Unity-Rate Coding Improves the Iterative Detection
Convergence of Autoencoder-Aided Communication
Systems

Luping Xiang, Member, IEEE, Chao Xu, Senior Member, IEEE, Xiaoyu Zhang, Member, IEEE, Thien Van Luong,
Member, IEEE, Robert G. Maunder, Senior Member, IEEE, Lie-Liang Yang, Fellow, IEEE and Lajos Hanzo,
Fellow, IEEE

Abstract—A forward error correction (FEC) and unity-rate
coded (URC) autoencoder (AE)-assisted communication system
is proposed for the first time, which relies on soft iterative
decoding for attaining a vanishingly low error probability. The
AE-demapper is specifically designed for directly calculating
the extrinsic logarithmic likelihood ratios (LLRs), which can
be directly entered into the URC decoder for soft iterative
decoding. This avoids the potential degradation due to the
conversion of symbol probabilities to bit LLRs. A comprehensive
capacity analysis of the AE is performed, which demonstrates
the capacity advantage of the AE-aided constellation design
over its conventional quadrature amplitude modulation (QAM)/
phase shift keying (PSK) counterpart. Furthermore, we carry
out its EXtrinsic Information Transfer (EXIT) chart analysis,
which indicates that as a benefit of our URC, the EXIT curve
always reaches the [1,1] point of perfect convergence, leading to
a vanishingly low error probability. More explicitly, our bit error
ratio (BER) and block error ratio (BLER) results demonstrate
that the proposed FEC-URC-AE system achieves significant
iterative gains both in additive white Gaussian noise (AWGN) and
Rayleigh channels, outperforming both its model-based FEC-AE
and its conventional coded QAM/QPSK counterparts.

Index Terms—Unity-rate code (URC), autoencoder (AE), it-
erative detection and decoding, EXtrinsic Information Transfer
(EXIT) chart.

I. INTRODUCTION

Although learning techniques have been used in wireless
communications for three decades, advances in deep learn-
ing (DL) have led to their renaissance in the context of
physical-layer communications [1-6]. The applications of deep
neural networks (DNNs) to communication networks can be
classified into two main categories, model-inspired and data-
driven classes. The model-inspired solutions approximately
adapt existing algorithms by invoking a DNN-like topology
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[7]. Different model-driven DNNs have been proposed for
replacing either a single or multiple components of the con-
ventional model-based communication systems, such as the
multiple-input multiple-output (MIMO) detector [8, 9], chan-
nel estimator [10, 11], data detector [12, 13] or channel decoder
[6]. By contrast, the family of data-driven approaches provide
model-free solutions for these physical-layer communication
challenges [14—-16], which do not require a statistical input-
output model, which is achieved by intrinsically integrating
a conventional receiver into the DNN structure. Compared
to the class of model-inspired DNN solutions, data-driven
DL methods are capable of performing detection or decoding
without the need for mathematical models, but this is achieved
at the cost of requiring a large training dataset and a high
training complexity.

Furthermore, joint optimization of the transmitter and re-
ceiver has been proposed for achieving end-to-end communi-
cations by using a so-called autoencoder (AE) [17], where
the transmitter and receiver are implemented by a pair of
DNNs. Additionally, the implementation of an AE-based com-
munication system relying on software-defined radios was
reported in [18]. The applications of the AE have penetrated
into various scenarios of next-generation wireless communica-
tions, for instance, orthogonal frequency division multiplexing
(OFDM) detection [19], random deployment of nonorthogonal
multiple access (NOMA) [20], activity identification in grant-
free random access [21], multicarrier communications [22],
beamforming [23], just to name a few.

However, the aforementioned designs consider the opti-
mization of symbol-based cross entropy, by maximizing the
mutual information (MI) between the transmitter outputs and
the receiver inputs. However, a holistic communication system
always comprises a channel coding block, which typically pro-
cesses bit-based information. In this case, the conversion of the
softmax function outputs [24, 25], which converts the detected
symbol probabilities to the bit-based logarithmic likelihood
ratios (LLRs) imposes significant performance degradation.
This prevents the potential implementation of holistic AE-
based communication systems operating on the basis of bit
LLRs. Hence, Cammerer et al. [26] proposed a novel bit-
based AE mapper design, which maximized the MI between
the transmitter outputs and the receiver inputs at the bit level,
facilitating the bit interleaved coded modulation (BICM) for
the family of AE-modulated communication systems.
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While the built-in iterative decoding structure proposed in
[26] achieves iterative gains, it fails to retain the classic model-
based communication architecture. Given its data-driven ap-
proach, the iterative decoder of [26] requires training for each
and every legitimate block length and for each forward error
correction (FEC) coding scheme. For instance, in the context
of the 5G New Radio [27,28], exhaustive training of every
low-density parity-check (LDPC) and polar code block length
[29, 30], which requires extensive training sets and imposes an
extremely high training overhead. However, there is a paucity
of literature on iterative decoding of model-based AE-aided
communication systems.

Therefore, we fill this knowledge gap by exploiting the
attractive properties of unity-rate codes (URC) [31], which can
be harnessed for improving the iterative decoding performance
of turbo-style receivers, while incurring only a moderate
decoding complexity [32], as it will be detailed in Section
II. The family of URCs has been proposed for diverse appli-
cations, such as improving quantum codes [33], for visible-
light communications [34,35], as well as for simultaneous
wireless information and power transfer (SWIPT) [36]. Hence,
by incorporating a carefully designed URC, we conceive an
iterative decoder for AE-based systems, which circumvents
the inflexibility of iterative decoding designed for AE-based
systems, albeit at the cost of slightly increased complexity.
The main contributions of this paper are boldly and explicitly
contrasted to the literature in Table I and are summarized as
follows.

« A FEC-URC-AE system is proposed for soft iterative
decoding, which is capable of retaining the model-based
structure of classic communication systems. By employ-
ing the URC, bit-correlations are created between the
FEC-coded and AE-mapped sequences, hence increas-
ing the error-correction capability. Additionally, the AE-
mapper of our system is designed for directly generating
the extrinsic LLRs, which may then be entered into
the URC decoder for soft iterative decoding. Hence,
the optimization and training of the AE-mapper and
demapper will directly deal with the LLRs. This com-
pletely avoids the degradation due to the conversion
of symbol probabilities to bit LLRs. For demonstrating
the theoretical advantage of the AE-mapper, both the
continuous-input continuous-output memoryless channel
(CCMC) and the discrete-input continuous-output memo-
ryless channel (DCMC) capacity of the AE-modulation is
analysed. This shows the capacity advantage of the AE-
aided constellation design over its conventional quadra-
ture amplitude modulation (QAM)/ phase shift keying
(PSK) counterpart, for the first time.

o We carry out the EXtrinsic Information Transfer (EXIT)
chart analysis of the proposed FEC-URC-AE system for
demonstrating the benefits of incorporating a URC, which
always results in an EXIT curve reaching at the unity
MI at the [1,1] point, regardless of the signal-to-noise
ratio (SNR). This indicates the potential of attaining a
vanishingly low bit error ratio (BER) by using iterative
decoding.

Our BER and block error ratio (BLER) simulations
demonstrate that the proposed FEC-URC-AE achieves
significant iterative gains for both additive white Gaus-
sian noise (AWGN) and Rayleigh fading channels, and
outperforms both the model-based FEC-AE and the con-
ventional FEC-QAM/QPSK system.

The rest of this paper is structured as follows. Section II
describes the transceiver structure of the proposed FEC-URC-
AE system. Then Section III proposes our iterative detection
and decoding scheme. Section IV and V analyse the FEC-
URC-AE system from the perspective of its capacity and
EXIT characteristics, respectively. Following this, Section VI
demonstrates the error-correction capability of the proposed
system in terms of both its BER and BLER. Finally, our main
conclusions and some promising future research directions are
outlined in Section VII.

Notations: In this paper, the uppercase and lowercase bold-
face letters, X and z, denote matrices and vectors, respectively,
while the subscript z of the lowercase letter x represents the
2-th element in the vector z. Furthermore, (-)~%, ()7, and
() represent the matrix inversion, transpose and Hermitian
transpose operations, respectively. Finally, $(-) and (-) de-
note the real and imaginary parts, respectively, of a complex
vector or matrix.

II. SYSTEM MODEL

In this section, we assume an end-to-end single-input single-
output (SISO) communication scenario, where the modulator
and the demodulator are represented by the DNN-based AE
structure, so that they can be jointly designed and optimized.
We introduce our proposed FEC-URC-AE transmitter and
receiver structure in Sections II-A and II-B, respectively.

A. Transmitter

The proposed FEC-URC-AE transmitter relies on the
serially-concatenated scheme, as depicted in Fig. 1, where
the A-bit information bit sequence w; is first input to the
FEC encoder, with the output being the N-bit FEC coded
sequence c¢;. This is then interleaved by the interleaver 7y and
entered into the URC encoder giving the identical-length V-bit
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Fig. 1: The proposed FEC-URC-AE system with an iterative decoding scheme.

coded sequence ¢;. A URC encoder is a convolutional encoder
having a coding rate of R = 1 [31]. Here, the URC encoder
can be viewed as a ‘scrambler’ of the encoded bits, which
beneficially ‘smears and disperses’ the extrinsic information
within the code block without reducing the code rate R by
convolving its input bit with the URC’s generator polynomial.
In this way, the URC encoding process may be viewed as
a block-based mapping technique, which beneficially random-
izes the positions of the extrinsic information bits in support of
iterative detection. This is in contrast to the FEC-AE scheme
of [26], where the extrinsic information propagation across
symbols is not possible.

Following the concatenated encoding process of Fig. 1,
the N-bit FEC-URC coded bit sequence co is rearranged
by the interleaver 7o and the resultant scrambled sequence
uz = mo(cy) is split into Z = N/m groups, giving a
(mx Z)-dimensional coded bit matrix U, where m = log, M
represents the number of bits to be mapped into a single
M-ary amplitude-phase modulation (APM) symbol and M
is the modulation order. In this work, we adopt the one-hot
mapping approach proposed in [8]. The z-th column us .
(z = 1,2,---,Z) of Uz will be input to the AE-mapper
of Fig. 1 for bit-to-symbol mapping during the z-th symbol
duration.

A simple example illustrating the FEC-URC-AE transmitter
processing is shown in Fig. 2, where the information bits
u; = [1101] are encoded by the R = 1/2 recursive sys-
tematic convolutional (RSC) encoder relying on the generator
polynomial of [1011,1101]. After interleaving, the resultant
interleaved sequence wy = [10110011] is entered into the
URC encoder having the generator polynomial of [10] and
the feedback polynomial of [11]. After interleaving, one-hot
mapping is applied to the interleaved bits us = [11111001].

More specifically, the AE-mapper replaces the conventional
QAMY/PSK bit-to-symbol mapper by a fully-connected multi-
layer DNN [8, 26]. Within the z-th symbol duration, the coded
bit sequence us . comprising m bits will be input to the AE-
mapper at the transmitter after the one-hot preprocessin [8].
Specifically, the m-bit usz . is converted to the M = 2™-
bit one-hot vector es3 ., which uses the non-zero element
position to indicate the index of the ‘learned’ constellation
point. Considering the example of Fig. 2, the one-hot mapping

of a 4-bit sequence u3 , can be defined as

us.. =[0,0,0,0]
=e3. = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1],
(Ta)
us.. =[0,0,0, 1]
=es.= 1[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0],
(1b)
us. =[1,1,1,1]
=es.= [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0].

(1)

Then, the M one-hot bits comprise the M input neurons of
the AE-mapper, whereas the hidden layer of the AE-mapper
is comprised of 2M neurons. The output layer is constituted
by the real and imaginary parts of the “learned” constella-
tion point, as exemplified in Fig. 2. Given the optimization
parameters of the AE-mapper 8., = {W(ll),bgl),Wél),bél)},

where ng) and bl(l) represent the weights and biases to be
optimized in the [-th (I = 1, 2) layer, the 2 x 1 output £, of the
AE-mapper gives the real and imaginary parts of the ‘learned’
constellation. The input-output relationship of the AE-mapper
can be expressed as

t. =wd [fReLU (W?)egg +b§”)} Y @

where freLu is the rectified linear unit (ReLU) function [24],
which is defined as freLu(2) = max(z,0), and the optimiza-
tion parameters ng), ng), bgl) and bgl) have dimensions of
2M x M, 2 x 2M, 2M x 1 and 2 x 1, respectively.

After obtaining the output ¢, = [R(Z.),S(Z,)]?, which
is comprised of the real and imaginary parts of the origi-
nal ‘learned’ complex-valued constellation point z, € M,
respectively, where M is the original ‘learned’ symbol set,
normalization is performed to give the normalized complex-
valued constellation point ., € M, where M is the normal-
ized symbol set. The normalization process of ¢ to x, can be
formulated as,

z, = R(x,) + §S(z2)
__V ME;(R(z.) + jS(22))
Ve cmlR(3.)? + 3(2.)%]

where F, is the transmit power. In this work, we assume
the normalised transmit power of E, = 1 without loss of

3)
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Fig. 2: Example of the RSC-URC-AE transmitter processing the information bit sequence of u; = [1101].

generality. Note that the learning process of the AE-mapper
has been detailed in [26] and will be reviewed in Section .

The AE-mapped symbols of all Z groups to be transmitted
are expressed as

T = [x1,$27"' 7mZ]T° (4)

In this way, the bit-to-symbol mapping is achieved by the
employment of the AE-mapper, rather than by the conventional
QAM/PSK bit-to-symbol mapper. Additionally, since the AE-
mapper is considered as a component of the classic model-
based communication system, it can be readily implemented
as an independent component of our proposed RSC-URC-AE
system, with each column of the coded bit matrix U3 serially
entered into the AE-mapper of Fig. 1.

B. Receiver

Given the channel impulse response (CIR) vector h =
[h1,ha, -+ ,hz]T spreading over Z symbol durations at the
receiver, the Z x 1 received observations y = [y1,va," - ,yz|T
can be expressed as

y = diag{h}z +n, (5)

where diag{h} represents the Z x Z diagonal matrix construct-
ed from h, and Z x 1 vector n is the AWGN, which obeys
the complex Gaussian distribution with a zero mean and a
covariance matrix of I z0%;.

The receiver performs the inverse operations of the trans-
mitter, as shown in 1 and will be detailed in the next section.

III. AE-AIDED ITERATIVE DETECTION AND DECODING

In contrast to [26], which proposed a ‘built-in’ iterative
decoding architecture, in this section, we introduce our AE-
aided block-based iterative detection and decoding in Section
III-A, followed by the training of the AE in Section III-B.

A. RSC-URC-AE Decoding Process

To begin with, as shown in Fig. 3, zero-forcing (ZF)
preprocessing is applied to the z-th received observation .,
which can be expressed as 3, = y.h?/|h.|?. The real R(y) and
imaginary 3(y) parts of the resultant § = [j1, 71, ,%z|"

are then entered into the fully-connected DNN at the re-
ceiver, together with the magnitudes of the channel h =
[[h1]?,|h1|%, -+, |hz|?]T, rather than both the real and imag-
inary parts of h, as exemplified in Fig. 3. In this way, the
length of the input-tuple is reduced from 4 to 3 at each symbol
duration, hence reducing the training and testing complexity.

More specifically, the real R(g,) and imaginary $(g,)
parts of the ZF-preprocessed received signal 3, as well as
the magnitude h. are the 3 inputs of the AE-demapper, as
illustrated in Fig. 3, giving a 3 x 1 input vector ¥, . expressed
as

Yo,z = [%(gZ)a %(g.Z)a BZ]T' (6)

Furthermore, the activation function employed at each hid-
den layer of the AE-demapper is also the ReLU function
freLu as in the AE-mapper. After Z symbol durations, the
output layer applies a linear activation function to directly
create N extrinsic bit LLRs of the demapped bits. The
L-layer DNN employed in the AE-demapper in our work
is comprised of (L — 1) = 2 hidden layers and an out-
put layer, with the optimization weights and biases being
04 = {W(12),b(12), W(QQ),b(QQ)7 Wé2)7b§2)}. Then the N output
extrinsic LLRs E(u3) by the AE-demapper are expressed as

E(az) =W

reuW - frery (W Pyo +5) +52)) + b2
)

Note that each of the (L — 1) hidden layers is comprised of
@ neurons, whereas the output layer has m neurons, which
output m extrinsic bit LLRs of the demapped symbol Z .

Then the output LLRs E(@3) are entered into the URC
decoder after the de-interleaver 7, ! of Fig. 1. The iterative de-
coding is performed by exchanging soft extrinsic information
between the URC and FEC decoder, namely F(d3) obtained
by the URC decoder and the extrinsic LLRs E(¢;) after FEC
decoding, respectively. This leads to significant iterative gains,
as it will be demonstrated by our EXIT chart analysis in
Section V as well as by the BER and BLER results of Section
VI
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Fig. 3: Example of the RSC-URC-AE iterative receiver.

B. Training of the AE

The  parameters of AE
optimized by training are 6 =

b = {W 00" Wb

04 = Wgz),b?), W§2),b(22), Wéz),béz)} is employed in (7).
Additionally, the training dataset of the AE is comprised of
the FEC-URC encoded bit vector usy, the CIR hy and the
channel SNR ~, where b = 1,2,---, B is the vector index
of a training batch and B is the batch size. In this work, we
choose B = 1024. Since our proposed FEC-URC-AE system
is a model-based communication system, the AE-mapper is
trained independently for each and every modulation order,
and the trained AE-mapper can be used for the entire block,
regardless of the block length.

In the training process, the AE aims for minimizing the
difference of the FEC-URC encoded bit vector u3; and the
corresponding detected bit vector at the receiver 43 ;. Hence,
in this paper, the loss function L() is expressed as

that will be
{0cn,04.}, where

} is employed in (2) and

the

b=1v=1
(uévg log(ﬁgjg) +(1- uéug) log(1 — ﬂg’g)) , (8
where ugljg is the v-th bit in ug 3, the extrinsic LLR E(ﬁévg) is
the v-th element in the vector E(t3;) given by (7) and ﬂg”g
is the output of the sigmoid function fggmoia(-), which may be
expressed as

U3, = fsigmoia [F (U3 p)]
=1/[1 + e~ E@3)], ©)

By employing the loss function of (8), the parameters in
0 are updated for the batches and randomly picked from the
dataset, using the classic stochastic gradient descent (SGD)
algorithm [37] formulated as

9:=0—cVL(®), (10)

where ¢ is the learning rate of the SGD and V L(0) represents
the gradient of L(#). In this paper, ¢ = 10™* is selected for the
performance characterization of the proposed AE architecture.
Note that during the training process, the widely-adopted

adaptive moment estimation (Adam) optimizer is employed
for the off-line learning [38].

IV. CAPACITY ANALYSIS

In this section, we derive the continuous-input continuous-
output memoryless channel (CCMC) and discrete-input
continuous-output memoryless channel (DCMC) capacity of
the DNN-based communication system in Sections IV-A and
IV-B, respectively. Following this, the CCMC and DCMC
capacity results are quantified and discussed in Section I'V-C.

A. CCMC Capacity Analysis

The CCMC capacity models the channel by continuous
inputs as well as continuous outputs associated with an infinite
modulation order M [39], which is defined as

Ceemc =Ep,, [10g2(1 + |hz|2’y)] (bits/sec/Hz), (11)

where the SNR ~ under unity transmit power is defined as
v = 1/0% and E;,_|] is the expectation taken over the channel.

Observe from (11) that the constellation order or constella-
tion design will not influence the CCMC capacity, as it will
also be demonstrated in Section IV-C. However, in practical
communications, discrete QAM/PSK symbols are input to the
wireless channels. Hence, we will discuss the DCMC capacity
in the next section, which quantifies the memoryless channel
capacity relying on discrete inputs and gives more accurate
and tight bound.

B. DCMC Capacity Analysis

We now derive the DCMC capacity of the system. The
DCMC capacity (bits/sec/Hz) of an uncoded SISO system is
given by [39] and is calculated as

+oo
Cpewe = max > / p(yz,22)
p(yzlwz)vxze 2. EM —0

p(y=|z2)
X log
? <ZvZGM p(ys,v2)

where P(y.|x.) is the conditional probability density function
(PDF) of the received signal y, given the transmitted x,, which

) dy., 12)



can be expressed as

P(y.|z.)

2
> . (13)

_ 1 exp [ — Y. — hox.|
2ro%; 203

Note that (13) is maximized when the transmitted symbols
are equiprobable [39], i.e., p(z, = a;) = 1/M, VYa; € M.
Hence, we arrive at

vz)>

logy | =—————— | =log
2 (Zuze/\/lp(yzvvz)> 2 <szeMp(yz|vz
Z p(y:|z-) )

= —log, (
v, EM yz7vz

= logy (M) — log, Z exp (0),
v, €M

p(y:|7-) p(y:|7-)

(14)
where by substituting (13) into (14), ¥ can be expressed as

—|h; (x vz)—l—nz| + n?

U= (15)

oX
Given a constellation set M having a modulation order M,
(13) is maximized when all the constellation points have the
same probability.

Cpbemc = logy(

1M M
M) — i Z En, n. llog2 Zexp(\ll
m=1 v=1

(16)

C. Simulation Results

Figs. 4 and 5 show the DCMC capacity of (16) for com-
munication over both AWGN and Rayleigh fading channels,
respectively, where an MPSK, MQAM or AE mapper is
employed, using a modulation order of M = 8 or 16. Observe
from both Figs. 4 and 5 that in the case of M = 8§, the AE-
mapper achieves a higher DCMC capacity in the low SNR
region than 8QAM or 8PSK, which indicates that the ‘learned’
constellation achieves superior average Euclidean distance,
compared to the 8QAM or 8PSK. By contrast, similar DCMC
capacity can be observed when employing the conventional
16QAM and AE-mapper associated with M = 16, both of
which show a higher DCMC capacity than 16PSK, before
converging around SNR= 20 dB in Fig. 4. This lies in the
perfect symmetry of the 16QAM. Additionally, the CCMC
capacity is also included in Figs. 4 and 5 for upper-bounding
the capacity, which quantifies the channel capacity associated
with a continuous input.

V. EXIT CHART ANALYSIS

In this section, we analyze the EXIT chart performance of
the proposed FEC-URC-AE system.

To start with, following [40,41], we assume that the a priori
LLRs of the demapper L(*) (u3) obey the Gaussian distribution
with a mean of 14 and a variance of 0%, where we have j14 =

40 AWON —
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—-— AE-mapper

35

3.0

2.5

2.0

Capacity

1.5

0.5

0.0 | L
-5 0 5 10 15 20

SNR (dB)

Fig. 4: DCMC and CCMC capacity of the conventional
PSK, QAM, and AE-modulated communication system when
communicating over AWGN channels, where the modulation
order is M = 8 or 16.
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Fig. 5: DCMC and CCMC capacity of the conventional
PSK, QAM, and AE-modulated communication system when
communicating over uncorrelated Rayleigh fading channels,
where the modulation order is M = 8 or 16.

02 /2. Hence the conditional PDF associated with L(*)(u3)
can be expressed as

Pa(C|X =) =

1
exp [ —
V2mo s P (

Then, the MI between the a priori LLRs of the demapper
L(®)(u3) and the transmitted signal sequence z of (4) can be



expressed as

2

1 +o00 (C _ ‘LA)z

Io3(us) =1 — —— exp | ———2"—
s =t- = [ e ( o

x log, [1+e~¢] dC. (18)

By contrast, the MI between the extrinsic LLRs of the
demapper L(°)(u3) and the transmitted signal sequence 2 can
be expressed as

+oo
Latw) =3 ¥ [ pz=2)

r=—1,+1""
2pe (C|Z = 2)
pe (C1Z =0) +pe (C|Z =1)

where p. ((|Z = z) is obtained by the Monte-Carlo simu-
lations. From (19), we can express I.(u) as a function of
I.1 and the SNR . Hence the extrinsic information transfer
characteristic I, 3(u3) can be expressed by an EXIT function

Ts(-) as

x logs

d¢, (19)

Ie,3(u3) =Tz [Ia,S(uL’:)a 7] . (20)
SNR = 6 dB, AWGN Channel
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Fig. 6: The extrinsic information transfer characteristic of the
QAM/PSK and AE-mapper having a modulation order of M =
8, 16 and 32 when communicating over AWGN channel.

The extrinsic information transfer characteristic of Gray-
mapping based QAM/PSK and of the AE-mapper using a
modulation order of M = 8,16 and 32 is shown in Fig. 6,
where 8PSK is employed for M = 8 for the conventional mod-
ulation schemes, while 16QAM and 32QAM are employed
for M = 16 and 32, respectively. Observe from Fig. 6 that
the AE-mapper has the advantage of faster convergence to
I, 3(u3) = 1 than QAM/PSK.

The relationship of the MI between the a priori LLRs A(t)
of the URC decoder and the URC encoded bits u, as well as
the MI between the extrinsic LLRs E(t2) of the URC decoder

M =8, AWGN channel
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Fig. 7: The EXIT chart of the FEC-AE and of the proposed
FEC-URC-AE system having a modulation order of M = §
and a coded block length of N = 960 when communicating
over AWGN channels at different SNRs, v = 4,6 and 8 dB.

and the URC encoded bits us can be also quantified by an
EXIT function 75(-), expressed as

Ico(ug) = Tz Ig,2(u2),7].

By contrast, since the only input to the FEC decoder is the
soft-interleaved extrinsic LLRs of the URC decoder, as shown
in Figure 1, the EXIT function 71(-) of the FEC decoder is
independent of . Therefore, the EXIT characteristic is defined
as

2n

Ioa(c1) =T [Ioq1(c1)],

where I, 1(¢1) is the MI between the extrinsic LLRs E(¢1) of
the FEC decoder and the FEC encoded bits ¢1, while I, 1(c1)
is the MI between the a priori LLRs A(é;) of the URC
decoder and the FEC-encoded bits ¢;.

Figs. 7 to 9 show the EXIT chart of the FEC-AE and the
proposed FEC-URC-AE system having a coded block length
of N = 960, where M = 8,16 or 32, when communicating
over AWGN channels. The FEC employed in this paper is
a RSC code having a code rate of R = 1/2 and memory
of 3, as well as the generator polynomial of [1011,1101]'
and 8 trellis states. Indeed, this is the well-known the basic
component of turbo codes. Note that turbo codes having
two identical RSC encoders and an interleaver will always
attain superior error-correction performance over an identical-
complexity RSC decoder itself. However, when a URC is
serially concatenated to the RSC, the convergence rate of its
EXIT curve may be adjusted by assigning different number

(22)

I'The first polynomial indicates the feedback parameter, while the second
represents the feed-forward parameters. The coding rated could be adjusted
by variable-rate puncturer.
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Fig. 8: The EXIT chart of the FEC-AE and of the proposed
FEC-URC-AE system having a modulation order of M = 16
and a coded block length of N = 960 when communicating
over AWGN channels at different SNRs, v = 6,8 and 10 dB.
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Fig. 9: The EXIT chart of the FEC-AE and of the proposed
FEC-URC-AE system having a modulation order of M = 32
and a coded block length of N = 960 over AWGN channels
at different SNRs, v = 8,10 and 12 dB.

of iterations between RSC and URC. In this way, there would
always be an open tunnel between the EXIT curves of the
URC-RSC decoder and of the QAM detector in the EXIT
chart. By contrast, the turbo-coded system has a higher fixed
convergence rate than that of the RSC-URC coded system
[42,43], indicating that the EXIT curve of turbo codes may
cross that of the QAM detector before reaching the point (1,1).
Hence, employing the turbo code may not guarantee better
error-correction performance.

We can readily see from all the three EXIT charts that sim-
ilar to the Gray mapping, the AE also generates a horizontal
EXIT curve, indicating that no extra gains can be attained
by employing iterative decoding for SISO FEC-AE systems.
Hence, we employ a serially concatenated URC in the two-
stage system, which is capable of scrambling the bit sequence.
Observe from Figs. 7 to 9 that our proposed FEC-URC-AE
system is capable of attaining a substantial iterative gain by
exploiting the benefit of our serially concatenated URC, while
retaining the model-based structure of the communication
system, where the conventional modulator and demodulator
are replaced by a single AE. In this way, the training only has
to be performed once for a given modulation order, regardless
of the block length, hence increasing the flexibility of the AE.
This is a substantial benefit compared to the solution proposed
by Cammerer et al. [26]. To elaborate a little further, their
model-free structure also achieves iterative gains by integrating
the FEC and mapping process, which requires independent
training for each and every legitimate block length and for
each and every FEC scheme. Additionally, we can see from
the trajectory of Figs. 7 to 9 that the EXIT curve of the
URC decoder always reaches the I, a(uz) = I 2(u2) = 1,
regardless of the SNR. Hence, after a sufficiently high number
of iterations between the URC decoder and RSC decoder, we
can always reach the I, o(u2) = I, 2(u2) = 1 point, as long
as an open tunnel exists between URC decoder and the RSC
decoder curves.

VI. ERROR-CORRECTION PERFORMANCE

In this section, the error-correction capability of the pro-
posed FEC-URC-AE system is quantified in terms of both
its BER and BLER for different system parameters, when
communicating over AWGN or Rayleigh fading channels. The
simulation parameters are summarized in Table II. Note that
for consistence with the EXIT chart analysis of Section V, the
same half-rate RSC is adopted and logarithmic Bahl-Cocke-
Jelinek-Raviv (Log-BCJR) decoding is applied. Furthermore,
each of the L — 1 = 2 hidden layers is comprised of ) = 4M
neurons. The AE-mapper is implemented by employing the
standard DL libraries TensorFlow and Keras, and we adopt
the Adam optimizer.

Firstly, we consider 8QAM as an example to demonstrate
the advantage of the AE-mapper. Specifically, we compare
the constellation set of the AE-learned 8QAM to that of the
conventional square-8QAM at an SNR of 9 dB for transmis-
sion over Rayleigh fading channels, as shown in Fig. 10. Our
“learned” 8QAM constellation obtained by the AE-mapper
has a peak-to-average power ratio (PAPR) of 1.79, whereas



TABLE II: SIMULATION PARAMETERS

Parameters Values
Frame length (V) 240, 480, 720, 960
Modulation order (M) 8,16,32

Coding rate (R) 172
Number of iterations (7°) 16, 32,64

RSC polynomial [1011,1101]
URC polynomial [11,10]
Number of hidden layers (L — 1) 2
Learning rate 1073 to 10~ °
Mini-batch size 1024
15 1.0 X X
X
1.0 X o
05 X X
X
0.0 X X 00
X
0 s X X
1.0 X i
X
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() “learned” Constellation of 8QAM (b) Square-8QAM

Fig. 10: (a) The constellation of 8QAM “learned” by the AE-
mapper; and (b) the conventional square-8QAM constellation.

the conventional square-8QAM has a PAPR of 1.71, so the
latter is marginally better. However, the PAPR of the “learned”
constellation can be reduced if we include the PAPR into
the training loss function and perform joint multiple-objective
optimization. Furthermore, it can be observed from Fig. 10 that
the minimum distance between the neighbouring constellation
points of the AE-learned constellation is higher than that of the
conventional square-8QAM. It is also notable that the position
of the constellation points obtained by the AE-mapper may
vary as a function of the SNR, since the SNR value is also an
input of the training network, hence influencing the geometric
distribution of the constellation points.

We now characterize the iterative gains in Figs. 11 and 12,
which are in line with our EXIT chart analysis of Section V.
More specifically, Figs. 11 and 12 show the BER performance
of the proposed FEC-URC-AE system, which is compared to
the two-stage FEC-AE system proposed in [26], using no URC
scheme, where M = 8,16 or 32. The number of iterations
between the FEC decoder and URC decoder is T' = 16, 32 or
64 and the half-rate RSC has NV = 960 encoded bits. Note
that since the AE-demapper does not have a priori feedback
input, we assume no iterations between the decoder and AE-
demapper. We can see that a steep ‘turbo-cliff’ occurs when
using FEC-URC iterative decoding. This is consistent with our
observations from Figs. 7 to 9, where the trajectory gradually
increases to the [1,1] point. When T = 64 iterations are
employed between the RSC decoder and URC decoder, over
2.4 dB gain can be observed from Fig. 11, when employing the
proposed FEC-URC-AE system over the non-iterative FEC-
AE system at a BER of 1075 for transmission over AWGN
channel. In all cases M = 8,16 and 32 are used. Similar
observations may be obtained in Fig. 12, where the same
parameters are employed for communication over uncorrelated
Rayleigh fading channels. Still, significant BER vs. SNR gains

1o N =960, AWGN channel
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Fig. 11: BER performance of the proposed FEC-URC-AE and
the FEC-AE system having a coded block length of N = 960
when communicating over AWGN channel, where M = 8,16
and 32, T'= 16,32 and 64 are used.

1o N =960, Rayleigh fading channel
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Fig. 12: BER performance of the proposed FEC-URC-AE and
the FEC-AE system having a coded block length of N =
960 when communicating over uncorrelated Rayleigh fading
channels, where M = 8,16 and 32, T' = 16,32 or 64 are
used.

are achieved with the aid of the proposed iterative decoding
scheme. It can be observed from Fig. 11 that the results of
FEC-AE exhibit a steeper slope than those of FEC-URC-
AE, since the concatenation of the URC further improves the
exploitation of the extrinsic information without increasing
the overall delay in the iterative soft-information exchange
between the URC decoder and the FEC decoder, hence also
improving the BER performance. This may also be interpreted
as increasing the time-diversity attained by our sophisticated
coding scheme.

Furthermore, the BLER of the proposed FEC-URC-AE
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Fig. 13: BLER performance of the proposed FEC-URC-AE
and the FEC-AE system having a coded block length of N =
960 when communicating over AWGN channel, where M =
8,16 and 32, T' = 16, 32 and 64 iterations are employed.
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Fig. 14: BLER performance of the proposed FEC-URC-AE
and the FEC-AE system having a coded block length of N =
960 when communicating over uncorrelated Rayleigh fading
channels, where M = 8,16 and 32, T' = 64 iterations are
employed.

systems is quantified in Figs. 13 and 14, using the same param-
eters as in Figs. 11 and 12, when communicating over AWGN
and Rayleigh fading channels, respectively. When the BLER
is considered, there are no intersections between the proposed
FEC-URC-AE and the FEC-AE systems. Specifically, a 4.5
dB SNR gain is observed at a BER of 10~° from Fig. 13
when employing a URC, in the case of M = 32 and T = 64,
compared to that of the FEC-AE system of [26]. Furthermore,
the results show that only as few as 1" = 16 iterations are
required between the URC and FEC decoder for achieving
significant SNR gains, compared to the FEC-AE decoder, as

1o AWGN channel, T = 64

X FEC-URC-AE (N = 240)
0 FEC-URC-AE (N = 480)
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O FEC-URC-AE (N = 960)
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Fig. 15: BER performance of the proposed FEC-URC-AE and
the FEC-URC-QAM/PSK system having different coded block
lengths of N = 240,480, 720 and 960 over AWGN channel,
where M = 8,16 and 32, and T' = 64 iterations are employed.

shown in Fig. 14.

Additionally, the influence of the block lengths is char-
acterized in Fig. 15, where the proposed FEC-URC-coded
AE-modulated system has a code block length of N =
240,480, 720 and 960 for communication over AWGN chan-
nels. It can be observed from Fig. 15 that a higher block length
N always leads to an improved BER. Note that since we
consider the AE-mapper as a concatenated part, simulations
of all the block lengths are carried out for the same AE-
mapper and the training is only performed once for each
modulation order, regardless of the code block lengths N and
FEC schemes used.

Finally, the BER comparison of the half-rate FEC-URC-
coded QAM/PSK system and the proposed FEC-URC-coded
AE-modulated system using the same number of 7' = 64
iterations for communicating over both AWGN and Rayleigh
fading channels are shown in Figs. 16, where we have
N = 960, M = 8 and 32. To avoid the overlap of the
BER curves, we omit the case of M = 16, which shows
similar trends to those of M = 8 or 32. Note furthermore
that when M = 8, 8PSK, rather than 8QAM is employed,
since 8PSK attains superior BER performance over 8QAM,
as detailed in [44] and shows a higher DCMC capacity in the
low SNR regions, as demonstrated in Figs. 4 and 5. However,
as shown in Fig. 12, when M = 8 or 32 is employed,
about 0.7 dB BER vs. SNR gain can be attained at a BER
of 1075, which demonstrates the merits of our FEC-URC-
coded AE-modulated system. Therefore, by exploiting the
beneficial properties of URC, iterative decoding is conceived
for our FEC-URC-AE system, while retaining the model-based
processing structure and attaining superior BER performance
over the conventional systems employing QAM/QPSK.

To summarize, for explicitly comparing FEC-URC-AE,
FEC-URC-QAM/PSK and FEC-AE that we have considered
in this paper, Table III quantifies the SNR required for different
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Fig. 16: BER performance of the proposed FEC-URC-AE and
the conventional FEC-URC-QAMY/PSK system having a coded
block length of N = 960 over uncorrelated Rayleigh fading
channels, where M = 8 and 32, and T = 64 iterations are
employed.

TABLE III: SNR (dB) REQUIRED FOR FEC-URC-AE, FEC-
URC-QAM/PSK AND FEC-AE TO ATTAIN A BER OF
10~°, WHERE A CODED BLOCK LENGTH OF N = 960
IS EMPLOYED.

AWGN Rayleigh
M=8 | M=32 | M=8 M=32
FEC-URC-AE 6.94 11.86 10.11 | 14.96
FEC-URC-QAM/PSK | 7.37 12.40 10.69 | 15.77
FEC-AE 9.19 | 14.90 13.89 | 19.73

schemes and parameters at a BER of 10~°, where N = 960
is employed. We can see that our proposed FEC-URC-AE
achieves the highest SNR gain among the three schemes for
all modulation orders and channels, demonstrating the benefits
of our scheme.

VII. CONCLUSIONS

A FEC-URC-AE system was proposed for soft iterative
decoding, while retaining the model-based structure of com-
munication systems. Additionally, the AE-mapper was specif-
ically designed for directly producing extrinsic LLRs, which
can be directly entered into the URC decoder for soft iterative
decoding. This avoids the degradation due to the conversion of
symbol probabilities to bit LLRs. Furthermore, the correspond-
ing DCMC and CCMC analysis was carried out, explicitly
demonstrating the advantages of the AE-aided constellation
design over the conventional BICM, for the first time. The EX-
IT chart analysis of the proposed scheme also demonstrated the
benefits of incorporating a URC scheme, showing that the MI
of 1 was reached, regardless of the SNR, indicating the explicit
benefits of iterative decoding. Our BER and BLER simulations
demonstrated that the proposed FEC-URC-AE communication
system is capable of achieving iterative gains for transmission
over both AWGN and Rayleigh fading channels and that it

outperforms its FEC-AE systems and its conventional FEC-
URC-coded QAM/PSK counterparts. Our future work will
focus on the implementation of our FEC-URC-AE system in
diverse communication environments, including high-Doppler
aeronautical scenarios.
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