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Abstract—Geo-localization services are an important
functionality in cellular networks. Besides, the use of
Ultra Dense Networks and small cells, in current and
future cellular networks, greatly increases the complexity of
centralized localization approaches. Consequently, we propose a
Self-Synchronization Positioning Estimation (SSPE) algorithm
that estimates the transmitter position in a distributed fashion.
The proposed SSPE algorithm reaches consensus for the
posterior distribution of the transmitter position rather than on
the final estimates. Such consensus ensures that the proposed
SSPE algorithm converges to the centralized Direct Positioning
Estimation (DPE) approach, which has the best performance
of all localization approaches. We show that the proposed
algorithm is related to the Iterative Positioning Estimation
(IPE) algorithm, since both exploit the self-synchronization
mechanism. As a result, the improvements and extensions for
IPE, previously studied in other works, can be directly applied
to the proposed SSPE algorithm. In addition, the proposed
algorithm is able to localize the transmitter even when it is
not time synchronized with the network as it is usually the
case. The performance of the algorithms is numerically assessed
through Monte-Carlo simulations by the mean distance error
and mean range offset error. Finally, we not only show that
our approach gets close to the DPE performance after a few
iterations, but also that it converges for different logical network
configurations.

Index Terms—Self-synchronization, Consensus, Localization,
Positioning, ToA, Iterative Localization, Distributed Localization.

I. INTRODUCTION

CELLULAR NETWORKS have progressively increased
and improved the functionality on the edge of the

network such as the geo-localization service. For such
a functionality, Positioning Reference Signals (PRS) are
included in the protocols to support device localization
based on the estimation of the signal Time-of-Arrival
(ToA) [1]. The use of Ultra Dense Networks (UDN) and
small cells increases the complexity of centralized localization
approaches. This is due to the massive amount of data that
needs to be exchanged between the cells and the central
processing unit. Such architectures create bottlenecks and
demand high communication bandwidths. In that context, fast
and low-data-exchange distributed localization approaches are
strongly desired.
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Several ToA-based localization approaches can be found in
the literature. The Direct Position Estimation (DPE) algorithm
has the best performance of all. It gathers all the received
baseband signals in a processing node known as Fusion
Centre (FC), and estimates the transmitter position using
grid search1 [2], [3]. A two-step algorithm was proposed to
reduce the amount of communicated data [4]. It consists in
a range estimation step at each Base Station (BS) followed
by a multi-lateration step at the FC. However, it has been
analytically demonstrated in [5] that a direct approach like
the DPE algorithm outperforms any two step approach. Mainly
because only local information is available at the BS for the
range estimation step; whereas all the information is available
in the DPE case.

The Iterative Position Estimation (IPE) algorithm proposed
to iterate sequentially over the two steps with the goal
of refining the range estimate. It was seen in [6]
that the performance of the IPE algorithm gets very
close to the one of the DPE algorithm. Therefore, the
IPE algorithm also outperforms the two-step approach.
Furthermore, the IPE algorithm has been extended for different
case scenarios like: time-misaligned transmitters [7], rich
multipath [8], angle-of-arrival based localization and others
[9], [10]. Nonetheless, the IPE approach presents two main
shortcomings. First, it is still a centralized approach. Second,
the complexity at the FC grows considerably for a dense
network. Therefore, in this paper we propose a fully distributed
localization algorithm that overcomes these limitations.

Different approaches have been studied to achieve
distributed localization. Specially, there are two widely
adopted approaches: distributed optimization and distributed
consensus. Different studies regarding the first approach can
be found in [11], [12] and [13]. A distributed estimation
framework is introduced in [11], which is based on
Alternating Direction Method of Multipliers (ADMM). The
resulting processing approach is not homogeneous among the
nodes, since the information is gathered and fused/averaged
in a few nodes denoted as bridges. In [12], [13], the
distributed localization is done by explicitly solving the
optimization problem by ADMM or Primal-Dual Method of
Multipliers (PDMM). The second approach, i.e., distributed
consensus, computes the average of the final estimated
parameter in a fully distributed fashion [14], [15]. It has
been seen that it decreases the localization error after the

1The DPE algorithm compares the baseband signals received by each Base
Station to the signals that would theoretically be received if the transmitter
was at a particular position.
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multi-lateration step [14]. In [15] the localization is done
by means of an iterative process such as the Gauss-Newton
algorithm, where the intermediate estimates are averaged in a
distributed fashion at every single iteration.

In the already mentioned studies, the optimization and
consensus approaches were used after the range estimation
step. Therefore, the localization error of both approaches
is lower bounded by the one of the two-step localization
approach. Moreover, similar to the case of the IPE algorithm, it
is clear that in order to outperform the two-step approach, the
distributed solution should be implemented somehow before
the second step. Unfortunately, the localization based on
distributed optimization can be very challenging when it is
referred to the baseband signals. In such a case, the final
objective function is highly non-convex with several maximas
and minimas in the range domain. Therefore, we propose
here to make use of distributed consensus. However, we make
use of a more general case such as the self-synchronization
mechanism2 introduced in [16].

In a nutshell, the self-synchronization mechanism associates
a state variable to each node. Such state variables conform an
autonomous dynamical system that converges to a common
value for all state variables [16]. The convergence is
guaranteed for very relaxed conditions. In fact, the only
requirement for convergence is to have a strongly connected
network. The convergence is guaranteed even for noisy and/or
unreliable links, requiring a strongly connected network only
on average over time [17], [18]. On the one hand, zero order
consensus converges directly on the state variables. On the
other hand, first order consensus converges on the first order
derivative of the state variables. The main advantage of the first
order over the zero order consensus is that it presents a better
rejection to coupling noise [17]. The self-synchronization
mechanism relies on the exchange of state variables among
the nodes. Therefore, the coupling noise is introduced to the
system when the communication of state variables involves
approximation due to reconstruction or quantization [19].

Finally, the contributions in this paper are fourfold and can
be summarized as follows:

• We propose a Self-Synchronization Position Estimation
(SSPE) algorithm that works at the baseband signal
level, i.e., we average the received signal log-likelihoods.
Such an approach reaches consensus for the posterior
distribution of the transmitter position rather than directly
on the final position estimates. It also means that we are
able to achieve the performance of the DPE algorithm in
a distributed fashion.

• We show analytically that both IPE and the proposed
SSPE algorithms exploit the same self-synchronization
mechanism. Therefore, the improvements done for the
IPE algorithm are directly applicable to our proposed
approach thanks to that relationship. Besides, we choose a
particular study case of localization of a time misaligned
transmitter to show numerically that IPE and SSPE yield

2Self-synchronization mechanism will converge to the same value as
the distributed average consensus when any two neighboring nodes can
receive/send data from/to each other.

very similar results. In short, the IPE approach can be
considered as a particular case of the SSPE framework
under the assumption of a fully connected network and
a specific set of parameters. Furthermore, SSPE is a
distributed algorithm, whereas IPE is centralized.

• The proposed algorithm as such, still demands high
communication bandwidths, due to the grid-search
nature of the algorithm. Therefore, we propose to
compress the state variables with the radial, angular,
and time misalignment first two order moments. Such
a compression enables us to exchange only seven
intermediate parameters among the BSs.

• Lastly, we assess and compare the performance of
the developed algorithms by means of Monte Carlo
simulations. We show and discuss the effects of the
compression of state variables over performance of the
proposed algorithm. We also present a convergence
analysis for logical network configurations different from
a fully connected one.

The paper is organized as follows. Section II first
introduces the signal model. Section III secondly describes the
centralized DPE algorithm and the proposed distributed SSPE
algorithm. Afterwards, it describes the proposed compression
and reconstruction for the state variable matrices and its
effects. Section IV states the relationship between IPE and
SSPE algorithms. Section V defines the performance metrics.
Section VI assesses numerically and discusses the such
performance metrics. Finally, Section VII concludes the paper.

II. SYSTEM MODEL

We assume a static transmitter that is simultaneously
connected to N BSs in a cellular network, which operates with
the Orthogonal Frequency-Division Multiplexing (OFDM)
modulation. The OFDM modulation splits the communication
bandwidth into orthogonal sub-carriers that are allocated to
data or pilot symbols. A Cyclic Prefix (CP) is added to each
block of transmitted symbols to maintain the orthogonality
between the sub-carriers even in the presence of channel time
dispersion. We consider that P equispaced pilot sub-carriers
are allocated over the communication bandwidth. Moreover,
the frequency difference between two consecutive pilot
sub-carriers is constant and referred to as ∆f .

To better explain the following steps of the proposed
algorithm, we define two sets of parameters. We define γni

and
γc as the set of nuisance and common parameters respectively.
The set of nuisance parameters γni

is intrinsic to BS-i. Hence,
such parameters are only meaningful for the particular BS-i
and not for the rest of the network. The set of common
parameters γc is related/common to all the BSs. Therefore,
they are meant to be estimated using the whole information
of the network.

We consider the same case scenario studied in [7] where
the IPE was improved for localization of a time-misaligned
transmitter. Notice that it is considered that all BSs are
perfectly time synchronized. Therefore, we take into account
only the time-offset t0 between the transmitter and the
network. Furthermore, we choose such a scenario to show
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that the improvements done for the centralized IPE algorithm
are easily applicable to our distributed-proposed approach.
Consequently and similar to [7], we focus our study to jointly
estimates the transmitter position (x, y) and the time offset t0.

We assume a propagation channel that has a dominant
Line-of-Sight (LOS). Therefore, the channel is characterized
by a time delay τi between the transmitter position and BS-i.
The propagation delay is related to the distance di between
transmitter and BS-i by τi=di/c where c is the propagation
velocity. Therefore, the time of arrival ti observed by BS-i is
the addition of the time delay and time offset, i.e.,

ti(x, y, t0) = τi(x, y) + t0, (1)

where ti is assumed to be shorter than the CP duration (which
is a reasonable assumption for typical system parameters). For
convenience and without loss of generality, we rewrite (1) in
terms of pseudoranges by simply multiplying both sides of the
equation by the propagation velocity, which yields

δi(x, y, δ0) = di(x, y) + δ0. (2)

We refer to δ0 as range offset, which is directly linked to
the time offset t0 through δ0 = c t0. Consequently, the set of
common parameters considered in this work is

γc = [x, y, δ0]. (3)

Regarding the nuisance parameters, the signal is affected
by Carrier Frequency Offset (CFO), which is roughly
estimated and compensated before any processing takes place.
Nonetheless, there is a remaining CFO that can be
approximated as a common phase offset ϕi, affecting all
sub-carriers in a given multi-carrier block (OFDM symbol) [7].
Besides, we model the amplitude of the received signal with
a coefficient ai that is rician distributed. Hence, the set of
nuisance parameters at BS-i is considered to be

γni = [ai, ϕi]. (4)

Consequently, the received signal at BS-i over pilot
sub-carrier-p can be modeled as

ri,p = ui(γni
)si,p(γc) + wi,p, (5)

where ri,p and wi,p are the received signal and corrupting
noise respectively, for pilot sub-carrier-p at BS-i. The noise is
assumed to be independent zero mean circularly symmetric
complex Gaussian of variance σ2

wi
known at the BS. In

addition, ui and si,p are defined as

ui(γni) = aie
ϕi , (6)

si,p(γc) = qpe
−jpζδi(x,y,δ0), (7)

where qp is the symbol transmitted at pilot sub-carrier-p.
In addition, the constant ζ is used to simplify the notation
and it is defined as ζ = 2π∆f

c . Notice that the product of ui
and si,p represents the free-noise part of the model. Moreover,
ui and si,p model respectively the contribution of the nuisance
and common parameters at BS-i and pilot sub-carrier-p. To
simplify the notation in the rest of the paper, we write only δi

instead of δi(x, y, δ0); however, we mention such dependence
whenever it is needed.

Finally and similarly to the system model adopted
in [7] and [6], a vector model is constructed at each BS-i
by stacking all the received pilot symbols as

ri = ui(γni)si(γc) +wi, (8)

with

ri = [ri,1, ..., ri,P ]
T ; wi = [wi,1, ..., wi,P ]

T , (9)

si(γc) = [q1e
−j1ζδi , ..., qP e

−jPζδi ]T . (10)

III. SELF-SYNCHRONIZATION POSITIONING ESTIMATION

To better explain the steps of the proposed SSPE algorithm,
we start by describing a centralized DPE algorithm that
jointly estimates the transmitter position and the range offset.
Besides, we show how to carry out the nuisance parameters
to obtain a range likelihood dependent only on the set
of common parameters. Afterwards, we describe how the
SSPE algorithm approximates such centralized approach in
a distributed fashion. Namely, we describe the use of the
self-synchronization mechanism, as well as, how to compress
the state variables.

A. Centralized Direct Position Estimation

The DPE algorithm estimates the transmitter position
based on all the received signals. Hence, each BS-i should
communicate its received baseband signal ri to a central node
denoted as FC. The posterior Probabilistic Density Function
(PDF) of the common parameters γc given by the received
signals is

p(γc|r1, ...rN ) = Cγc

N∏
i=1

pi(ri|γc)p(γc), (11)

where Cγc is a normalization factor ensuring that the integral
of the posterior PDF in the considered search grid is 1.
pi(ri|γc) is the range likelihood of the received signal
and p(γc) is the prior PDF of the common set of parameters.
The considered search grid is denoted as S. Moreover, S
is defined as a multi-dimensional interval defined by the
Cartesian product of x ∈[xmin, xmax], y ∈[ymin, ymax], and
δ0 ∈ [δ0min

, δ0max
].

We consider that common parameters are mutually
independent and uniformly distributed on S. Consequently,
p(γc) is a uniform PDF given by

p(γc) =

{
1

∆x∆y∆δ0
γc ∈ S

0 otherwise
. (12)

where ∆x, ∆y and ∆δ0 are similarly defined as
∆ψ=ψmax−ψmin.

In addition, we can define the likelihood of the received
signal at BS-i based on (8). More precisely, such likelihood
can be modeled as a Gaussian distribution as

pi(ri|γni
, γc) = Crie

− 1
σ2
wi

[ri−uisi]
H [ri−uisi]

, (13)
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where (.)H represents the Hermitian transpose and Cri is a
normalization factor. Notice that the dependence of ui and
si on γni and γc respectively, is not written to simplify
the notation. Clearly the likelihood of the received signal
shown in (13) depends on both the nuisance parameters γni

and common parameters γc. Therefore the PDF pi(ri|γc)
is obtained by marginalizing the nuisance parameters γni

from (13) as:

pi(ri|γc) =
∫ ∞

−∞
pi(ri|γni , γc)p(γni)dγni (14)

where p(γni
) is the distribution of the nuisance parameters.

Namely, p(γni
)=p(ϕi)p(ai) where ϕi is assumed to be

uniformly distributed for ϕi ∈ [−π, π], and ai is assumed to be
rician distributed. Notice that (14) is a compressed notation for
a multiple integral (one integral per nuisance parameter). The
extended version of (14) can be found in (50) in Appendix A.

Finally, with the assumption of ϕi being uniformly
distributed, the expression shown in (14) can be further
simplified to

pi(ri|γc) = Cϕi

∫ ∞

−∞
J0(z)e

−a2
i

σ2
wi

sHi si
p(ai)dai, (15)

where z=−j 2ai
σ2
wi

|rHi si| and Cϕi
is a constant term. Notice that

for the sake of clarity, the dependence of si on the common
parameters γc is not written. Moreover, the variable z depends
on γc and the amplitude coefficient ai, i.e., z=z(γc, ai). The
variable z does not depend on ϕi due to the fact that the
integral with respect to ϕi has been replaced by a Bessel
function of order zero J0(z) (See Appendix A). Such use of
the Bessel function means a reduction of complexity, and thus
a faster numerical integration when computing pi(ri|γc).

B. SSPE Algorithm

The goal of our proposed SSPE algorithm is to approximate,
in a distributed way, the posterior PDF of γc defined in (11).
The self-synchronization mechanism computes the average
of the measurements taken by each node in the network.
Therefore, we express the posterior PDF of γc in terms of
averages as follows.

First, we take the logarithm of (11), which yields the
log-posterior distribution written as

log
(
p(γc|r1, ...rN )

)
=

N∑
i=1

Li(ri|γc) + b, (16)

where the constant b=log(p(γc))+log(Cγc) considers the
normalization factor and the uniformly distributed prior.
Li(ri|γc) is the log-likelihood of the received signal ri at
BS-i. Furthermore, Li(ri|γc) can be computed by taking the
logarithm of (14) or (15), i.e., after the marginalization of the
nuisance parameters γni .

Second, we simply multiply and divide the sum of range
log-likelihoods by the number of considered BSs as follows

log
(
p(γc|r1, ...rN )

)
= N

( 1

N

N∑
i=1

Li(ri|γc)
)
+ b. (17)

It is easy to see that the first term is nothing else than the
average of the received signal log-likelihoods. Consequently,
we make two important remarks regarding (17). First, the
constant term b can be omitted if the posterior distribution
is normalized again after taking the exponential to compute
the corresponding PDF. Second, the average of the received
signal log-likelihoods can be computed in a fully distributed
fashion with the help of the self-synchronization mechanism
introduced in [16]. It is worth noting that (17) holds for every
single point in the scene S. Hence, the self-synchronization
mechanism is applied to each single point individually. Each
BS-i will have a state variable matrix vi that will evolve at
iteration-k accordingly to

∆vi[k] = Li(ri|γc) + β
N∑
j=1

αi,j(vj [k]− vi[k]), (18)

where:

• αi,j is 1 if node-i and node-j are connected and 0
otherwise.

• vj [k] is the state variable matrix of node-j communicated
to node-i at iteration-k. Notice that at iteration k=0 the
initial value is vi[0]=0 for all nodes.

• β is a constant defined as the control loop gain.

It has been well studied in [16], [18], [17], and [20]
that the dynamical system shown in (18) will asymptotically
converge for the increments of state variables to ∆v∗

i .
To define the convergence value we first need to define
three concepts: strong connectivity, undirected network and
balanced network. We provide a condensed and intuitive
definition of these terms in this paper. However, we refer
the reader to [16]-Directed Graphs for a formal and detailed
definition.

Node-i is reachable from node-j if there is a sequence
of adjacent nodes, i.e. a path, which starts with node-i and
ends with node-j. With that remark we proceed to define the
following concepts. First, a network is strongly connected if
every node-i is reachable from every other node-j. Second,
a network is undirected if any node can receive and send
messages from and to all its adjacent nodes. Third, a network
is balanced if any node sends and receives the same number
of messages. Lastly, notice that if a network is undirected it
is also balanced.

The convergence is ensured if and only if the network
is strongly connected. In addition, we restrict our study to
balanced networks to ensure that the convergence value is,
as desired, the average of the received signal log-likelihoods.
Consequently, considering that the network is strongly
connected and balanced the dynamical system converges to

∆v∗
i = ∆vi[k → ∞] =

1

N

N∑
j=1

Lj(rj |γc). (19)

As a result, based on (17) and (19), we can approximate
the posterior distribution at each BS-i for iteration-k as

p̂i(γc|r1, ..., rN )[k] = C∆vi
eN∆vi[k], (20)
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Algorithm 1 SSPE Algorithm
1: Each BS-i constructs Li(ri|γc) for each point in the search

grid based on the received signal ri.
2: Each BS-i initializes vi=0
3: for iteration k=1, 2, . . . do
4: for BS-i=1, 2, . . . in parallel do
5: Compute ∆vi[k] using (18)
6: Estimate transmitter position using (21)
7: Update vi[k + 1]=vi[k] + ∆vi[k]
8: Communicate vi[k + 1] to neighboring BSs
9: Receive vj [k + 1] from neighboring BSs

10: end for
11: end for

where the constant C∆vi
is a normalization factor ensuring

that the integral of (20) in the scene S is 1. Notice that N∆vi
will asymptotically converge to the sum of the received signal
log-likelihoods as shown in (19). Hence, the expression in (20)
is nothing else than an approximation that asymptotically
converges to the posterior distribution defined in (11). Based
on (20), it is possible to numerically compute an estimate of
the transmitter position (x̂, ŷ) following the Minimum Mean
Squared Error (MMSE) estimator (as it was done in [6], [7]).
Notice that each BS-i is able to compute such estimation as:

γ̂ci [k] = E[γc|r1, ..., rN ] =

∫
S
γc p̂i(γc|r1, ..., rN )[k]dγc.

(21)
Lastly, the SSPE algorithm can be summarized in the

pseudo-code Algorithm 1. It describes how the dynamical
system defined in (18) evolves. In addition, it is worth noticing
that the next value of state variables vi[k + 1] is computed
based on the increment ∆vi[k] and its current value vi[k] as
shown in step-7.

C. Compression and Reconstruction of State Variables

The self-synchronization mechanism requires to exchange
state variables between neighboring nodes. In Section-III-B,
we propose to apply the self-synchronization mechanism to
every single point in the scene. This means that vi is a matrix
of same dimensions as S . Therefore, the exchange of such
state variables vi demands high communication bandwidth,
making the proposed algorithm impractical. For such a reason,
we propose to compress the state variables vi. We compute
the first two order moments in pseudo-range δi, angle θi and
range-offset δ0i following the next two steps.

First, the state variables vi operate with the range
log-likelihood of BS-i as seen in (18). Consequently, we
propose to define a probability distribution pvi associated to
each state variable vi. Such a probability distribution is defined
at iteration k as

pvi [k] = Cvi e
vi[k], (22)

where Cvi
is a normalization factor ensuring that the integral

of pvi
in the scene S is 1.

Second, we compute the moments of pv using the law of
the unconscious statistician (LOTUS) rule as

Epvi

[
f(γc)

]
=

∫
S
f(γc) pvi

[k] dγc (23)

where f(γc) is a function defined in the multi-dimensional
interval S. We compute the first two order moments for
(δi, θi, δ0). Notice that δ0 is the range-offset, δi and θi
are respectively the pseudo-range and angle at which BS-i
observes the transmitter. In addition, the parameters (δi, θi, δ0)
are defined as

δi(x, y, δ0) = di(x, y) + δ0, (24)

θ(x, y) = arctan (
y − yi
x− xi

). (25)

On the one hand, each BS has pseudo-range δi information
that comes from the received baseband signal. On the other
hand, the angle θi is extracted from the shared information
between BSs. Therefore, when the transmitter is surrounded by
the BSs, as we consider in our study case, the cross-correlation
between pseudo-range δi and angle θi is very small. Hence,
we choose to assume that the pseudo-range δi and angle θi
are independent.

The pseudo-range δi and range offset δ0 are clearly
correlated as shown in (24). Consequently, the first order
moments can be computed as

δ̂i[k] = Epvi

[
δi
]
; δ̂0[k] = Epvi

[
δ0
]
; θ̂i[k] = Epvi

[
θ
]
, (26)

and the second order moments as

Σδ̂i,0 [k] = Epvi

[
∆δi,0∆

T
δi,0

]
(27)

σ2
θ̂i
[k] = Epvi

[(
θ − θ̂i[k]

)2]
(28)

where ∆δi,0=
[
δi−δ̂i[k], δ0−δ̂0[k]

]T
and Σδ̂i,0 is a 2x2 matrix.

Finally, the exchange of parameters happens at
step-8 and step-9 of Algorithm 1. Only seven parameters
(δ̂i, δ̂0,Σδ̂i,0 , θ̂i, σ

2
θ̂i
) are exchanged between neighboring

nodes instead of all the elements of the state variable
matrix vi. In step-9 of Algorithm 1, BS-i receives the
parameters and reconstructs vj as

v̂j [k] =− 1

2
∆T
δj,0Σ

−1

δ̂j,0
∆δj,0 −

1

2σ2
θ̂j

(
θ − θ̂j

)2
. (29)

D. Convergence Rate Analysis

The associated dynamical system shown in (18) evolves
at a certain convergence rate that is dependent on
the communication parameters and the logical network
configuration [21]. Similarly to the analysis done in [22], it
could be shown that the state variables of the whole network
will evolve as

∆V[k] = Φk−1g, (30)

with

∆V = [∆v1, ...,∆vN ]T ; g = [L1, ...,LN ]T , (31)

where Φ=I−βL, with I and L being the identity and
Laplacian matrix respectively.

Authorized licensed use limited to: Vrije Universiteit Brussel. Downloaded on February 08,2022 at 11:47:40 UTC from IEEE Xplore.  Restrictions apply. 



0018-9545 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3148532, IEEE
Transactions on Vehicular Technology

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. X, FEBRUARY 2022 6

On the one hand, the matrix Φ describes the relationship
at iteration-k between the increment of state variables of the
whole system ∆V and the initial range log-likelihoods g.
On the other hand, under the assumption of a balanced
and strongly connected network, the convergence value
for the whole dynamical system is the average of range
log-likelihoods, i.e.,

∆V∗ =
1

N
11Tg, (32)

where 1 is a N-vector of ones. Consequently, we can find
an upper and lower bound on the evolution of ∆V by
subtracting (32) from (30) and taking the norm as follows∣∣∣∣∆V[k]−∆V∗∣∣∣∣ ≤ λmax(Wk)

∣∣∣∣g∣∣∣∣, (33)

where λmax(Wk) is the biggest eigenvalue of Wk, which is
defined as Wk=Φk−1− 1

N 11T . In short, based on (33), it is
clear that the smaller λmax(Wk) is, the closer the network is
to the convergence value. Besides, it was shown in [20] that
λmax(Wk) is associated to the network configuration as

λmax(Wk) = (1− βλ2(L))
k−1, (34)

where λ2(L) is the second smallest eigenvalue of the
graph Laplacian, also known as Fiedler value or algebraic
connectivity [23].

On the one hand, notice that the convergence bound
described in (33) is given for the increment of state
variables ∆vi. Which in our case represent the log-posterior
PDF of the transmitter position. On the other hand, notice
that we are interested on the convergence rate of the final
expected values of γc. Which have direct relationship to the
approximated log-posterior as show in (21). Therefore, we can
still make use of such convergence-rate analysis to address
the convergence of the SSPE algorithm, as we will see in
Section VI-D.

IV. SSPE AND IPE ALGORITHM RELATIONSHIP

In this section we show the relationship between IPE and
the proposed SSPE algorithm. In a nutshell, we prove that both
algorithms exploit the self-synchronization mechanism. Hence,
the benefits and improvements done for the IPE algorithm can
be directly applied to the SSPE algorithm.

To better explain such relationship, we briefly introduce the
IPE algorithm. However, a more detailed derivation can be
found in Appendix B. In brief, the IPE can be summarized as
the iteration of the two following steps:

• Intermediate Parameter Estimation: At BS-i, it estimates
the intermediate parameters ψi following a Bayes
framework. The log-posterior distribution of ψi is shown
in (35) (Notice that the expression is in log-domain),
where Li(ri|ψi) is the range log-likelihood of the
received signal. Pi(ψi) is a log-prior that is updated at
each iteration by the FC, and k is the iteration index.

Pi(ψi|ri)[k + 1] = Li(ri|ψi) + Pi(ψi)[k] (35)

• Prior Refinement: At the FC, the prior Pi(ψi) is updated
based on the information sent by all the other BSs (See
Appendix B).

To show that the IPE makes use of the self-synchronization
mechanism, we try to express (35) in a similar way to the
dynamical system equation shown in (18). To do so, we
perform two operations on (35). First, we subtract Pi(ψi|ri)[k]
from both sides of the expression, i.e., we subtract the
log-posterior at iteration k. Second and without changing
the IPE framework, we consider the case where ψi=γc, i.e.,
we consider that the intermediate parameters are the final
estimated parameters. Under such assumption we can change
the dependency of (35) to obtain:

∆Pi(γc|ri)[k] = Li(ri|γc) + Pi(γc)[k]− Pi(γc|ri)[k], (36)

where ∆P[k] is defined as the forward increment, i.e.,
∆P[k]=P[k + 1] − P[k]. Essentially, expression (36) yields
the evolution of the posterior probability of γc throughout the
iterations. A more detailed derivation of (36) can be found in
Appendix B.

Expression (36) is very similar to the self-synchronization
expression used for localization defined in (18). Furthermore,
by distributing αi,j and the summation in the last term, (18)
can be written as

∆vi[k] = Li(ri|γc)+β
N∑
j=1

αi,jvj [k]−vi[k]β
N∑
j=1

αi,j . (37)

By comparing (36) and (37) we can make the following
remarks term by term:

• It can be seen easily in the left hand side terms that
the state variable vi is equivalent to the log-posterior
Pi(γc|ri).

• The log-likelihood term of the received signal is the same
for both expressions and it remains constant through out
iterations.

• If we choose arbitrarily the value of the control loop gain
as β−1=

∑N
j=1 αi,j , the last term in (37) is equivalent to

the last term in (36).
• The second term of the right-hand side of (37) combines

the information of all BSs connected to BS-i. Similarly,
the log-prior term Pi(γc) in (36) is also computed based
on the information of all the other BSs, as can be seen
in (55) in Appendix B.

Consequently, the IPE can be seen as a particular case of
the proposed SSPE framework since both of them exploit the
self-synchronization mechanism. In summary, the conditions
for such equivalency are twofold: a particular value of control
loop gain β and a fully connected network. As a result, the
SSPE extends the IPE localization principle from a centralized
localization to a fully distributed scenario.

To the best of our knowledge there is no IPE convergence
analysis proposed in the literature. Conversely, in the
SSPE approach, we can rely on the results from the
self-synchronization literature to study the convergence of the
SSPE approach for different network configurations. Due to
such relationship between IPE and SSPE algorithms, most of
the IPE studies and its improvements can be extended to the
proposed SSPE framework. For instance IPE was extended
in [7] to consider a time offset between transmitter and BSs,
which can be directly related to this paper. In [8], IPE was
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extended for rich multipath scenarios which can be addressed
in the SSPE framework by modifying the likelihood of the
received signal.

V. PERFORMANCE ANALYSIS

The proposed SSPE algorithm is fully distributed, whereas
the DPE and IPE approaches are centralized. Such a
characteristic is the most distinctive among them. However,
it is also important to quantify the performance of the
proposed approach and compare it with other state-of-the-art
approaches. In this section, we define three performance
categories: Localization, Computational Complexity and
Communication Overhead. Furthermore, we assess the
performance of the DPE, IPE and the proposed SSPE
algorithm.

A. Localization Performance

The localization performance is assessed in terms of Mean
Distance Error (MDE) and Mean Range Offset Error (MROE).
The MDE and MROE are indicatives of possitioning and
synchronization error, respectively. Both metrics are defined
for a particular Signal-to-Noise-Ratio (SNR) value as

MDE =
1

Ns

Ns∑
n=1

√
(x̂n − xn)2 + (ŷn − yn)2, (38)

MROE =
1

Ns

Nsim∑
n=1

|δ̂0,n − δ0,n|, (39)

where Ns is the total number of realizations. Besides, the
coordinates (x̂n, ŷn) and (xn, yn) are the estimated and true
transmitter positions respectively for realization n. Similarly,
δ̂0,n and δ0,n are the estimated and true range offset for
realization n.

B. Computational Complexity

The complexity analysis for the DPE and IPE algorithms
was addressed in [7]-Section-IV. Therefore, in this paper we
only state the changes to those expressions and we refer
the reader to the original paper for a detailed derivation.
The complexity analysis in [7] is given as the number of
real multiplications in the whole network. Nevertheless, we
decide to separate and clearly state the complexity at each
individual BS and FC.

The algorithms to be compared are grid-search based.
Therefore, we define the number of elements in the final
grid as Nxyδ0=NxNyNδ0 , where Nx, Ny and Nδ0 are the
number of considered elements in the x,y and δ0 axes.
Likewise, the number of elements considered in the numerical
marginalization of the signal amplitude ai is denoted as Na.

1) DPE: An approximation of the DPE complexity
can be found in [7]-Eq.(33). Such an expression was
derived taken into account the marginalization over the
parameter ϕi. However, such a marginalization is not needed
anymore using (15). Consequently, the approximation of the
DPE complexity considered in this paper is

C
FC

DPE
≈ N(3P +Na)Nxyδ0 . (40)

2) IPE: The IPE complexity was derived in [7]-Eq.(35).
However, we separate the BS complexity from the
FC complexity as

C
BS

IPE
≈ (3P +Na)Nδ +NδNit (41)

C
FC

IPE
≈ N(N − 1)Nxyδ0Nit, (42)

where Nit is the number of iterations and Nδ is the number
of elements considered in the pseudo-range grid.

3) SSPE: We analyze the pseudo-code given in
Algorithm-1. At step-1, each BS computes the received
signal log-likelihood. Similar to the DPE case, each BS needs
3P real multiplications to compute rHi si. Besides, Na real
multiplications are required to marginalize out the nuisance
parameter ai at every point in the final grid. Therefore, in
total (3P+Na)Nxyδ0 real multiplications are needed at step-1.
Notice that in [7] the complexity of expected values using
the grid as well as addition and exponential operations are
neglected. We also neglect those operations in this paper
to do a fair comparison. Consequently, the complexities
in steps 5, 6, 7 of Algorithm-1 are negligible compared to
the final complexity. Step-7 also involves the exponential
and expectation operations to perform the compression of
state variables. Hence, their complexity is also neglected
for the same reason. At every iteration, step-9 requires a
grid reconstruction using (29) per each directly-connected
neighbour. The first term in (29) requires three products
per element in the Nxyδ0 grid. Conversely, the second term
requires only one product per element in the NxNy grid,
since it does not depend on δ0. Lastly, an approximation of
the SSPE complexity at each BS-i is given by

C
BS

iSSPE
≈ (3P+Na)Nxyδ0+(3Nxyδ0+Nxy)|N

(1)
i |Nit, (43)

where |N (1)
i | is the number of neighboring/directly-connected

BSs to the BS-i.

C. Communication Overhead

An analysis regarding the communication overhead was
also presented in [7]-Section-IV. Nevertheless, the analysis
is done in terms of the total number of exchanged bits.
In distributed approaches, the processing relies on the
exchange of parameters among the BSs; whereas in centralized
approaches, the communication is done once or a few times
but only between BSs and the FC. Therefore, we decided
to analyze the number of received parameters per BS to
achieve a fair comparison between distributed and centralized
approaches.

1) DPE: Each BS transmits its received signal to the FC.
Such a received signal is composed of P complex-value pilots.
Each pilot is composed of a real and imaginary part. Therefore,
the number of received parameters at the FC is

O
FC

DPE
= 2PN. (44)

2) IPE: At each iteration, the FC receives two parameters
(pseudo-range mean and variance) from each BS. However,
each BS receives two parameters (prior mean and variance)
from the FC starting from the second iteration onward.
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Therefore, the number of received parameters at the BS and
FC respectively are

O
BS

IPE
= 2(Nit − 1) ; O

FC

IPE
= 2NitN. (45)

Notice that the FC is the most congested node. Furthermore,
the more BSs are present in the network, the more congested
the FC is.

3) SSPE: As stated at the end of Section III-C, each BS
receives seven parameters from every directly-connected BS.
Therefore, the number of received parameters at BS-i is

O
BS

iSSPE
= 7|N (1)

i |Nit (46)

VI. SIMULATION RESULTS

We consider a rectangular scene delimited by
x∈[0m, 100m] and y∈[0m, 100m], where N=8 BSs are
located at the positions given in Table I (A graphical
representation of the locations of the BSs is given in Fig. 4).
The transmitter lies at arbitrary positions inside the rectangular
scene and communicates with the BSs over a bandwidth
of 40 MHz. At each BS, the processing is done using a
single OFDM symbol containing P=64 equispaced pilots
with ∆f=312.5kHz. All BSs are perfectly time synchronized
whereas the transmitter is not time synchronized to the
BSs. Hence the time offset t0 is considered to be uniformly
distributed in the interval t0∈[0ns, 250ns], which in range
offset means δ0∈[0m, 75m] [1].

In addition, we consider a single path propagation channel,
i.e., a strong LOS scenario. Therefore, according to the
specification of ETSI TDL-E channel model [1], we draw the
values of ai from a Rician distribution of rice factor of 22dB.
Such a rician factor is assumed to be known at the receiver.
The common phase ϕi is drawn from a uniform distribution in
the range [−π, π]. The numerical integral to marginalize the
amplitude ai is assessed using Na=10 equispaced points. Such
a grid is symmetrically placed around its mean considering a
range of values of six times the standard deviation.

Similarly to [7] and [6], the SNR is defined as
SNR=

∑
p |sp|2/(Pσ2

w). In a real case scenario the BSs close
to the transmitter will have higher SNR compared to the BSs at
a further distance. However, we assume the SNR to be equal
and known at all BSs. Such an assumption is done just for
convenience to simplify the simulations.

To better show our results, we consider a fully connected
network in Sections VI-A, VI-B, VI-C and VI-F since we want
to compare the SSPE to the IPE algorithm. Conversely we
consider network configurations different for a fully connected
one for Section VI-D. Lastly, the MDE and MROE are
averaged over Ns=200 transmitter positions, channel and
noise realizations for each single SNR value.

TABLE I
BSS LOCATIONS

BS-idx 1 2 3 4 5 6 7 8
xi[m] 0 50 100 100 100 50 0 0
yi[m] 0 0 0 50 100 100 100 50
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Fig. 1. Performance parameters for the case of complete communication of
state variable matrix vi and a fully connected network. a) Average MDE and
b) Average MROE

A. SSPE performance

We show the performance of the proposed SSPE algorithm
in Fig. 1. We consider the case where the exchange of
state variables is done without compression. We are aware
that without compression the SSPE algorithm is impractical.
Nevertheless, we would like to highlight the fact that our
algorithm surely converges to the same performance as the
centralized DPE approach. Such a characteristic will hopefully
motivate more studies in the compression part.

Notice that Fig. 1 shows the average MDE and MROE
among the BSs, since all BSs have similar performance. At
iteration k=1, all BSs have only local information, that is,
there is no prior information. Hence, the estimation is done
using only the range likelihood of the received signal which by
itself is not enough to estimate the parameters γc. As a result,
both MDE and MROE are far away from the DPE curves
when k=1. At iteration k=2, all BSs exchanged the state
variables. In addition, we consider a fully connected network
and β=0.125 which is the value for fastest convergence3. As
a consequence, both MDE and MROE converge directly at
the second iteration. Lastly, it can also be seen that the SSPE
distributely converges to the localization performance of the
DPE algorithm.

3The value of β for fastest convergence can be obtained based on the
eigenvalues of the Laplacian matrix that depends on the logical configuration
of the network as explained in [20]
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Fig. 2. Performance parameters for the case of compression of state variable
matrix vi and a fully connected network. a) MDE and b) MROE.

B. Compression of state variables

In this subsection we highlight the effect of the compression
of the state variables vi over the performance of the proposed
algorithm. We show our results in Fig. 2 for the same
considerations as in the previous section. Notice that at
iteration k=1 the exchange of state variables happens after
the estimation of γc. Therefore, the performance is exactly
the same as the one shown in the previous section; hence they
are not shown in the subsequent figures.

It can be seen that the proposed algorithm takes more
iterations to achieve convergence even though the value of
β for fastest convergence is still used. What is more, it seems
that it converges to a value different from the performance
of the DPE algorithm. This phenomenon has been studied in
the self-synchronization literature under the name of coupling
noise effect [17], [16]. In our specific application such
coupling noise is introduced to the system by the compression
of state variables vi. Unlike in [19], [17], where the coupling
noise comes from quantization or the communication channel.

On the one hand, for high SNR values (≥ -9dB), the
proposed algorithm converges to the true value. It means
that the first two order moments of γc describe well enough
the state variable vi. Therefore, the compression strategy
introduces just a small amount of coupling noise. On the other
hand, for medium values of SNR (< -9 dB) the proposed
algorithm does not converge to the DPE performance anymore.

It means that the first two order moments of γc are not
enough to describe completely vi. The reason for this is
that, at medium SNR values the range likelihood becomes
multimodal. Hence, it is not very well represented with one
single Gaussian as we highlighted such phenomenon in [24].

We could reduce the coupling noise, and so reducing the
bias by two approaches. First, reducing the value of β since
according to (18) it multiplies the term that introduces the
coupling noise. However, it affects the speed of convergence
as it reduces the interaction between nodes. Second, by
performing extra iterations without changing the value of β.
In summary, both approaches will require more iterations to
converge. Hence, the approximated posterior distribution p̂ will
get closer and closer to the centralized posterior p with the use
of extra iterations.

C. IPE - SSPE relationship

It was stated in Section IV that the IPE algorithm can be
understood as an special case of the SSPE approach. Such
a statement relates the IPE algorithm to the case of a fully
connected network. On the one hand, it was empirically shown
in [6], [7] that the centralized IPE algorithm converges at
iteration k=6. On the other hand and as it will be discussed
in Section VI-D, a fully connected network also converges
approximately at iteration k=6. Therefore, we consider k=6
as last iteration in Fig. 3 to fairly compare the localization error
after convergence between the IPE and SSPE approaches. In
addition, we also show the curves at iteration k=2, just to show
the initial localization error for the algorithms. Notice that we
omit the curves at k=1 since the SSPE deviates significantly
from the true transmitter position as explained in Section VI-A.

Since both IPE and SSPE exploit the same
self-synchronization mechanism, it was expected for
both to have similar but not exactly equal MDE and MROE
curves. At iteration k = 2, there is a slight difference between
the IPE and SSPE algorithms, as can be seen in Fig. 3.
However, such difference is only due to the step at which the
algorithms compute the final estimate γc. For instance, the
IPE algorithm computes the final estimates at the FC, i.e., it
estimates γc after exchanging the state variables. Whereas,
the SSPE estimates γc before the exchanging. As a result,
the IPE algorithm performs in general slightly better than the
SSPE algorithm at iteration k=2.

At iteration k=6, both algorithms have converged, and so
their performances are very similar to each other. Such minor
differences in performance can be explained by the fact that the
IPE algorithm only exchanges the pseudo-range information
between BSs. Whereas, the SSPE algorithm exchanges more
parameters. Such similar performance curves numerically
show the relationship between IPE and SSPE algorithms stated
in Section IV.

D. Convergence Rate Analysis

In this section we show the simulation results of the
convergence analysis of the SSPE algorithm described in
Section III-D. Such an analysis is a direct consequence of
using the self-synchronization mechanism. In the previous
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Fig. 3. Comparison between IPE and SSPE algorithms. a) MDE and
b) MROE.

section we restricted our analysis to a fully connected
network. However our proposed algorithm can work with any
network configuration as long as they meet the condition
of being strongly connected and balanced. In addition, we
study three network configurations that are shown in Fig. 4.
Such configurations are shown as undirected graphs since the
networks are assumed to be balanced.

As explained in Section III-D, the value of λmax(Wk)
determines the convergence rate of the network. Therefore,
Fig. 5 shows the evolution of λmax(Wk) along the iterations
for the three network configurations.

The insights brought by Fig. 5 are twofold. First, it could
be seen that the more connections between the BSs the faster
the value of λmax(Wk) goes to zero. Another way to interpret
Fig. 5 is the following: the higher the algebraic connectivity
the faster the convergence. The fastest convergence is for a
fully connected network that is the case studied previously in
section VI-A. Second, Fig. 5 can help to determine a threshold
value under which we consider that the SSPE algorithm
has converged. Consequently, we analyze the number of
iterations required for convergence for the considered network
configurations to empirically suggest that threshold.

Fig. 6 shows a comparison between the MDE curves for
the considered network configurations. Notice that we only
analyze the MDE since the behaviour for the MROE is very
similar to the MDE. In addition, we decide not to analyze the

(a) (b) (c)

Fig. 4. Network Configurations: a) 3-regular graph (Wagner graph), b)
Irregular graph, c) 2-regular graph (Cycle graph)
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Fig. 5. Convergence Rate for different network configurations

Root Mean Squared Error (RMSE) to maintain uniformity on
the performance parameters along this paper.

As discussed in Section VI-A, all BSs have the same MDE
curve for iteration k=1 (As shown in Fig. 1). Therefore, we do
not show them in Fig. 6 since they are the same no matter the
network configuration. At iteration k=4, network-a already
converges to the DPE performance as shown in Fig. 6(a).
Whereas, networks b and c require further iterations. Fig. 6(b)
shows the results at iteration k=5 only for network b and c,
since network-a already converged at iteration k=4. In
addition, Fig. 6(b) also shows the results at iteration k=8 only
for network-c, since the other network configurations already
converged.

In summary, networks a, b and c need 4, 5, and 8
iterations respectively to converge to the DPE performance.
Furthermore, we can see that the values of λmax(Wk),
for such iterations, are under a convergence threshold of
λmax(Wk)≤0.15 (See Fig. 5). Which suggests that it is
enough to consider such threshold to achieve convergence on
the estimates of the final parameters γc. Nevertheless, notice
that extra iterations will be needed to reduce the bias due to
coupling noise introduced in the system when compressing vi.

Consequently, the number of iterations required for
convergence, for a particular network configuration, can be
approximately determined as follows.

• Given the network configuration, compute L and choose
an acceptable value of β, as studied in [20].

• Compute λmax(Wk) using (34) for different iterations
values.
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Fig. 6. MDE comparison for different network configurations at different
iterations a) k=4 and b) k=5 and k=8 (Only for network-c).

• Choose the lowest iteration value k for
which λmax(Wk)≤0.15.

• Add extra iterations to the resulting value to account for
the slower convergence due to coupling noise. We found
empirically that 4 to 5 extra iterations are enough for the
considered network configurations in this paper.

For instance, notice that this could be the reason why the
IPE algorithm seems to converge at iteration k=6 empirically
suggested in [6]. On the one hand, the IPE can be seen as
using the self-synchronization mechanism assuming a fully
connected network. On the other hand, a fully connected
network converges at the second iteration in the absence of
coupling noise, as seen in Fig. 5. Therefore, we could think
that the IPE needs 2 iterations plus 4 extra iteration due
to coupling noise to reach convergence. Nevertheless, such
proposition is still partially based on empirical observations.

E. Computational Complexity

We present and discuss the simulation results for the
complexity analysis detailed in Section V-B. We discuss the
complexity in two ways. We firstly discuss the complexity as
a function of the number of iterations. Then, we discuss the
complexity as a function of the number of BSs present in the
network N .

Fig. 7(a) shows the cumulative number of multiplications
for each iteration. We considered the network setup with
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Fig. 7. Complexity comparison among DPE, IPE and SSPE algorithms per
BS/FC a) Complexity as a funciton of iterations and b) Complexity as a
function of BSs in the network.

N=8 BSs as shown in Fig. 4. For the IPE algorithm, the
complexity at the BS is less than the complexity at the FC by
three orders of magnitude. It means that almost all the IPE
complexity is concentrated in the FC. When k=1, the initial
SSPE complexity at the BS is higher than the IPE complexity
at the FC. However, the complexity increases faster for the
IPE than in the SSPE case. When k>5 the resulting SSPE
complexity is lower than the IPE complexity. Furthermore,
such a SSPE-iteration complexity is even lower for a less
connected network (dashed green curve of Fig. 7(a)). Lastly,
the sum of SSPE complexities for all the BSs in the network is
higher but still comparable to the centralized DPE complexity.

We now discuss the effect of N over the complexity. A
dense network with few connections is attractive in the context
of distributed algorithms. Therefore, we consider that each
BS is directly connected to three other BSs. Fig. 7(b) shows
the considered algorithm complexity for k=1 (dashed curves)
and k=10 (solid curves). Notice that we omitted the IPE
complexity at the BSs, since it is not affected by the number
of BSs in the network. When k=1, the complexity at the
FC grows with N for the DPE and IPE cases. Conversely,
the complexity at the BSs remains the same for the SSPE
approach. Furthermore, when N>15, the SSPE has less initial
complexity than the IPE approach. At iteration k=10 and when
N>17, the IPE complexity is comparable to the DPE case;
whereas the SSPE complexity has not increased very much.
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F. Communication Overhead

In this section we show the simulation results for the
analysis presented in Section V-C. We consider N=8 BSs
being part of a fully connected network. In addition, we
also consider network-c shown in Fig. 4. We present the
communication overhead in terms of the received parameters
(two parameters per complex value) as a function of the
number of iterations as can be seen in Fig. 8.

For the IPE case, the FC receives more parameters than the
BSs. In fact, such a difference is approximately one order of
magnitude. All the BSs are only connected to the FC and not
among each other. As a result, the communication overhead
increases only at the FC if more BSs are added to the network.

The SSPE approach spreads the processing among the BSs,
thus it increases the necessary communication among them.
As a result, the number of received parameters in the BS
is higher than the FC or BSs in the IPE approach. Notice
that even though the SSPE communication overhead is higher
than the IPE case, the SSPE is fully distributed whereas the
IPE is centralized. Furthermore, the communication overhead
can become comparable to the IPE case for a less connected
network as can be seen in the Fig. 8.

VII. CONCLUSION

In this work, we presented the SSPE algorithm for the case
where the transmitter is not time synchronized to the BSs. We
also presented a compression approach for the state variables
to reduce the amount of communication overhead between
the nodes. We also shown the existence of a relationship
between IPE and SSPE, since both of them exploit the
self-synchronization mechanism. Therefore, the localization is
done by means of an iterative process, in which each BS
shares just a few parameters between all other BSs, hence
the transmitter position is available at each BS at the end of
each iteration. Numerical results show that the performance of
the final algorithm gets close to the performance of a direct
localization in a distributed fashion.

APPENDIX A
RECEIVED SIGNAL LIKELIHOOD MARGINALIZATION

We start from an extended version of (13) as

pi(ri|ai, ϕi, γc) = C1e
− 1

σ2
wi

[ri−uisi]
H [ri−uisi]

, (47)

where the γni
parameters are fully written. Notice that

C1=(2πσ2
wi
)−P/2 is just a normalization factor. Using (10)

and (6) and further developing the exponent we have the
following expression

pi(ri|ai, ϕi, γc) = C1e
− 2

σ2
wi

ℜ(aie
jϕirHi si)− 1

σ2
wi

(rHi ri+a
2
i s

H
i si)

,
(48)

where ℜ(.) is the real part operator. Analyzing the expression,
we can make the following three remarks:

• The nuisance parameter ai can be outside of the real part
operator since it is purely real.

• Only the modulus/amplitude of rHi si can be outside the
real part operator, leaving a phase βi = arg (rHi si).

• The term rHi ri is constant; hence it can be gathered with
the normalization factor.

Applying the remarks, (48) can be expressed as

pi(ri|ai, ϕi, γc) = C2e
− 2ai

σ2
wi

|rHi si| cos (ϕi+βi)− 1
σ2
wi

(a2i s
H
i si)

,
(49)

where C2 is a constant taking into account C1 and the
exponential constant term of rHi ri.

Simultaneously, we can write the extended version of (14) as

pi(ri|γc) =
∫ ∞

−∞

∫ ∞

−∞
pi(ri|ai, ϕi, γc)p(ai)p(ϕi)daidϕi

(50)
where replacing (49) in (50), rearranging the terms and the
order of integration as

pi(ri|γc) = C3

∫ ∞

−∞
Ge

−a2
i

σ2
wi

(sHi si)
p(ai)dai (51)

where C3 = C2 p(ϕi), since ϕi is uniformly distributed. The
factor G is defined as the following integral

G =

∫ π

−π
ejz cos (ϕi+βi)dϕi (52)

where z = −j 2ai
σ2
wi

|rHi si|. Since βi is a constant phase we can
perform a change of variable as:

G =

∫ π+βi

−π+βi

ejz cos (θi)dθi = 2

∫ π

0

ejz cos (θi)dθi (53)

where θi=ϕi+βi. Note that the integral is periodic
regarding θi; hence the integration interval remains to
be [−π, π]. In addition, the integral is symmetric regarding
the origin; thus, it is sufficient to consider the integration
interval [0, π]. Finally, the last integral in (53) is the integral
form of the Bessel function of the first kind of order zero J0(z)
as defined in [25]. Therefore G = 2πJ0(z) can be replaced
in (51) to finally obtain the desired expression shown in (15).
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APPENDIX B
ITERATIVE POSITIONING ESTIMATION

Step 1 - Intermediate Parameters Estimation

At BS-i the log-posterior can be expressed as:

Pi(ψi|ri)[k + 1] = Li(ri|ψi) + Pi(ψi)[k] (54)

where ψi is a vector of intermediate parameters that are
function of the common parameters γc, i.e., ψi = ψi(γc). The
term Pi(ψi) is a log-prior distribution of such intermediate
parameters that is updated at the FC in step 2. For instance, in
[6] only one intermediate parameter was used ψi = di(x, y)
with γc = [x, y]T . The first two order moments of ψi are sent
to the FC, i.e., (ψ̂i, σ2

ψ̂i
) which are computed using the LOTUS

rule shown in (23) with respect to pi(ψi|ri) at iteration k.

Step 2 - Prior Estimation

The prior is refined at the FC using the information sent by
all BSs, as

Pi(γc|ψ̂1...ψ̂N\ψ̂i) =
N∑
j ̸=i

− 1

2σ2
ψ̂j

|ψj−ψ̂j |22+log(CPi
), (55)

where CPi
is a normalization factor. Since ψi depend on

γc, we can compute the first two order moments of ψi
using the LOTUS rule regarding Pi(γc|ψ̂1...ψ̂N \ ψ̂i). Such
parameters (ψ̂i, σ

2
ψ̂i
) are sent to the BS-i to update the prior

distribution in (54).
To obtain (36), we subtract Pi(ψi|ri)[k] from both sides

leading to the expression:

∆Pi(ψi|ri)[k] = Li(ri|ψi) +Pi(ψi)[k]−Pi(ψi|ri)[k], (56)

where ∆Pi[k] = Pi[k+ 1]−Pi[k]. Finally, without changing
the IPE iterative framework, we consider the case where
ψi = γc, i.e., we consider that the intermediate parameters
are the final estimated parameters. Under such assumption we
can change the dependency of (56) to obtain the expression
shown in (36).
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Libre de Bruxelles (ULB), Brussels, Belgium,
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