Multi-resonance

element

[27]∗

1.5-dB gain: 24%
(10.7-12.7
GHz)/21%

(12.7-14.7 GHz)

408 ×
399(15.91λ×

15.56λ/18.63λ×
18.22λ),

Rectangular

2.2(0.09λ/0.1λ) Simple 31.8/32.1 48/38 - -27
Using the

subwavelength
patch element

[30]

Stable radiation
pattern: 103%
(3.4-10.6 GHz)

210 ×
210(4.9λ×

4.9λ), Square
34.8(0.812λ) Complex 22.6 38 25 -20 Tightly coupled

element

This
work

Stable radiation
pattern: 100%
(10-30 GHz)

Φ129(8.6λ),
Circular 2.813(0.187λ) Simple 27.51 43.8 32 -25 Connected planar

dipole element

∗Dual-band reflectarray.

main beam performance and the cross-pol levels, the proposed
reflectarray antenna can generally maintain a stable radiation
pattern and achieve an average cross-pol level of -25 dB within
a 3:1 bandwidth.

B. Realized Gain and Aperture Efficiency

The simulated and measured realized gains and aperture
efficiencies of the proposed reflectarray are shown in Fig.
16. It is observed that the simulated and measured realized
gains generally enhance with the increase of frequency. The
simulated gain varies from 15.65 to 27.12 dBi, while the
measured gain ranges from 14.11 to 27.51 dBi in the operating
band. The measured peak gain of 27.51 dBi is achieved at the
frequency of 26 GHz.

As shown in Fig. 16, the maximum AE is 43.8% at 26
GHz based on the measurement result and 49.8% at 22 GHz
according to the simulation result. By averaging the measured
AE with a frequency step of 1 GHz, the measured average
AE of the proposed reflectarray is about 32% from 10 to
30 GHz. It is noticed that the AE is relatively low at the
lower and upper band. Generally, there are two reasons for
this phenomenon. The first one is that the phase errors over
the aperture at these two frequency bands are larger than that
of the middle frequency band. Another factor rests on the
spillover and inefficient illumination effect occurred at the
edge frequencies, which is caused by the varied beamwidth
feature of the feed horn over the ultra-wide bandwidth. The
discrepancies between the simulation results and measurement
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Fig. 16. Simulated and measured realized gains and aperture efficiencies of
the proposed reflectarray.

results are due to the fabrication errors of the DRHA, the
assembly errors of the antenna, and measurement errors.

C. Comparison With Other Wideband Reflectarrays

To demonstrate the merits of our work, Table V provides
a comprehensive comparison between our work and other
latest reported wideband reflectarray antennas in terms of
array bandwidth, aperture size, aperture height, fabrication
and assembly difficulty, peak gain, peak aperture efficiency,
average aperture efficiency, average cross-pol level, and the
bandwidth improvement method. It should be mentioned that
the bandwidth definitions used in these works are not exactly
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the same. From the Table V, it is noted that the fractional
bandwidth of the proposed reflectarray is 100%, i.e., from 10
to 30 GHz, which is much wider than other works except
for [30]. Compared with the design in [30], this work shows
higher aperture efficiency and antenna gain, lower cross-
pol level, and much simpler configuration. In addition, the
aperture profile of the presented work is only about one
fifth (0.187λ/0.812λ) of that in [30]. Moreover, the single-
layer fully planar array aperture not only greatly reduces the
fabrication difficulty and cost but also notably improves the
reliability and robustness of the whole reflectarray system.

V. CONCLUSION

In this paper, a novel UWB reflectarray antenna for IoV
application has been presented. The presented reflectarray
works from 10 GHz to 30 GHz with stable radiation pattern
and high antenna gain, thus can cover the vehicle-to-satellite
bands (12.25-12.75 GHz/14.0-14.5 GHz/19.6-21.2 GHz/29.4-
31.0 GHz), the 24-GHz short-range vehicle radar band (24.25-
26.65 GHz), and the 5G millimeter-wave band (27.5-28.35
GHz), simultaneously. Moreover, the proposed reflectarray can
also achieve an average aperture efficiency around 32% and
a cross-pol level of -25 dB across the whole bandwidth. All
these merits are achieved by a single-layer fully planar aperture
which is comparable to conventional reflectarrays in terms of
fabrication complexity and cost. In addition, the equivalent
circuit method is proposed to predict the element perfor-
mance quantitatively, which helps reveal the antenna operating
principles and facilitates the array design. With its ultra-
wide bandwidth, high antenna gain, low cross-pol level, and
low fabrication complexity and cost, the proposed reflectarray
antenna would be a promising candidate for IoV application
and 5G millimeter-wave connections simultaneously.
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