
Communication Scheduling by Deep Reinforcement Learning for Remote
Traffic State Estimation with Bayesian Inference

Downloaded from: https://research.chalmers.se, 2024-04-24 12:58 UTC

Citation for the original published paper (version of record):
Peng, B., Xie, Y., Seco-Granados, G. et al (2022). Communication Scheduling by Deep
Reinforcement Learning for Remote Traffic State Estimation
with Bayesian Inference. IEEE Transactions on Vehicular Technology, 71(4): 4287-4300.
http://dx.doi.org/10.1109/TVT.2022.3145105

N.B. When citing this work, cite the original published paper.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)



1

Communication Scheduling by Deep Reinforcement
Learning for Remote Traffic State Estimation with

Bayesian Inference
Bile Peng, Member, IEEE, Yuhang Xie, Gonzalo Seco-Granados, Senior Member, IEEE,

Henk Wymeersch, Senior Member, IEEE, and Eduard A. Jorswieck, Fellow, IEEE

Abstract—Traffic awareness is the prerequisite of autonomous
driving. Given the limitation of on-board sensors (e.g., precision
and price), remote measurement from either infrastructure or
other vehicles can improve traffic safety. However, the wire-
less communication carrying the measurement result undergoes
fading, noise and interference and has a certain probability of
outage. When the communication fails, the vehicle state can only
be predicted by Bayesian filtering with a low precision. Higher
communication resource utilization (e.g., transmission power)
reduces the outage probability and hence results in an improved
estimation precision. The power control subject to an estimate
variance constraint is a difficult problem due to the complicated
mapping from transmit power to vehicle-state estimate variance.
In this paper, we develop an estimator consisting of several
Kalman filters (KFs) or extended Kalman filters (EKFs) and
an interacting multiple model (IMM) to estimate and predict
the vehicle state. We propose to apply deep reinforcement learn-
ing (DRL) for the transmit power optimization. In particular,
we consider an intersection and a lane-changing scenario and
apply proximal policy optimization (PPO) and soft actor-critic
(SAC) to train the DRL model. Testing results show satisfactory
power control strategies confining estimate variances below given
threshold. SAC achieves higher performance compared to PPO.

Index Terms—Autonomous driving, Bayesian filtering, inter-
acting multiple model, resource allocation, power control, deep
reinforcement learning, proximal policy optimization, soft actor-
critic.

I. INTRODUCTION

AWARENESS of the traffic state (i.e., positions and ve-
locities of surrounding vehicles) is the prerequisite for

autonomous driving [1], which is usually enabled by either
onboard sensors of vehicles or sensors on a road-side unit
(RSU) as infrastructure. However, they are inherently limited
by measurement accuracy, cost, and range. For example, radar
and camera in bad weather have high measurement noise.
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Lidar provides a high measurement accuracy but the cost limits
its application. Besides, onboard sensors are often blocked
by surrounding vehicles and cannot measure vehicles behind
the blockage. These problems can be solved to a large extent
by remote measurement and vehicular communication, where
vehicles or RSU transmit the estimated traffic state to other
vehicles with wireless communication [2]. In this way, a high-
cost Lidar can be equipped on an RSU, which broadcasts the
traffic state to all nearby vehicles. The RSU can be installed
on a high place (such as on the traffic light) and a vehicle can
transmit the traffic state estimates (either of itself or of adjacent
vehicles) obtained by its own sensors to other vehicles. In
this way, problems of unfavorable sensing conditions, e.g.,
blockage, can be relieved. Furthermore, the received estimates
from the RSU can also be combined with measurements by
the on-board sensors (if available) for better precision or richer
details.

However, the wireless communication cannot be assumed
always reliable. When the communication fails, the traffic state
can only be predicted using previous estimates. Besides, the
inherent measurement noise is also a constraint that needs to
be addressed. Due to the relatively tractable dynamics of traffic
state, the Bayesian filter is widely applied for state estimation
and prediction. In particular, Kalman filter (KF) and extended
Kalman filter (EKF) are popular because of the optimality of
the KF given a linear system dynamics and a good compromise
between complexity and performance of the EKF given a
nonlinear system dynamics.

Bayesian inference, remote estimation and corresponding
communication scheduling have been widely studied for var-
ious applications. For example, the Cramér-Rao lower bound
(CRLB) was derived in the vehicular context in [3]. The vehi-
cle movement is modeled with Bayesian approaches in [4]–[6].
The problem of estimation over lossy network is addressed in
[7]–[9]. Communication scheduling is optimized for Bayesian
inference with remote measurement in [10]–[16]. Distributed
sensor fusion over lossy channels is discussed in [17], [18].
As a relevant topic, the metrics age of information (AoI)
and value of information (VoI) are optimized in [19]–[23].
In these works, the estimation with irregular measurements
has been well discussed but the lossy communication network
is either assumed given (e.g., [7]–[9], [17], [18]) or the
optimization is naive and empirical (e.g., [10]–[13]) or is
derived for simple scenarios and the solution is given as a
closed-form solution [14], [15]. For nonstationary vehicular
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environment, an empirical solution might be highly suboptimal
and an analytical solution is difficult or impossible to obtain.
To the best of our knowledge, the above-mentioned problem
in a complicated nonstationary environment remains open.
Machine learning is a suitable tool to handle such extremely
difficult problems. Machine learning has been widely ap-
plied for communication system optimization [24]. Since we
consider an optimization problem in a dynamic process, the
communication in current time step impacts the estimation
precision not only in current time step, but also in time steps
in near future, the deep reinforcement learning (DRL) [25]
is a good candidate as a solution. It optimizes a sequence of
actions in a dynamic environment such that the sum of rewards
over time is maximized. In recent years, DRL has been applied
to resource allocation [26]–[29], signal processing [30], [31]
and has achieved good results when an analytical approach is
impossible.

In this paper, we present a traffic state estimator in nonsta-
tionary traffic environments with remote source, we formulate
the problem of transmission power control optimization, we
define the corresponding reinforcement learning (RL) environ-
ment, and finally we train a policy with state-of-the-art DRL
algorithms. This paper in also an early contribution to realize
the vision of semantic communication [32], which does not
only optimize the communication performance (e.g., data rate,
delay and outage probability), but also considers the utility
tasks of the receiver (i.e., vehicles near the RSU) brought
by the received information (i.e., estimation precision in our
application). This is a difficult problem because it requires
the interdisciplinary consideration of both communication and
estimation, and its formulation is usually too complicated to
solve analytically. In recent years, the semantic communication
has been considered in a Bayesian game in [33]. Network
optimization based on value of information has been consid-
ered in [34]. Joint communication, computation, caching and
control for edge computation has been studied in [35]. To
the authors’ best knowledge, joint consideration of estimation
and communication in context of transportation safety and
automation is still an open problem. This is the objective of
this paper. Our specific contributions are:

• We extend the standard KF, EKF and interacting multiple
model (IMM) to cases with and without measurements.
If measurements are available, the standard filtering (pre-
dicting and updating) is applied. If measurements are not
available due to failed communication, we do predictions
until measurement is available again.

• We develop a problem formulation to minimize radio
resource utilization while keeping the expected estimation
precision at the other vehicles better than a threshold
without feedback from them. Resource allocation without
feedback is advantageous because of two reasons: firstly,
it entails lower communication load since no feedback is
required; and secondly, similar to the transmission from
the RSU to the receivers, the feedback is not always
reliable either and resource allocation without feedback
has to be addressed anyway. Assuming the unfavorable
Rayleigh fading channel, the worst case is considered

without knowledge of the actual channels to the receivers.
• We use the posterior estimates to simplify the problem

formulation, which considers all possibilities (whether
the transmissions are successful or not, called histories
later in the paper) at the receivers, whose probabilities
are determined by the transmit powers in the past. By
transmitting posterior estimates instead of raw measure-
ments, the number possible histories is greatly reduced
from 2T to T where T is the total number of time steps.
The problem becomes then feasible.

• We apply the state-of-the-art DRL algorithms proximal
policy optimization (PPO) and soft actor-critic (SAC) to
solve the problem, which are able to minimize the sum
of transmit powers while keeping the estimation precision
above a given level. We show that even with the worst
case assumption of Rayleigh fading channels, the sum of
transmit powers computed with the DRL algorithms is
still significantly lower than constant transmit powers.

The remaining part of the paper is structured as follows:
Section II formulates the problem, Section III describes the
communication model, Section IV explains the involved RL
techniques and defines the RL environment. Training and
evaluation results will be presented in Section V and the
conclusion will be drawn in Section VI.

Notation: Throughout this paper we use the following
notations: N (µ,Σ) denotes the Gaussian distribution with
expectation µ and covariance matrix Σ. (·)T denotes the
transpose operator. N (z;µµµ,σσσ2) denotes the probability density
of z given Gaussian distribution N (µ,Σ). E(·) denotes the
expectation operator. DKL(A||B) denotes the Kullback–Leibler
(KL)-divergence between distributions A and B. Indicator
function I(c) is 1 if condition c is true and 0 otherwise.
N (z;µµµ,σσσ2) denotes the probability density at z given the
normal distribution with expectation µµµ and variance σσσ2,
N (z;µµµ,σσσ2) = exp(− 1

2 (z− µ)Tσ−2(z− µ))/
√

(2π)k|σ|2,
where k is the dimension of z.

II. MODEL AND PROBLEM FORMULATION

The vehicle state and its predictability depend on the
environment. In this study, we consider two typical traffic
environments with varying vehicle state dynamics and there-
fore challenging predictability: an intersection and a multi-lane
highway, as shown in Fig. 1. In the intersection, the vehicle
uses the rightmost lane and can either go straight or turn right.
On the highway, the vehicle is initially on the middle lane
and can either keep the lane or change to left or right lane
at any location. Since the vehicles are not controlled by the
RSU, which measures the vehicle states, controlling inputs
[36, eq. (1.1)] are neglected and the different possible driving
maneuvers are modeled by the IMM available at both RSU
and receiving vehicles, as will be described in the next section.
Vehicles are not assumed to have any sensors.

We consider one vehicle of this paper. Estimating states
of multiple vehicles can be done with multiple target track-
ing [37] and communication of multiple vehicles’ state es-
timates can be done using different resource blocks. Joint
scheduling and estimation optimization of multiple vehicles
is therefore a straightforward extension of the current paper.
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RSU

(a) Intersection

RSU

(b) Lane changing

Fig. 1. Considered scenarios. In the intersection scenario, a vehicle (yellow)
on the rightmost lane can either go straight or turn right. In the multi-lane
highway scenario, a vehicle (yellow) on the middle lane can keep lane, change
to the left or right lane at any place. The RSU measures and estimates the
state of the yellow vehicle and transmits it to the adjacent traffic participants
(gray) who are interested in the state of the yellow vehicle.

A. Vehicle Dynamics

Below we describe the vehicle dynamics, as modeled at the
RSU or the vehicles. We define the vehicle state at time step t
as xt = (px,t, py,t, vx,t, vy,t) with (px,t, py,t) and (vx,t, vy,t)
being position and velocity of the vehicle at time step t,
respectively, where x is the coordinate in direction from west
to east and y is the coordinate in direction from south to north.
In general, the vehicle dynamics is described by

xt = f(xt−1) + wt, (1)

where f is a general nonlinear function of system dynamics
reflecting possible driving maneuvers, e.g., straight driving,
accelerating, decelerating or turning, wt ∼ N (0,N) is the
inherent randomness of the process and is assumed normally
distributed with expectation 0 and covariance matrix N. In
the following we choose straight driving and turning as two
examples of f . It is to note that the set of system dynamics
models can be generalized to include other possible driving
behaviors.

1) Straight Driving: Given the state xt−1 at time step t−1
and assuming the vehicle is going straight with a constant
velocity, the state xt at time step t is

xt = Fxt−1 + wt, (2)

where F is a linear state-transition matrix as a concrete
realization of f in (1), which is defined as

F =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 ,

where ∆t is the time difference between two adjacent time
steps.

2) Turning: When the vehicle is turning with velocity
direction change of ∆θ between time step t− 1 and time step
t, the state-transition function is nonlinear and the velocity at
time step t is

vx,t = vx,t−1 cos(∆θ)− vy,t−1 sin(∆θ) + wvx,t (3)
vy,t = vx,t−1 sin(∆θ) + vy,t−1 cos(∆θ) + wvy,t (4)

where (wvx,t, wvy,t)
T ∼ N (0,Nv) is the normally distributed

perturbation of velocity with expectation 0 and covariance
matrix Nv . The position at time step t is(

px,t
py,t

)
=

(
px,t−1

py,t−1

)
+ ∆t ·

(
vx,t
vy,t

)
+ wp,t, (5)

where wp,t ∼ N (0,Np) is the normally distributed pertur-
bation of position with expectation 0 and covariance matrix
Np

1. If the vehicle turns right, we only need to set ∆θ to a
negative value. In the intersection scenario, the vehicles either
goes straight all the time or goes straight and turns right in
the intersection by 90 degree and goes straight again. In the
lane changing scenario, the vehicle either goes straight all the
time, or first turns left and then turns right (to change to the
left lane), or first turns right and then turns left (to change to
the right lane) at a random position.

B. Sensing Model

We consider sensing of the vehicle state at the RSU. Assum-
ing a general nonlinear measurement model, the measurement
at time t is

zt = h(xt) + vt, (6)

where h is the measurement model and vt ∼ N (0,Rt) is
the normally distributed measurement noise, with Rt being
the covariance matrix of measurement noise at time step
t. Based on these measurements, the RSU runs a tracking
method. In this work, we apply KF, EKF and IMM for this
purpose. Their standard formulation is briefly presented in
the appendices. The IMM which provides the current state
estimate x̂IMM

t with the associated covariance PIMM
t . The block

diagram of the estimator in one time step is shown in Fig. 2.
The model probabilities {µit|t}

N
i=1, state estimates {x̂it|t}

N
i=1

and covariance matrices {Pi
t|t}

N
i=1 (i.e., the input of Fig. 2(a))

are transmitted from RSU to adjacent traffic participants after
the estimation, where N is the number of models in IMM.
Note that the estimator can operate both with and without
measurements. In the latter case, which will be relevant to the
vehicle receiver, we perform an open loop prediction, which is
equivalent to assuming an infinite measurement noise variance.

C. Communication and Information Model

The RSU computes the posterior estimate of the vehicle
state and broadcasts it via wireless communication. The re-
ceiving vehicle do not measure the target vehicle’s state but
can do prediction without measurement (i.e., without (29) and
(32)) if the transmission of RSU’s estimate fails. Hence, both
the vehicle and the RSU run tracking methods with different
information models
• Receiving vehicle is equipped with an estimator without

updating with measurement, which is shown in Fig. 2(a).
It does not do measurement but knows the history of
successful transmissions ht = (c0, c1, . . . , ct), where
ck ∈ {0, 1} indicates whether or not a downlink packet

1Note that we apply the discrete EKF [36], which assumes constant velocity
in a time step. In reality, this velocity can be the mean velocity in the time
step such that the error caused by the approximation is minimized.
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calculation

Mixing

{µjit−1|t−1}
N
i=1

{µit−1}Ni=1
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x̂1
t−1

P̂1
t−1

x̂Nt−1

P̂N
t−1

Model 1:
prediction

x̂01
t−1|t−1

P01
t−1|t−1

Model N :
prediction

x̂0N
t−1|t−1

P0N
t−1|t−1

Output estimate

{µit|t−1}
N
i=1

x̂1
t|t−1, P1

t|t−1

x̂Nt|t−1, PN
t|t−1

x̂IMM
t|t−1, PIMM

t|t−1

. . . . . . . . .

(a) Without measurement (for receiving vehicles to predict state without measurement if communication fails
and for RSU to estimate the estimation variance of receiving vehicles which experience communication failure)

Mixing
probability
calculation

Mixing

{µjit−1|t−1}
N
i=1

{µit−1}Ni=1
Model probability

calculation

zt

x̂1
t−1

P̂1
t−1

x̂Nt−1

P̂N
t−1

Model 1:
prediction

x̂01
t−1|t−1

P01
t−1|t−1 Model 1:

update

x̂01
t|t−1

P01
t|t−1

zt

Model N :
prediction

x̂0N
t−1|t−1

P0N
t−1|t−1 Model N :

update

x̂0N
t|t−1

P0N
t|t−1

zt

Output estimate

{µit|t}
N
i=1

x̂1
t|t, P1

t|t

x̂Nt|t, PN
t|t

x̂IMM
t|t , PIMM

t|t

. . . . . . . . . . . .

(b) With measurement (for RSU to estimate the target vehicle’s state)

Fig. 2. Block diagram of IMM in one time step. At the beginning of each time step, the mixing probabilities are computed with (35) (block “mixing probability
calculation”). The mixed state estimates and estimate variances are computed with (36) and (37), respectively, for each model (block “mixing”). After that,
prediction and prior variance are computed with (27) and (28), or (33) and (34), respectively, depending on whether KF or EKF is applied (block “model
n: prediction”). If measurement is available, the estimates and the variances are updated with the measurement with (29) and (32), respectively, for each
model (block “model n: update”). The model probabilities are updated with (39) or (38), for cases without and with measurement (block “model probability
calculation”). Finally, the output estimate and variance of IMM is computed with (40) and (41), respectively (block “output estimate”). This figure is based
on Figure 1 in [38], which only considers IMM with measurement.

was received. The estimation is done with measurement if
the transmission is successful or as open loop prediction
otherwise. Therefore, the estimate at the vehicle of the
state at time t x̂IMM

t and the associated covariance PIMM
t

depend on ht and are therefore denoted as x̂IMM
t (ht) and

PIMM
t (ht), respectively.

• RSU has access to all measurements and runs multiple
estimators (Fig. 2(a) and Fig. 2(b)) with all possible
histories to estimate all possible PIMM

t (ht) at the re-
ceivers. Besides, the RSU also estimates the probabilities
of the histories with its transmit powers based on the
worst case fading channel assumption with the highest
communication outage probability. Because history ht
depends on the transmit power (P1, . . . , Pt) where Pt
is the transmit power at time step t, we denote the
history as ht(P1, . . . , Pt). In this way, it can compute

the upper bound of Eht

(
PIMM
t (ht(P1, . . . , Pt))

)
without

feedback from the vehicles because Eht

(
PIMM
t (ht)

)
is

an increasing function of the outage probability.
The process described above is illustrated in Fig. 3.

D. Problem Statement

As was described, if the transmission is successful, the
vehicle receives an estimate with a high precision, otherwise
it can only predict the current state with a lower precision. In
some cases (e.g., when the vehicle goes straight outside the
intersection), its state is relatively predictable and it is expected
that the transmission power can be kept low. The state becomes
highly unpredictable when the vehicle is in the intersection
without an unambiguous trend whether it is going straight or
turning right (in the first scenario) and the vehicle changes
lane (in the second scenario). Our objective is to optimize the
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Transmit power

Communication
outage probability

Transmission successful?

Actual channel of
current receiver

PIMM
t|t (low

estimate variance)

Yes: receive estimate with
update by measurement
(Fig. 2(b)) computed in the
RSU

PIMM
t|t−i(i > 0, high

estimate variance)

No: estimate with estimator
without update by mea-
surement (Fig. 2(a))

(a) At the traffic participants: the transmission power determines whether
the transmission is successful. The outage probability is determined by
the transmit power and the actual channel for the current receiver (which
is different from user to user). If the transmission is successful, traffic
participants receive the estimate with low variance, otherwise they predict
the state without measurement with high variance.

Probability
of history 1

History 1 (h(1)
t )

PIMM
t

(
h

(1)
t

)

Estimator of vehicle state.
Choice between without
measurement (Fig. 2(a))
or with measurement
(Fig. 2(b)) depends on h

(1)
t

...

Probability
of history n

History n (h(n)
t )

PIMM
t

(
h

(n)
t

)

Estimator of vehicle state.
Choice between without
measurement (Fig. 2(a))
or with measurement
(Fig. 2(b)) depends on h

(n)
t

Communication
outage

probabilities

Transmit
power

Worst case
channel model

Eht

(
PIMM
t

)

(b) At the RSU: the transmission power of the RSU determines the com-
munication outage probability. Since we do not know the channel to the
receiving vehicles, we assume the worst case channel model, which has the
highest possible outage probability among all channels in the area of the
RSU’s responsibility. The outage probabilities determine the probability of
each possible history (denoted by the superscript i). The sum of the estimate
variances weighted by the probabilities of histories is the expected estimate
variance at the traffic participants.

Fig. 3. Work flows of receiving vehicles and the RSU.

communication, such that the expected estimate variance at
the receiving vehicles is below a given threshold to ensure
a certain safety level while minimizing the sum of transmit
powers. The problem can be formulated as

min
P1,...,PT

T∑
t=1

Pt

s.t. tr
(
Eht

(
PIMM
t (ht(P1, . . . , Pt))

))
< pth,

(7)

where Pt is the transmit power at time step t, T is the horizon
(i.e., the maximum time step where the vehicle is in the
responsible range of the RSU) and pth is the threshold that
should not be violated. The complicated relation between Pt
and PIMM

t will be presented in Section III.

III. TRANSMISSION IN UNRELIABLE CHANNEL AND
CONSIDERATION OF MULTIPLE HISTORIES

A. Transmission in an Unreliable Fading Channel

We assume vehicles with autonomous driving or driving
assistance systems are able to use the IMM estimator to predict
and estimate states of surrounding vehicles with estimates
transmitted from the RSU (i.e., outputs of Fig. 2). The trans-
mission is over a fading channel and the channel capacity is
a random variable depending on the channel gain. Therefore,
there is a certain outage probability (i.e., the probability that
the transmission fails), which is computed as

pout
t = P

(
R > W log2

(
1 +
|g|2Pt
WN0

))

= Fg

√(2R/W − 1
)
WN0

Pt

 ,

(8)

where g is the randomly distributed channel gain, Fg is the
cumulative distribution function (CDF) of random variable g,
R is the required data rate and W is the bandwidth (both
assumed to be constant for simplicity), Pt is the transmission
power, N0 is the noise power spectrum density per Hertz.

If Fg is a monotonically increasing function (which is
usually this case with conventional distributions of fading
channels), when we increase Pt, pout

t will decrease and the
traffic participants have a higher probability to receive the
posterior estimate, which leads to a lower estimate variance.
Until now we have completed the description of relationship
between Pt and PIMM

t .
The choice of the distribution and the associated parameters

should be determined by on-site measurement and reflect the
worst case in the area of the RSU’s responsibility, i.e., the
actual outage probability at any position in the area of the
RSU’s responsibility cannot be higher than pout

t computed in
(8).

B. Consideration of Multiple Histories

Problem (7) requires the expectation of PIMM
t . From the

above sections we know that x̂IMM
t and PIMM

t depend on which
measurements are available and are denoted as x̂IMM

t

(
h

(i)
t

)
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and PIMM
t

(
h

(i)
t

)
, respectively, where i is the index of the

possible history. The probability of h
(i)
t is

p
(
h

(i)
t

)
=

t∏
k=0

((
1− pout

k

)
c
(i)
k + pout

k

(
1− c(i)k

))
, (9)

the expectation of x̂IMM
t is

E
h

(i)
t

(
x̂IMM
t

)
=
∑
i

x̂IMM
t

(
h

(i)
t

)
p
(
h

(i)
t

)
(10)

and the expectation of PIMM
t is

E
h

(i)
t

(
PIMM
t

)
=
∑
i

PIMM
t

(
h

(i)
t

)
p
(
h

(i)
t

)
. (11)

If we have T time steps in total, there would be 2T possible
histories, which is an enormous number given an ordinary T ,
say, 60 - 70 in our scenarios. However, the RSU can do the
estimation with all measurements in the past (because the RSU
always has all the measurements) and transmits the estimates
(i.e., {µit|t, x̂

1
t|t,P

1
t|t}

N
i=1) to the receiving vehicles. If the

transmission is successful (i.e., c(i)t = 1), the previous history
h

(i)
t−1 does not impact the estimate because the transmitted

estimate is based on all measurements in the past. Only
when the transmission fails, the receiving vehicles needs to
estimate (predict) the current state with methods described
above. Therefore, if the RSU transmits the estimates instead
of the raw measurements, what matters is only the last time
when the transmission was successful. In this case, we have

p
(
h

(−K)
t

)
=
(
1− pout

t−K−1

) t∏
k=t−K

pout
k , (12)

instead of (9), where h
(−K)
t is the history that the previous K

transmissions fail and the last successful transmission was at
time step t−K − 1. Hence, the number of possible histories
reduces from 2T to T (which is a considerable complexity
reduction). The expectation of PIMM

t is computed with (11) as
before.

Another advantage of transmitting estimates instead of raw
measurements is that the estimates have higher precision than
the measurements and the receiving vehicles do not have to
carry out the estimation themselves. Instead, the estimation is
done only once at the RSU. The overall computational effort
is therefore reduced. Besides, RSUs often have fixed power
supply and are less energy-sensitive compared to vehicles,
which usually run computations on batteries.

IV. TRANSMIT POWER CONTROL WITH DEEP
REINFORCEMENT LEARNING

The model-free DRL algorithms can be roughly classified
into off-policy algorithms in style of Q-learning and on-policy
policy optimization algorithms, with SAC and PPO as the
state-of-the-art representatives in each category, respectively.
In addition, the on-policy algorithms require an external ad-
vantage estimator, where the generalized advantage estimation
(GAE) is widely applied. In this section, we first introduce
some fundamental definitions in DRL and then describe the
above-mentioned algorithms, which are later used to solve the
proposed problem.

A. RL Problem Formulation and Fundamental Definitions

RL aims to optimize actions in a dynamic environment such
that the expected sum of rewards is maximized. As shown in
Fig. 4, in a time step t, an agent observes the environment state
st, and uses its policy πθ parameterized by θ to determine
an action2 at, i.e., at = πθ(st). The action at changes the
environment state from st to st+1 with the system dynamics
st+1 = f(st, at) and determines the reward rt with the reward
function rt = r(st, at). The system dynamics function f and
reward function r are given in the problem formulation and
the policy πθ is to be optimized. Formally, the problem can
be formulated as

maxθ E
(∑T

t=1 r(st, at)
∣∣∣s0

)
s.t. at = πθ(st)

rt = r(st, at)
st+1 = f(st, at).

(13)

Note that the expectation operator is necessary because of the
inherent randomness of the considered problem: both system
dynamics f(s, a) and policy π(s) might be stochastic. For
example, the driving behavior (going straight or turning) is
unknown in advance, which causes randomness in system
dynamics. The stochastic policy is widely used by modern
RL algorithms, which returns a distribution of action param-
eterized by state s rather than a deterministic action, which
results in randomness in policy.

Environment Agent

State st

Action at

Reward rt, next state st+1

Fig. 4. Framework of RL problems in one time step. The agent observes
the state of the environment st and makes a decision of the action at, which
determines a reward rt together with st and changes the environment state
from st to st+1 and this process starts over. The objective is to maximize
the expected sum of rewards.

In our problem, we define state, action and reward as
follows:
• The state should contain sufficient information to make

the optimal decision of the transmission power and is
defined as

st =

(
zt, tr

(
PIMM
t

)
, {µit−1}Ni=1, {µit}Ni=1,

N∑
i=1

µitỹt

)
.

(14)
In (14), zt is the estimated state at current time step,
which is an important information because the current
state determines the development in future to a large
extent, tr

(
PIMM
t

)
is the trace of the covariance matrix

2In practice, a stochastic policy is usually preferred than deterministic
policy, where the output of πθ is a distribution of action rather than the
action itself (e.g., expectation and standard deviation of a Gaussian distribution
for continuous action space and categorical probabilities for discrete action
space.). The actual action is sampled from this distribution.
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of the IMM estimate, which characterizes how accu-
rate the estimate zt is, {µit−1}Ni=1 and {µit}Ni=1 are the
model probabilities in previous and current time steps,
respectively. This information is important to the decision
because the model probabilities and their changes impact
the predictability significantly. Two examples are, 1)
going straight is a much more stable state than turning, 2)
drastic change of state probabilities cannot be explained
by model probability mixing (35), which means an update
with measurement is necessary for accurate prediction in
future.

∑N
i=1 µ

i
tỹt is the mean innovation weighted by the

model probabilities and is the measure of how prediction
deviates from measurement on average.

• The action at time step t is the transmission power
Pt. The action space is therefore a one dimensional
continuous space in range (0, pmax) where pmax is the
maximum transmission power.

• The reward at time step t is defined as

rt =− Pt − w1I(tr(PIMM
t ) > pth)

− w2 max(0, tr(PIMM
t )− pth),

(15)

where w1 and w2 are coefficients of the penalty terms. The
first term is to encourage low transmission power. The second
term is to ensure tr(PIMM

t ) does not exceed pth by setting a
steep reward change at the threshold. The third term is to
provide a gradient towards the correct direction.

The choice of w1 and w2 is empirical and should meet the
following two criteria:

• The values should be sufficiently large such that the agent
learns it should not save transmit power at the cost of
violating the precision constraint.

• The values should not be unnecessarily large in order to
avoid numerical instability.

Note that the RL formulation (13) and the reward definition
(15) do not explicitly implement the constraint in (7). Instead,
it issues a penalty when the constraint is violated. When the
penalty is considerably higher than the saved transmit power
(the first term in (15)), the agent will learn not to save energy
and violate the constraint. This fact will be illustrated in
Section V.

Three important terms of RL are value, Q-value and advan-
tage, which are briefly elaborated as follows:

• The value function is defined as the expected discounted
sum of rewards beginning from the given state s and
following policy πθ, i.e.,

V πθ (s) = E

(
T∑
t=1

γtr(st, at)

∣∣∣∣∣s1 = s, at = πθ(st)

)
,

(16)
where γ ∈ [0, 1) is the discounting factor. The value
function measures how good policy πθ is given state s.

• The Q-value is defined as the expected discounted sum
of rewards beginning from the given state s and choosing
action a at the current time step, then following policy

πθ, i.e.,

Qπθ (s, a) = E

(
T∑
t=1

γtr(st, at)

∣∣∣∣∣s1 = s, a1 = a,

at = πθ(st) for t > 1

)
.

(17)

For algorithms in Q-learning style, the Q-value is used to
determine the policy, e.g., πθ(s) = arg maxaQ

πθ (s, a).
For policy optimization algorithms, the difference be-
tween value V πθ (s) and Q-value Qπθ (s, a) provides a
comparison between policy πθ and action a because the
only difference between value and Q-value is whether to
choose action at first time step according to policy πθ
(value) or using the given action a (Q-value).

• The advantage function is defined as the difference be-
tween Q-value and value:

Aπθ (s, a) = Qπθ (s, a)− V πθ (s). (18)

Intuitively, a positive advantage indicates action a is
better than the action return by the policy πθ(s) and we
should optimize the policy such that action a appears
more often given state s. The same holds true vice versa.

B. Proximal Policy Optimization and Generalized Advantage
Estimation

We briefly elaborate PPO and GAE in this section. The
readers are referred to [39] and [40] for more details.

PPO uses stochastic policy, i.e., the policy determines a
distribution rather than a deterministic value of the action
and the actual action is sampled from the distribution. For
continuous actions (our case), we usually use the Gaussian
distribution, where the expectation is the output of the policy
network and the variance is a constant. In each iteration, data
samples {(st, at, rt, st+1)}t are collected with interaction with
the environment. The policy is updated in such a way, that
probabilities of actions with positive advantages are increased
and probabilities of actions with negative advantages are
decreased, i.e., the expectation given the state moves towards
actions with positive advantages and away from actions with
negative advantages. This can be realized with the following
objective:

max
θ

∑
s,a

πθ(a|s)
πθold(a|s)

Aπθold . (19)

The policy optimization is subject to the constraint that the
KL-divergence between old and new distributions is smaller
than a threshold in order to avoid dramatic changes of policy
and make the training stable. Since the direct constraint opti-
mization is difficult (implemented by trust region policy opti-
mization [41]), a cleverly defined objective function is applied
such that the gradient is nonzero only when πθ(a|s)/πθold(a|s)
is between 1 − ε and 1 + ε, where ε is a positive number
controlling the region size, in which the policy optimization
can be performed.
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The advantage is estimated with the GAE, which realizes an
optimal bias-variance trade-off. Using the Bellman equation,
the Q-value can be expressed as

Aπθ (st, at) = −V πθ (st) +

I−1∑
i=0

γirt+i + γIV πθ (st+I), (20)

where V πθ (s) is estimated with the value network3, rt are
sampled with the interaction with the environment4, I is
an integer tuning the bias-variance trade-off. If I = 1,
Aπθ (st, at) = −V πθ (st) + rt + γV πθ (st+1) has high bias
and low variance. If I → ∞, Aπθ (st, at) = −V πθ (st) +∑∞
i=0 γ

irt+i has high variance and low bias. GAE introduces a
parameter λ realizing a compromise between the two extreme
cases. The estimated advantages are used by PPO for the
policy optimization.

C. Soft Actor-Critic

We briefly elaborate SAC in this section. The readers are
referred to [42] for more details.

SAC also uses stochastic policy. However, unlike PPO,
which has a constant variance of action distribution, the
variance of the distribution is also an output of the policy
network in SAC. As a result, SAC is able to control whether to
explore (high variance) or to do fine tuning (low variance). Due
to possible local optima in policy and difficulty in exploration,
SAC maximizes weighted sum of rewards and policy entropy,
which increases with higher variance of action. In this way,
the action space is more actively explored until a policy
of significant advantage is found. Following this idea, the
definition of the state value (14) is modified as

V πθ (s) = E

(
T∑
t=1

γtr(st, at) + αH(π(·|st))

∣∣∣∣∣
s1 = s, at = πθ(st)

)
,

(21)

where α is the coefficient of the entropy, H(π(·|st)) is the
entropy of policy π in state st, which is higher when the action
variance is higher. The definition of the Q-value is similarly
changed compared to (17). Since the Q-values are often
dramatically overestimated, SAC maintains two independent
Q-networks and uses the smaller value as the Q-value to learn
the policy.

With the learned Q-values, the policy is learned such that
the KL-divergence between the Q-value and the policy is
minimized, i.e.,

πnew = arg min
π′∈Π

DKL

(
π′(·|s)

∣∣∣∣∣
∣∣∣∣∣exp

(
1
αQ

πold(s, ·)
)

Zπold(s)

)
, (22)

where Zπold(st) is the normalization factor since
exp

(
1
αQ

πold(st, ·)
)

is not a distribution, but it can be

3It is deterministic with given s but can be biased because it is estimated,
therefore it has high bias and low variance.

4They are unbiased because they are true rewards returned from the
environment and have high variance because they depend on stochastic actions
and randomness in environment.

safely ignored because a constant does not contribute to the
gradient. With a small KL-divergence, the action probability
is high where the Q-value is high given each state.

The reparametrization trick is applied such that the expec-
tation of the Q-value is not over the distribution of actions
parameterized by θ but over distribution over the action noise,
which is independent from θ.

V. TRAINING AND EVALUATION RESULTS

In this section, we present the training and evaluation
results. We use the open source implementation of RL al-
gorithms Stable Baselines 3 [43]. Important environment and
algorithm parameters are shown in Table I. For simplicity, we
assume the measurement matrix H is an identity matrix I.
The Rayleigh fading channel is chosen as an example in this
section because it has the lowest diversity level and therefore
the worst reliability. The parameter of the Rayleigh distribution
can be calibrated for individual RSUs separately such that the
applied Rayleigh channel model is the worst possible channel
in the responsible area of the RSU. The outage probability at
time step t is

pout
t = 1− exp

(
−(2R/W − 1)WN0

2Ptσ2

)
, (23)

where h is a Rayleigh distributed random variable with CDF
of 1−exp(−h2/(2σ2)) where σ tunes the mean channel gain.
The other symbols in (23) is the same as (8).

When the environment is reset, it is randomly determined
whether the vehicle is going straight forward or turning right
(for the first scenario) or whether the vehicle is keeping lane
or changing lane to left or right (for the second scenario).
If the vehicle is changing lane, it is randomly determined
where (i.e., the y coordinate) it should happen as well. In each
step, the true vehicle state is updated with (2) (if the vehicle
is going straight) or (4) and (5) (if the vehicle is turning).
If the vehicle is changing to the left lane, it first turns left
and then right such that the driving direction is unchanged
and the vehicle position is laterally move by the lane width.
The similar process applies to lane changing to the right lane.
After the true vehicle state is determined, the existing histories
are updated without measurement and their probabilities are
multiplied by the current communication outage probability.
A new history is appended with measurement (for details
of this consideration, see Section III-B) and probability that
the communication is successful. The expected vehicle state
and the estimate variance are computed in (10) and (11),
respectively.

Fig. 5 shows the improvement of the episode reward during
training in the intersection scenario. Both algorithms achieve
significant improvement and SAC shows significantly higher
sample efficiency due to its off-policy property. SAC also
realizes a higher episode reward at the end of training. Since
both algorithms are successful to keep tr

(
E
(
PIMM
t

))
below

pth, the last two terms of (15) are 0 at every time step. The
episode reward is simply the negative sum of transmission
power. It can be observed that SAC meets the precision
requirement with less transmission power than PPO. However,
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TABLE I
ENVIRONMENT AND TRAINING PARAMETERS

Parameter Value
Time resolution 0.1 s
Initial state (0, -10, 0, 5)
Mean channel gain in Rayleigh
fading channel

-50 dB

Pmax 100 mW

Π in intersection scenario
(

1 0
0 1

)5

Initial model probabilities in
intersection scenario

(0.5, 0.5)

Π in lane changing scenario

 0.999 0.0005 0.0005
0.2 0.6 0.2
0.2 0.2 0.6

6

Initial model probabilities in
lane changing scenario

(0.999, 0.0005, 0.0005)

Process noise 0.0005 (m for position and m/s
for velocity)

Measurement noise 0.0005 (m for position and m/s
for velocity)

pth 0.01 (m for position and m/s
for velocity)

w1 10
w2 100
Learning rate 10−5

Training steps 2× 106

Entropy in SAC 0.1
ε (clipping range described un-
der (19))

0.1

Batch size 1024
Number of layers in the neural
network

2

Number of neurons per layer 64
Activation function ReLU

5 Two models in the intersection scenarios are going straight and turning right.
The state transition matrix is an identity matrix because once the decision is
made whether to go straight or to turn right, it cannot be changed.
6 Three models in the lane changing scenarios are going straight, turning left
and turning right. The model transition probabilities from going straight to
turning left and right are small because lane changing are rare compared to
going straight. On the contrary, turning left or right is not a stable state and
has higher probabilities of changing to another model.

it is also to note that the computational complexity and hence
the training time consumption of SAC is significantly higher
than PPO.

Fig. 6 shows the true trajectory, estimated trajectory, stan-
dard deviation of estimation error as well as transmission
power (depicted as red lines perpendicular to the driving
direction) in the intersection scenario. With both algorithms,
transmission power is low when the vehicle is outside the
intersection and the transmission power increases when the
vehicle enters the intersection and unveils its intended driving
direction (straight or right).

As shown in Table I, the initial model probabilities in the
intersection scenario are (0.5, 0.5) and stay unchanged until
the vehicle enters the intersection because the two models
have the same prediction before the intersection. Once the
vehicles enter the intersection, the two models have different
predictions and PIMM

t would be very high if the estimation is
done without measurement (i.e., with prediction only). Only
when the model probabilities are updated with measurements
and it becomes unambiguous in which direction the vehicle is
heading, PIMM

t can be kept low again. This is the reason why

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
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Fig. 5. Episode reward improvement in training in the intersection scenario.

the transmission power at the beginning of the intersection
is high. Ater that, the transmission power can be reduced to
the level before the intersection because the model transition
matrix Π in this scenario is an identity matrix. Although
adaptive scheduling schemes are suggested for remote sensing,
e.g., in [10], the proposed methods are highly empirical and the
scheme in [10] is based on the velocity, which is not suitable
for the considered scenario here because the predictability is
not decided by the velocity but by the vehicle position, i.e.,
whether the vehicle is inside or outside the intersection.

Another interesting observation is that PPO and SAC find
different solutions on the straight lanes. While PPO chooses
a higher transmission power and a higher interval between
two transmission, SAC decides to transmit in every time step
with a low transmission power. According to Fig. 5, the total
transmission power realized with SAC is lower. Two possible
reasons for this advantage are
• SAC is an entropy-regulated learning algorithm, which

makes it less likely to get stuck in a local optimum.
• SAC tunes the variance of the action distribution, which

makes fine-tuning (reducing the transmission power while
keeping the estimate variance below the threshold) easier
than PPO, which uses a constant action variance.

Fig. 7 depicts the improvement of the episode reward during
training in the lane changing scenario. Similar to Fig. 5, SAC
has a higher sample efficiency and achieves a lower total
transmission power in the end of the training while keeping
the estimation precision below the threshold.

Evaluation results with true trajectory, estimated trajectory,
standard deviation of estimation and transmission power are
presented in Fig. 8. The results are similar to Fig. 6 when the
vehicle is driving straight.

Unlike in the intersection scenario, the lane changing be-
havior does not have a fixed trajectory. Therefore, the model
transition probability matrix Π in this scenario is not an
identity matrix. Instead, the models turning left and turning
right in the lane changing scenario do have certain probabilities
of changing to other models (in the reality, the trajectory
in lane changing is not fully predictable even if you know



10

−20 −10 0 10 20

−10

0

10

20

x (m)

y
(m

)

30 x std
True track
Estimated track

(a) Straight, PPO

0 5 10 15 20

−10

−5

0

5

x (m)

y
(m

)

30 x std
True track
Estimated track

(b) Right, PPO

−20 −10 0 10 20

−10

0

10

20

x (m)

y
(m

)

30 x std
True track
Estimated track

(c) Straight, SAC

0 5 10 15 20

−10

−5

0

5

x (m)

y
(m

)

30 x std
True track
Estimated track

(d) Right, SAC

Fig. 6. Testing results in the intersection scenario. The orange area shows 30 times standard deviation of the estimate. A wide orange area indicates a low
estimate precision.
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Fig. 7. Episode reward improvement in training in the lane changing scenario.

where the lane changing begins to take place). As a result, the
transmission power is kept high throughout the lane changing
(compared to it, the transmission power is reduced to a low
level once it becomes clear where the vehicle is heading to
in the intersection scenario). Only when the lane changing
is finished and the model is going straight gains a high
probability again, the transmission power is reduced to a low
level.

As a comparison to the RL algorithms, we choose three
constant transmission powers in every time step. These trans-
mission powers are 10 mW, 50 mW and 100 mW. The
evaluation results are shown in Fig. 9. With a transmission
power of 10 mW, the estimate variance requirement cannot
be fulfilled in both scenarios. With a transmission power
of 50 mW, the estimate variance requirement is met in the

intersection scenario but not in the lane changing scenario.
With a transmission power of 100 mW, the estimate variance
is kept below the threshold in both scenarios but the total
transmission power is considerably higher than with the two
RL algorithms. All the base line performances are significantly
higher than the performances of PPO and SAC. A complete
comparison of the base lines schemes and the RL algorithms
is presented in Fig. 10.

VI. CONCLUSION

In this paper, we propose a DRL based transmission power
control for remote vehicle state estimation and transmission,
such that the estimation precision at the adjacent traffic partici-
pants is high enough to guarantee safety. The traffic awareness
is the prerequisite of autonomous driving. Due to the limitation
of precision, range and cost of the onboard sensors, remote
estimation on an RSU or other vehicles is a promising solution.
However, the estimate has to be transmitted to other vehicles
with wireless communication, which has an inherent outage
probability due to channel fading. When the communication
fails, the other vehicles have to predict the vehicle state with
a low precision. We propose to use KF, EKF and IMM in
complicated traffic scenarios for vehicle state estimation and
to use DRL to optimize the transmission power, such that the
transmission power is minimized and the expected estimation
variance is lower than a given threshold. Two state-of-the-
art algorithms, PPO and SAC are applied. Evaluation results
show that both algorithms outperform baselines with different
but constant transmission power. The transmission power is
increased when the vehicle behavior becomes less predictable.
Compared to PPO, SAC has a higher sample efficiency and
realizes a lower total transmission power. The contribution
of this paper is to build a bridge between vehicular commu-
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Fig. 8. Testing results in the lane changing scenario.
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nication and traffic awareness and to solve the complicated
optimization problem with the DRL algorithms.

The source code of this work is available under https://
github.com/bilepeng/scheduling remote state estimation drl.

APPENDIX A
FORMULATION OF KALMAN FILTER

Given the state xt−1 at time step t− 1, the state xt at time
step t is

xt = F (xt−1) + wt, (24)

where F is the state-transition function and wt ∼ N (0,N)
is the inherent randomness of the process and is assumed
normally distributed with expectation 0 and covariance matrix
N. If F is a linear function and can be expressed as product
between a matrix and xt−1, the process is described by

xt = Fxt−1 + wt, (25)

where F is the state-transition matrix.
Assuming a linear measurement model, the measurement at

time t is
zt = Hxt + vt, (26)

where H is the measurement matrix and vt ∼ N (0,Rt) is
the normally distributed measurement noise, with Rt being
the covariance matrix of measurement noise at time step t.

When F is linear, we can use the Kalman filter to estimate
xt from the noisy measurement. Given the estimated state
x̂t−1 at time step t− 1, the prior estimate of xt is5

x̂t|t−1 = Fx̂t−1. (27)

The covariance matrix of the prior estimate is

Pt|t−1 = FPt−1F
T + N. (28)

5We use x̂t|t−1 to specifically indicate the estimate of xt is based on
measurements up to time step t−1. If the condition is not clear, it is omitted in
the notation. For example, x̂t−1 is the estimate of xt−1 without specification
based on which measurements the estimate is made.

The posterior estimate is computed as

x̂t|t = x̂t|t−1 + Ktỹt, (29)

where Kt is the Kalman gain, which is computed as

Kt = Pt|t−1H
T [HPt|t−1H

T + Rt]
−1 (30)

and ỹt is the innovation, which is computed as

ỹt = zt −Hx̂t|t−1. (31)

The posterior covariance matrix is computed as

Pt|t = (I−KtH)Pt|t−1. (32)

In general, the covariance increases when making predic-
tions because of the process noise and decreases after making
measurement because it contains new information about xt.
Sufficient measurements are necessary in order to maintain a
small estimate covariance.

APPENDIX B
FORMULATION OF EXTENDED KALMAN FILTER

In some cases, the state-transition function F is nonlinear,
the KF cannot be applied. Instead, we can use the EKF, which
linearizes the state transition (24). The prediction (correspond-
ing to (27)) is

x̂t|t−1 = f(x̂t−1) + wt (33)

and the linearized prediction covariance (corresponding to
(28)) is

Pt|t−1 = F(x̂t−1)Pt−1F
T (x̂t−1) + N, (34)

where F(x̂t−1) is the Jacobian matrix of F at point x̂t−1, i.e.,
let xt = F (xt−1), the element fij in row i and column j of
F(xt−1) is fij(xt−1) =

∂xt,i
∂xt−1,j

, where xt,i and xt−1,j are
ith and jth elements of xt and xt−1, respectively. Therefore,
F(x̂t−1)Pt−1F

T (x̂t−1) is a linearized local approximation of
the covariance matrix of the estimate of x̂t|t−1.

Assuming the linear measurement model (26), the updating
described by (29) - (32) is identical in the KF.

APPENDIX C
FORMULATION OF INTERACTING MULTIPLE MODEL

If there are multiple possible state-transition functions, it is
impossible to use a single Bayesian filter to estimate the state.
In this case, the IMM can be applied [44]. In IMM, a set of
models is defined, where each model is a Bayesian filter and
has a certain probability at each time step. Let M be the set of
model indices and i, j ∈M . A transition matrix Π defines the
prior probabilities that a model is switched to another model,
where the element πji is the probability of model i at the
current time step given model j at the previous time step. At
the beginning of each time step, the mixing probability from
model j to model i is computed as

µjit−1|t−1 =
πjiµ

j
t−1∑N

l=1 πliµ
l
t−1

, (35)

where N is the number of models and µlt−1 is the probability
of model l at time step t− 1. Intuitively, µjit−1|t−1 is the prior
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probability of model j at time step t− 1 switching to model i
at time step t given model i at time step t.

The mixed state estimates and the corresponding covari-
ances are computed as

x̂0i
t−1 =

N∑
j=1

µjit−1|t−1x̂
j
t−1 (36)

and

P0i
t−1 =

N∑
j=1

µjit−1|t−1

(
Pj
t−1 +(x̂jt−1−x̂0i

t−1)(x̂jt−1−x̂0i
t−1)T

)
,

(37)
where x̂jt−1 is the estimate of x̂t−1 by model j, Pj

t−1 is the
estimate covariance by model j.

In the next step, the current state x̂it|t−1 will be predicted
with model i based on the mixed previous state with (27)
or (33), depending on whether the state transition is linear or
nonlinear, where x̂t−1 is x̂0i

t−1 for model i computed with (36).
Similarly, the covariance of prediction Pi

t|t−1 with model i is
computed with (28) or (34), depending on whether the state
transition is linear or nonlinear as well, where Pt−1 is P0i

t−1

for model i computed with (37).
If measurement is available, the prediction and the covari-

ance of model i are updated with (29) and (32), producing x̂it|t
and Pi

t|t, respectively. The model probabilities are computed
as

µit|t =
N (zt; Hx̂it|t,P

i
t|t)
∑N
j=1 πjiµ

j
t−1∑N

l=1N (zt; Hx̂lt|t,P
l
t|t)
∑N
j=1 πjlµ

j
t−1

, (38)

where N (z;µµµ,σσσ2) is the probability density at z given the
normal distribution with expectation µµµ and variance σσσ2. If
no measurement is available, the model probabilities are
computed as

µit|t−1 =

N∑
j=1

πjiµ
j
t−1. (39)

Finally, the output estimate is computed as

x̂IMM
t =

N∑
i=1

µitx̂
i
t (40)

and the covariance is computed as

PIMM
t =

N∑
i=1

µit

(
Pi
t + (x̂t − x̂it)

T (x̂t − x̂it)
)
. (41)
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