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Abstract—In this paper, we consider a distributed joint sensing
and communication (DJSC) system in which multiple radar
sensors are deployed. Each radar sensor is equipped with a
sensing function and a communication function, and thus it is
considered to be a JSC node. The JSC nodes are able to perform
sensing their surrounding environments, e.g., weather conditions
or available spectrum. Furthermore, they can cooperatively
detect and track a common target. The information, i.e., of the
environment and target, collected by the JSC nodes is transmitted
to a base station (BS), i.e., a data fusion point, for further
processing. As such, different aspects of the target to be viewed
simultaneously, which significantly improves the performance of
the target detection and tracking. However, both the sensing
function and communication function require a certain amount
of bandwidth for their operations, and deploying multiple JSC
nodes may consume a large amount of bandwidth. Therefore, we
investigate the bandwidth allocation problem for the DJSC sys-
tem. In particular, we aim to optimize the bandwidth allocation to
the sensing function and the communication function of the JSC
nodes. To improve the allocation efficiency while benefiting the
spatial diversity advantage of the DJSC systems, the objective is
to maximize the sum of sensing performances, i.e., estimation
rates, communication performances, i.e., communication data
rates, and fairnesses of all the users. The optimization problem
is non-convex and difficult to be solved. For this, we propose a
fully polynomial time approximation algorithm, and we prove
that the approximation algorithm can guarantee a near-optimal
solution with an accuracy bound of ε. Furthermore, we propose to
use a heuristic algorithm with lower complexity. The simulation
results show that both the proposed algorithms are able to achieve
the solutions close to the optimum in a computationally efficient
fashion.

Keywords Joint sensing and communication, spectrum alloca-
tion, radar estimation rate, efficiency, fairness.

I. INTRODUCTION

Joint sensing and communication (JSC) has been of sig-
nificant interest in recent years due to its important benefits.
Firstly, JSC enables sensing and communication systems to
share spectrum bands with each other, and thus significantly
improving the spectrum utilization. Secondly, JSC allows a
single hardware platform (such as a UAV or an autonomous
vehicle) to concurrently execute both the sensing function
and the communication function. As such, JSC improves the
efficiency of resources, i.e., spectrum and energy, reduces the
system size, and minimizes the system cost. These advantages
make JSC become one of the most potential technologies for
civilian applications, e.g., autonomous vehicle systems and
flying wireless mesh networks [1], and military applications,
e.g., flying target tracking [2], airborne system [3] and ground-
based systems [4].

Multistatic radar systems [5] are considered to be a dis-
tributed JSC (DJSC) system that consists of multiple spatially
diverse JSC nodes located in a large area. Each JSC node
is equipped with a sensing function and a communication
function. The sensing function is to perform sensing sur-
rounding environments, and it is also able to detect and track
targets for diverse purposes, e.g., estimating channel quality
due to signal obstacles and measuring objects. Meanwhile,
the communication function is to transmit the information of
environment and the target to a centralized controller, i.e., data
fusion point, for further processing. In particular, the spatial
diversity of JSC nodes provided by the distributed DJSC
system allows different aspects of the target to be viewed
simultaneously. As a result, the DJSC system has several
advantages compared with the monostatic radar systems. The
first advantage is that the DJSC system can collect sensing data
from a large area. The second advantage is that the DJSC is
able to significantly improve the target detection and tracking
performance. This is because of that the spreading of the JSC
nodes geometry throughout the surveillance area increases the
coverage. As such, the target is likely to be physically close to
the JSC nodes during its moving, and thus attaining a higher
signal-to-noise ratio (SNR). Moreover, as presented in [6] and
[7], the mean-square error (MSE) of the target localization
estimation is inversely proportional to the number of active
JSC nodes. As such, the DJSC system with multiple JSC nodes
can improve significantly the localization accuracy.

However, to exploit the aforementioned advantages, the
resource allocation in the DJSC system needs to be addressed.
In particular, to increase the surveillance area coverage as
well as the localization accuracy, the DJSC system typically
deploys a number of JSC nodes. Moreover, each JSC node
requires a certain amount of bandwidth for the sensing and
communication functions. Due to the fact that the radio re-
source congestion raises with the rapid growth of IoT devices,
the key issue is how to allocate the bandwidth to the sensing
and communication functions of the JSC nodes to maximize
the efficiency, i.e., maximize the sensing performance and
communication performance. Moreover, the bandwidth allo-
cation needs to guarantee the fairness among the JSC nodes.
The problem is, in fact, challenging since there is always a
conflict between the efficiency and the fairness.

To the best knowledge of authors, this is the first work that
addresses both the efficiency and the fairness of the bandwidth
allocation in the DJSC system. In particular, we consider
a DJSC system that consists of multiple JSC nodes. Each
JSC node as a JSC user is equipped with a sensing function
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and a communication function. Each user uses its sensing
function to sense its surrounding environment, detect and track
a common target. The user uses its communication function to
transmit the information about the target and the surrounding
environments to a base station (BS) for further processing. As
a case study, we assume that the sensing function performs
the target tracking, and thus we use the estimation rate as
the sensing performance. Meanwhile, the communication rate
is used as the communication performance. The estimation
rate and communication rate are directly proportional to the
allocated bandwidth. Thus, the BS needs to perform the band-
width allocation to the sensing functions and communication
functions of the JSC users to maximize the total sensing
performance, communication performance, and fairness over
JSC nodes.

The main contributions of this paper are summarized as
follows.

1) We formulate a bandwidth allocation problem for the
DJSC system that aims to optimize bandwidth allocation
to the sensing and communication functions of the JSC
users. The objective is to maximize the sum of sensing
performance, i.e., estimation rate, communication per-
formance, i.e., communication data rate, and fairness
of the JSC users. Such an objective design aims to
maximize the allocation efficiency and to benefit the
spatial diversity of the DJSC system. In particular, to
benefit the spatial diversity, we introduce a max-min
fairness metric in the objective function which gives a
higher relative priority to the users with lower estimation
and communication rates.

2) The optimization problem that aims to maximize the
allocation efficiency and fairness is non-convex and diffi-
cult to be solved. For this, we propose a fully polynomial
time approximation algorithm, namely FPTAS, that is
able to find a near-optimal solution. We then prove that
the proposed algorithm can guarantee a near-optimal
solution with an accuracy of ε. In particular, for any
arbitrarily small value of ε ∈ (0, 1), the solution obtained
by the proposed algorithm is always at least 1− ε times
the optimal value.

3) We further propose to use a heuristic algorithm that
performs the bandwidth allocation to the JSC users in
a greedy manner. The GREEDY algorithm has a linear
complexity of O(N), and thus it can be a more suitable
solution for the DJSC systems when the short execution
time is required.

4) We provide simulation results to demonstrate the ef-
fectiveness of the proposed algorithms. For this, we
introduce the active-set sequential quadratic program-
ming algorithm [8], namely SQP, that is known as
the currently best algorithm for solving non-linear opti-
mization. The simulation results show that our proposed
algorithms, i.e., FPTAS and GREEDY, outperforms the
SQP algorithm in terms of system performance, i.e., the
estimation rate, communication rate, and fairness, and
execution time.

The rest of the paper is organized as follows. We discuss

relevant works in Section II. In Section III, we describe the
DJSC system and formulate the optimization problem. We
present the approximation algorithm in Section IV and the
greedy heuristic algorithm in Section V. In Section VI, we
provide and discuss numerical results to verify the effective-
ness and improvement of the proposed algorithms. Section VII
concludes this paper.

II. RELATED WORK

Despite of the fact that the DJSC systems own several
promising advantages and that the bandwidth allocation is a
major issue, the resource management works in the DJSC
systems have not been well investigated. In particular, the
authors in [11] consider a DJSC system which is divided
into multiple radar sensor clusters. Then, the work addresses
the power control of radar sensor clusters to minimize their
transmit power while satisfying a certain detection criterion. A
game theory is adopted to model the power control strategies
of the clusters. Activating all the JSC nodes in the DJSC
systems can cause high cost, e.g., bandwidth and power.
Thus, the work in [6] aims to select a subset of JSC nodes
to minimize the total cost while guaranteeing a localization
accuracy. Different from [6], the work in [7] considers UAVs to
be JSC nodes, and then addresses the joint UAV location, user
association, and UAV transmission power control problem to
maximize the total network utility, i.e., the total data rate, un-
der the constraint of localization accuracy. In [12] the authors
investigate joint power allocation for radar and communication
systems. The radar system and communication system share
the same bandwidth, and the objective is to maximize the
performance of one system with a constraint on the throughput
for the other system. The authors in [13] and [14] address the
join power and bandwidth allocation problem for the DJSC
systems. In particular, the problem is to determine the transmit
power and bandwidth of JSC nodes to minimize the lower-
bounds on the MSE of localization accuracy. In [15], the
strategy of integrating power and bandwidth allocation to the
radar sensor selection problem is proposed for the joint multi-
target tracking and detection in a distributed MIMO sensor
system.

It should be emphasized in the most of the aforemen-
tioned works, efficiency and fairness of resource allocation
approaches are not considered, which are very important,
especially to the DJSC systems due to the following reasons.
First, the DJSC system deploys multiple JSC nodes that
can consume a large amount of bandwidth. Meanwhile, the
spectrum congestion raises with the growth of IoT devices.
Thus, it is necessary to design efficient bandwidth allocation
algorithms. Second, to benefit the spatial diversity and to
significantly improve the performance of the sensing func-
tions of the DJSC system, the different JSC nodes should
be guaranteed to receive adequate bandwidth resources. In
other words, the bandwidth allocation algorithms need to be
designed to fairness. Due to the conflict of the two criteria,
i.e., the efficiency and fairness, most studies have been carried
out in past decades on the problem with a single criterion
of maximizing efficiency, i.e., throughput in the network,
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(e.g., [16]–[18]), or of achieving fairness (see [19] and the
surveys [20], [21]). It is very challenging to design a resource
allocation scheme to achieve both the efficiency and fairness.
In particular, allocating the resources to optimize the utility
of worst-off agents may lead to a large worsening of the
overall efficiency of the network. Literature shows two main
approaches to tackle this issue. The first approach is to model
the problem as a two-criteria optimization that simultaneously
maximizes both the fairness and efficiency [22]. Another
direction is to study the trade-off between fairness and effi-
ciency from which one can look for allocations that satisfy
these properties only to some extent [23]–[26]. Beside the
two arformentioned approaches, proportional fairness defined
based on utility percentage can be also used to measure the
trade-off between fairness and efficiency [27]–[30].

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a system model as shown in Fig. 1 that includes
a set N of N JSC users, where N = {1, . . . , N}. Each user
is equipped with a sensing function and a communication
function. In particular, the sensing function acts as an indi-
vidual radar that is used by the user to detect and track a
target. For convenience, we will also use the term of radar in
the rest of the paper. The information about the target (target
velocity and range) received at the radar receivers of the users
is collected at a centralized entity, i.e., a base station (BS),
for further processing. To transmit their data to the BS, the
users use the communication functions through wireless links.
Here, the data of each user includes not only the information
of the target but also other sensing data, e.g., of weather
condition. As a centralized entity, the BS schedules the sensing
function and the communication function for each user in
each time slot of a time frame. In particular, let F denote
the number of time slots in the time frame, and in time slot
j, 1 ≤ j ≤ F , the BS can schedule the sensing function or
the communication function for user i, 1 ≤ i ≤ N . Note that
in the same time slot, the users may not perform the same
function. For example, in time slot j, user i can be scheduled
to perform the sensing function, and user k 6= i performs the
communication function (see Fig. 1). Moreover, in different
time slots of a time frame, the user can perform different
functions. For example, in time slot j + 1, user i can be
scheduled to perform the communication function (see Fig. 1).
The user is scheduled to perform the same function, i.e.,
sensing or communication, in the same time slots of the next
time frames. For synchronization implementation simplicity,
TDMA such as round-robin scheme can be adopted for the
function scheduling. To remove the co-channel interference,
in each time slot, the BS uses the frequency division multiple
access (FDMA) that allocates bandwidth B to the JSC users.
In particular, in each time slot j, 1 ≤ j ≤ F , the bandwidth
allocation profile for N users is Bj = (B1,j , . . . , BN,j), where
Bi,j > 0 denotes the portion of bandwidth B allocated to JSC
user i in time slot j. We have

∑N
i=1Bi,j = B. In the time

slot, each user i can use the allocated bandwidth to perform
either the sensing function or the communication function.

Since the total bandwidth B is the same for every time
slot, it suffices to consider the optimization problem within
one time slot. As such, we can omit the time slot index j
from the notation to simplify the presentation. In the case that
user i is scheduled to perform the communication function,
the user uses bandwidth Bi to transmit its data to the BS with
a data rate given by

gi(Bi) , BC
i · log2

(
1 +

||hC
i ||2 · P

r,C
i

kB · Ttemp ·BC
i

)
, (1)

where kB is the Boltzmann constant, Ttemp is the absolute
temperature, hC

i is the communication channel gain from user
i to the BS, and P r,Ci is the received power at BS. In particular,

P r,Ci is determined as P r,Ci =
P C
i G

C
i,TG

C
i,B

(4π)2(dC
i )

2(fc)2
, where PC

i is
the communication transmit power of user i, GC

i,T is the
communication antenna gain of the user, GC

i,B is the receiving
antenna gain of the BS, dC

i is the distance between the user
and the BS, and fc is the carrier frequency.

In the case that user i performs the sensing function, the
user uses bandwidth Bi to transmit radar pulses to the target.
Let Tp denote the pulse width, and the pulse repetition interval
of the radar signal is Tpri = Tp/δ, where δ is the radar duty
factor, i.e., the percentage of the time the radar pulse emits.
After receiving the echo from the target, the radar receiver
detects and determines parameters such as velocity and range
of the target. To measure the sensing performance, we use the
estimation rate [4], [9]. The estimation rate is a metric similar
to the communication rate that provides a measure of the
information about the target. The estimation rate achieved by
the JSC user is higher meaning that the amount of information
about the target is higher.

Due to the target tracking, the sensing function of the
user has some knowledge of the target, i.e., based on the
observations in prior time slots, with an amount of fluctuation,
and this fluctuation is called process noise. In particular, we
consider the range estimation of the sensing function, and
thus the process noise for the range fluctuation is a delay
fluctuation that is denoted by ηproc with variance of σ2

proc. Then,
the estimation rate of the sensing function can be determined
by [9]

fi(Bi) ,
1

2Tpri
log2

(
1 +

κ · ||hR
i ||2 · P

r,R
i ·Bi

kB · Ttemp

)
, (2)

where P r,Ri is the power received at the sensing receiver
of user i, hR

i is the roundtrip channel gain from the JSC
user to the target, and κ is defined as κ = 8π2σ2

procγ
2,

where γ2 = (2π)2/12. In particular, P r,Ri is defined as
P r,Ri =

P R
i (G

R
i )

2σcross

(4π)3(dR
i )

4(fc)2
, where P r,Ri is the radar transmit power

of user i, GR
i is the radar antenna gain, dR

i is the distance
between the user and the target, and σcross is the target cross
section.

As Bi is allocated to user i, the utility achieved by user i
is defined as

ui(Bi) , fi(Bi) + gi(Bi). (3)

It can be seen from (3) that ui is an increasing function of
Bi. Here, we consider a general scenario in which there are
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Fig. 1: A DJSC system with a base station as a data fusion.

a lower bound of ξ
i

and an upper bound ξi on the amount of
bandwidth Bi allocated to user i. This is due to the fact that
in order to make the sensing and communication functions
working properly, each user may need to receive at least some
fixed amount of bandwidth. The presence of upper bounds
is actually a situation in which there is an upper bound on
the amount of bandwidth that a user can receive during peak
hours (a.k.a access rate), or there is a budget for each user.
Without loss of generality, we consider that

∑
i∈N ξi ≤ B and∑

i∈N ξi > B. Otherwise, the problem is trivial to solve. Also,
we consider that ui(ξi) ≥ 1 for every i, without changing
optimal solutions of the optimization problem.

B. Optimization Problem

For easy of presentation, for each user i ∈ N , we introduce
two new variables as follows:

τi =
||hC

i ||2 · P
r,C
i

kB · Ttemp
and νi = κ · ||h

R
i ||2 · P

r,R
i

kB · Ttemp
.

Moreover, we denote xi as a variable indicating the amount of
bandwidth assigned to i. Hence, the data rate and estimation
rate are rewritten as follows:

gi(x) = xi · log2

(
1 +

τi
xi

)
, fi(xi) =

1

2Tpri
· log2 (1 + νixi) .

Correspondingly, the utility function of user i is defined as the
total estimation rate and communication rate as follows:

ui(xi) = fi(xi) + gi(xi).

Then, a vector x = (x1, . . . , xN ) ∈ [0, B]N is said to be a
feasible assignment (or solution) if

∑
i∈N xi ≤ B and xi ∈

[ξ
i
, ξi] holds for every i ∈ N . Let u = (u1, . . . , uN ) ∈ RN+

denote the utility vector corresponding to a feasible assignment
x = (x1, . . . , xN ). As mentioned earlier, our work aims
to maximize the efficiency and fairness of the bandwidth
assignment. In particular, to measure the efficiency of an
assignment x, we use the `p-norm (p ≥ 1), which is defined
as

Fp(x) = ||u||p =

(∑
i∈N

upi (xi)

)1/p

. (4)

To measure the fairness of the assignment, we use the fairness
that is defined as

Fmin(x) = ||u||−∞ = min
i∈N
{ui(xi)}.

Fmin(x) is also called the egalitarian welfare of an assignment
x, and the maximum egalitarian social welfare is said to be
max-min fair. As a centralized entity of the DJSC system,
the BS aims to maximize both the efficiency and the fairness
of an assignment of bandwidth to users, under the bandwidth
constraint. Thus, the optimization problem of the BS, namely
FEO1, is to find a feasible bandwidth allocation x to maximize
the efficiency and fairness as follows:

FEO max
x∈RN≥0

F(x) = α · Fp(x) + (1− α) · Fmin(x)

(5)

s.t.
∑

i∈N
xi ≤ B, (6)

xi ∈ [ξ
i
, ξi], i ∈ N , (7)

where p, α are the scalar parameters p ≥ 1 and α ∈ [0, 1]. The
meaning of the value of α is as follows. For α = 0, the value
of F is the utility of the worst-off users in the allocation, while
for α = 1, the value of F is the sum of the p powers of the
utility of users. For α that is strictly between 0 and 1, the value
of F is a convex combination of these classical objectives.
Using such an objective function F is one of the well-known
methods that can help to balance the trade-off between the
efficiency and the fairness. In general, the objective function
F is neither convex nor convave2, leading to a non-convex
optimization problem. Hence, there is no standard algorithm
for exactly solving such a problem. Therefore, we develop
a polynomial time algorithm to determine a near-optimal
solution. In fact, for an arbitrary small ε > 0, the algorithm
can theoretically guarantee the value of its found solution x to
be within a factor of 1− ε of the optimal value. The running
time of the algorithm is a polynomial in the input size and in
1
ε . Here, the input size I is the total size in binary encoding
of the parameters needed to describe FEO. These parameters

1FEO stands for fair and efficiency optimization.
2The proof of the nonconvexity of Fp is given in Appendix.
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include N,B, κ, kB , Ttemp, Tpri, h
C
i , h

R
i , P

r,C
i P r,Ri , ξ

i
, ξi, for all

i ∈ N .

C. The Efficiency-Fairness Trade-off

Our work aims to maximize the efficiency and the fairness
of the bandwidth allocation in the DJSC system. However,
there is a trade-off between the efficiency and fairness in the
sense that maximizing the efficiency of an allocation might
lead to a reduction in its fairness (see an example given in
Appendix VII-B). In particular, given a certain value of α,
what the efficiency loss might be, and what the fairness loss
might be. To present the trade-off between the efficiency and
the fairness, we adapt the work in [10] which introduces the
concepts of price of fairness and price of efficiency. For α ∈
[0, 1], let xα be an optimal solution to FEO with respect to α.
We also call such a solution an α-allocation. The efficiency
loss is the difference between the maximum system efficiency
and the efficiency under the fair scheme, that is, Fp(x1) −
Fp(xα). The price of fairness with respect to α is denoted by
POF(α) and defined as

POF(α) =
Fp(x1)−Fp(xα)

Fp(x1)
.

The price of fairness POF(α) is a nonnegative and less than
one, and it measures the percentage of efficiency loss of an
α-allocation.

Similarly, we can define the fairness loss and the price
of efficiency. The fairness loss is the difference between the
fairness metric evaluated with the max-min fair allocation and
that evaluated with the α-fair allocation, i.e., Fmin(x0) −
Fmin(xα). Then, we can consider the fairness loss relative
to the maximum value of the fairness metric to be the price
of efficiency that is denoted by POE and defined as

POE(α) =
Fmin(x0)−Fmin(xα)

Fmin(x0)
.

The price of efficiency POE(α) can be interpreted as the
percentage loss in the minimum utility guarantee compared
to the maximum minimum utility guarantee.

In general, both POF(α) and POE(α) are functions of
α over the domain [0, 1]. In general, the best value of α
to balance efficiency and fairness can be explained through
experiments, which is discussed in Section VI.

IV. AN APPROXIMATION ALGORITHM

In this section, we aim at solving the FEO problem defined
by (5)-(7), by designing an approximation algorithm, namely
FPTAS. The result is stated in the following theorem:

Theorem 1. For arbitrary small constant δ ∈ (0, 1), there
is an algorithm for finding a solution x to the FEO problem
such that the objective value F(x) is within a factor of 1− δ
of the optimal value. The execution time of the algorithm is
polynomial in 1

δ and in the input size.

The remaining of this section is devoted to presenting the
proof of Theorem 1.

First, we fix p ∈ N≥1 and an accuracy δ ∈ (0, 1). Let
δ = 6ε. Let x∗ be an optimal solution of FEO, and denote
F(x∗) = OPT. We show how to find a solution x with
F(x) ≥ (1 − δ) · F(x∗), by using the algorithm FPTAS.
A formal description can be found in Algorithm 1. At a high
level, it can be divided into three phases as follows.
• Phase I: Transforming FEO into a parameterized prob-

lem, in which the second term of the objective, namely
Fmin(x), is put into constraint, using a parameter φ.
The resulting problem, denoted by FEO(φ), is then
approximately solved via solving a sequence of problems
of suitable fixed values of φ (see Section IV-A).

• Phase II: Solving FEO(φ) for fixed values of φ to opti-
mality. Particularly, we aim to find near-optimal solutions
to such problems, within an accuracy depending solely on
ε (see Section IV-B).

• Phase III: Selecting the solution with the maximum value
among the solutions obtained in Phase II.

Algorithm 1 FPTAS

Input: {fi, gi, ξi, ξi}i∈N , and accuracy δ > 0
Output: A solution x with F(x) ≥ (1− δ) · OPT

1: ε← δ/6;
2: Solve (12) to obtain a value φ, using bisection method
3: S ← {(1 + ε)h| h = 0, 1, . . . ,

⌊
log1+ε φ

⌋
}

4: for φ ∈ S do
5: Solve FEO(φ), defined in (8)-(11), using Algorithm 2
6: Let xφ be the obtained solution
7: end for
8: x← arg max{F(xφ)| xφ, φ ∈ S}
9: return x

In what follows, we will explain in details the phases of the
algorithm FPTAS. Phase I is discussed in Section IV-A. At the
heart of FPTAS is Algorithm 2 for solving FEO(φ) in Phase
II, which is presented in Section IV-B. Finally, in Section IV-C
we will analyze the performance and complexity of FPTAS,
which complete the proof of Theorem 1. To be more focused,
some results are stated without proofs, but they can be found
in Appendix.

A. Phase I−Parameterization

To solve FEO, the idea is introduce a constraint related
to Fmin in the FEO problem. In particular, we consider the
φ-parametrized FEO as follows:

FEO(φ) max
x∈RN≥0

α · Fp(x) + (1− α) · φ (8)

s.t.
∑

i∈N
xi ≤ B, (9)

Fmin(x) ≥ φ, (10)

xi ∈ [ξ
i
, ξi], i ∈ N , (11)

where φ ∈ R>0. Since the utility functions are increasing, we
can assume that the equality in (9) is replaced by a "≤". It
is observed that FEO(φ) may not be feasible, as there may
not exist any feasible solution satisfying the constraints in (9),
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(10) and (11), for some value φ. To deal with this issue, we
may restrict the value of φ to the range [φ∗1, φ

∗
2], where

φ∗1 = min
ξξξ≤x≤ξξξ

Fmin(x) = Fmin(ξξξ) = min
i∈N
{ui(ξi)},

φ∗2 = max
ξξξ≤x≤ξξξ

{Fmin(x) :
∑

i∈N
xi ≤ B} = φ∗. (12)

Claim 1. We can compute an approximate value of φ∗, says
φ, to within any accuracy δ′ > 0. Furthermore, by choosing a
suitable value of δ′ as a function of ε, we can guarantee that
φ ≥ (1− ε) · φ∗.

We denote by OPT(φ) as the optimal value of FEO(φ),
with respect to a given parameter φ. From Claim 1, we can
prove that

max
1≤φ≤φ

{OPT(φ)} ≥ (1−ε)· max
1≤φ≤φ∗

{OPT(φ)} = (1−ε)·OPT.

(13)
We now find φ ∈ [1, φ] such that OPT(φ) is maximized.

For this, we consider two subproblems. The first one is to
determine the value of FEO(φ) with a fixed value of φ. After
the first subproblem is solved, the second subproblem is to
determine φ that maximizes OPT(φ). Note that the second
subproblem is nonconvex (as discussed earlier). Hence, we
propose a discrete method to find its approximate solutions.
For this purpose, we partition the interval [1, φ] into disjoint
intervals as follows.

[1, φ] =

H−1⋃
h=0

[(1 + ε)h, (1 + ε)h+1)
⋃

[(1 + ε)H , φ),

where H =
⌊
log1+ε φ

⌋
. Let S = {(1 + ε)h| h = 0, 1, . . . ,H}.

Then, we have the following lemma:

Lemma 1. It holds that

max
φ∈S
{OPT(φ)} ≥ (1− ε) · max

1≤φ≤φ
{OPT(φ)}.

Proof: Suppose that φ̃ = arg max{OPT(φ)| 1 ≤ φ ≤
φ}. Then, it must hold that φ̃ belongs to some intervals in
[(1+ε)h, (1+ε)h+1) for some values of h ∈ {0, 1, . . . ,H}. It
is clear that every feasible solution to FEO(φ̃) is also feasible
to FEO((1 + ε)h). Let x be an optimal solution to FEO(φ̃).
Then, x is also feasible to FEO((1 + ε)h), and we have

OPT((1 + ε)h) = α · Fp(x) + (1− α) · (1 + ε)h

≥ α · Fp(x) + (1− α) · φ̃

1 + ε

≥ 1

1 + ε
(α · Fp(x) + (1− α) · φ̃).

By the definition of φ̃ and the fact that ε > 0, the proof of
Lemma 1 is completed.

Lemma 1 together with (13) imply that

max
φ∈S
{OPT(φ)} ≥ (1− ε) · OPT, (14)

and thus solving FEO is now to find the solution to a series of
problems FEO(φ) for φ ∈ S. We propose an approximation
scheme, FPTAS, for solving such parameterized problems in
the next section.

B. Phase II−Solving FEO(φ)

By fixing h ∈ {0, 1, . . . ,H} and considering that φ =
(1 + ε)h, we develop Algorithm 2 for solving FEO(φ).
The key idea is to discrerize FEO(φ) as a multiple-choice
Knapsack problem (MCKP) [31], which can be then well
approximated by adapting dynamic programming techniques.
In what follows we assume w.l.o.g that α 6= 0.

To simplify the presentation, we ignore the constant term
(1−α)φ in the objective function of FEO(φ), as this does not
change optimal solutions to the original problem. We denote
the problem, obtained from FEO(φ) by replacing F(x) by
Fp(x), as FEO(φ). Algorithm 2 essentially consists of two
main steps:
• Discretization: Relaxing FEO(φ) as a binary optimiza-

tion problem with only 0-1 variables, which is called
MCKP(φ).

• Solving MCKP(φ): Running dynamic programming on
MCKP(φ).

1) Discretization: Let x̄ be an optimal solution to FEO(φ).
First, we derive a positive lower bound L on Fp(x̄), which
can be defined as L , Fp(ξξξ). For each i ∈ N , we define

uji ,
εL
p
√
N

(1 + ε)j , (15)

for j = 0, 1 . . . ,Ki ,
⌈
log(1+ε)

p√
Nui(ξi)
εL

⌉
. As ui(·) is strictly

monotone increasing, then ui(x) = uji , for j = 0, 1, . . . ,Ki,
has a unique positive root xji in the interval (0, ξi]. Given
any desired accuracy εi > 0, we can approximate this root to
within an absolute error of εi using the bisection method:

|x̃ji − x
j
i | ≤ εi, (16)

in time O(log2
ui(ξi)
εi

), where x̃ji denotes the approximate root.
Furthermore, one can show the following Lemma (its proof
can be found in Appendix).

Lemma 2. By choosing εi small enough, e.g., εi := ε2L
p√
N

:(
νi

2Tpri
+ τici

p√
N

εL

)
, for some positive number ci, it follows that

|ui(x̃ji )− ui(x
j
i )| ≤ εui(x

j
i ).

Lemma 2 implies that

ui(x̃
j
i ) ≤ ui(x) ≤ (1 + ε)2

1− ε
ui(x̃

j
i ), (17)

for all j = 0, 1, . . . ,Ki − 1 and x ∈ [x̃ji , x̃
j+1
i ]. Note that for

x ∈ [x̃ji , x̃
j+1
i ], we have

ui(x̃
j
i ) ≤ ui(x) ≤ ui(x̃j+1

i ). (18)

By combining (18) with (17), we have

ui(x) ≤ (1 + ε)ui(x
j+1
i ) = (1 + ε)(1 + ε)j+1 εL

p
√
N

= (1 + ε)2ui(x
j
i ) ≤

(1 + ε)2

1− ε
ui(x̃

j
i ).

The following lemma estimates the execution time required
for the above discrete process. Let

ω = max
i∈N

{
log2

2 ui(ξi) · log2

(
νi

2Tpri
+ τici

)}
, (19)
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where ci = max{2, 2 log2
τi
ε }.

Lemma 3. The discretization can be implemented in time
TIMEdiscrete = O( 1

ε log2
2

1
ε ·N · ω).

We now show how to relax FEO(φ) as a MCKP(φ)
problem. Recall that in multiple-choice knapsack problem,
given a set of N users and a discrete demand set Di for each
user i, a profit function3 Ui : Di → R+, generates the profit
for user i if its demand di ∈ Di is fulfilled. Given a bound
B on the total demand, the objective is to choose a demand
di ∈ Di for each user, so as to maximize the total profit∑
i∈N Ui(di) subject to

∑
i∈N di ≤ B. Mathematically, we

can formulate the problem as a binary linear program:

max
∑

i∈N

∑|Di|

k=1
Ui(dik) · zik

s.t.
∑

i∈N

∑|Di|

k=1
dik · zik ≤ B,∑|Di|

k=1
zik = 1, for i ∈ N

zik ∈ {0, 1}, for i ∈ N , k = 1, . . . , |Di|,

where zik = 1 indicates that the demand dik is chosen from
the set Di by user i.

We can model the discretized version of FEO(φ) as an
MCKP(φ) as follows. For user i, we define Di as the set of
ξ
i
, ξi and roots x̃ji for which the utility of the user is greater

than or equal to φ. We define the profit function of user i by
Ui(di) , (ui(di))

p
, for every di ∈ Di.

The following lemma gives the relationship between
FEO(φ) and its discrete version, MCKP(φ), in terms of
solution.

Lemma 4. Given an optimal solution {x∗i }i for FEO(φ),
there is a feasible solution {di}i to MCKP(φ) such that
(
∑
i∈N Ui(di))

1/p ≥ (1− 4ε) · Fp(x̄).

Proof: We have (Fp(x̄))p =
∑
i∈N (ui(x

∗
i ))

p. Let d̄i be
the largest element in {x̃ji}j such that d̄i ≤ x∗i . We define the
solution {di}i to MCKP(φ) as di , d̄i. Note that this gives
a solution to MCKP(φ) with finite utility. Let J be the set of
users in which for each user i in the set, ui(x∗i ) ≥ εL

p√
N

. Then

by (17), for any i ∈ J , we have ui(d̄i) ≥ (1−ε)
(1+ε)2ui(x

∗
i ). On

the other hand,∑
i 6∈J

(ui(x
∗
i ))

p ≤
(
εL
p
√
N

)p
·N ≤ εp · (Fp(x̄))p,

as N ≥ 1. It follows that∑
i∈N

Ui(di) ,
∑
i∈N

(ui(di))
p ≥

∑
i∈N

(ui(d̄i))
p

≥ (1− ε)p

(1 + ε)2p

∑
i∈J

(ui(x
∗
i ))

p

≥ (1− ε)p(1− εp)
(1 + ε)2p

(Fp(x̄))p

≥ (1− ε)2p

(1 + ε)2p
(Fp(x̄))p ≥ (1− 4ε)p(Fp(x̄))p,

3We use the terms “profit function" here to differentiate it from “utility
function".

for ε ∈ (0, 1) and p ≥ 1. Therefore,(∑
i∈N

Ui(di)
)1/p

≥ (1− 4ε) · Fp(x̄), (20)

and this completes the proof of Lemma 4.

Algorithm 2

Input: {fi, gi, ξi, ξi}i∈N , φ, and accuracy δ > 0

Output: A solution xφ with F(xφ) ≥ (1− δ) · OPT(φ)
// Setting the lower bound on OPT(φ)

1: L←
(∑

i∈N

(
ui(ξi)

)p)1/p
2: ε← δ/6;

// Discretization
3: for i = 1 to N do
4: Ki ←

⌈
log(1+ε)

p√
Nui(ξi)
εL

⌉
5: x̃ji ← root of ui(x) = εL

p√
N

(1 + ε)j , j ∈ [Ki] ∪ {0}
6: Di ,

{
x̃ji
}
j
∪ {ξ

i
, ξi}

⋂
{xi : ui(xi) ≥ φ}

7: Ui(di)← (fi(di) + gi(di))
p for di ∈ Di

8: end for
// Approximately solve MCKP(φ)

9: θ ← ε

N
·maxi,k{Ui(dik)}

10: for i = 1 to N do
11: Ũi(di)← bUi(di)θ c, for di ∈ Di

12: end for
13: Apply DP with {N,N ′, {Di, Ũi}i∈N } as input to obtain

a solution {d∗i }i∈N
14: return {d∗i }i∈N as xφ

2) A dynamic program (DP) for MCKP(φ): Given an input
{Di, Ui}i∈N of MCKP(φ), for each i ∈ N , we can scale
its utility by bUi(di)θ c, for all di ∈ Di. As shown in [31],
to speed up DP, one can choose θ as εZ

N , where Z is the
value of an optimal solution to the linear programming (LP)
relaxation of MCKP(φ), in which the 0-1 variables zik are
replaced by continuous ones in the interval [0, 1]. This LP can
be solved in linear time in N (see, e.g., [32]). The dynamic
program applied to the MCKP(φ) with the scaled input can
be described Algorithm 3. We denote ζi(a) as the minimal
bandwidth of a solution of the subproblem consisting of the
classes D1, · · · , DN with total utility equal to q. If no solution
with utility q exists, we set ζi(a) := B + 1. Let ki = |Di|
for i ∈ N , and let N ′ := dN/εe. By the scaling procedure,
DP may not be guaranteed to attain an exact optimal solution
to MCKP(φ). Nevertheless, the advantage of the algorithm
is that it has a polynomial complexity and provides a near-
optimal solution with a bound on the quality, as stated in
Lemma 5 and Lemma 6 below.

Lemma 5 ( [31]). The value of the solution {d∗i }i∈N returned
by Algorithm 3 is at least 1 − ε times the optimal value of
MCKP(φ).

The complexity of DP is stated in following lemma, whose
proof can be found in Appendix.

Lemma 6. The dynamic programming can be implemented in
time TIMEDP = O( 1

ε2 log2
1
εN

2 maxi∈N {log2 ui(ξi)}).
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Algorithm 3 DP

Input: N,N ′, {Di, Ũi}i∈N
Output: A solution {d∗i }i∈N

// Initialization step
1: ζ0(0)← 0
2: for a ∈ {1, . . . , N ′} do
3: ζ0(a)← B + 1
4: end for

// Recursion step
5: for i ∈ N do
6: for a ∈ {0, 1, . . . , N ′} do
7: compute ζi(a) as

min


ζi−1(a− Ũi(di1)) + di1 if a ≥ Ũi(di1)

ζi−1(a− Ũi(di2)) + di2 if a ≥ Ũi(di2)
. . . . . . . . .

ζi−1(a− Ũi(dik)) + diki if a ≥ Ũi(diki)

8: end for
9: end for

10: t← max{a| ζN (a) ≤ B}
11: return Solution {d∗i }i∈N corresponding to the value t.

We conclude this section by providing the complexity of
Algorithm 2. One can see that this complexity is domi-
nated by that of the discrerization process, and of the dy-
namic programming algorithm. Therefore, from Lemma 3
and Lemma 6, it follows that the overall complexity of
Algorithm 2, TIMEAlg2 , is upper bound by O(TIMEdiscrete +
TIMEDP) = O( 1

ε2 log2
2

1
εN

2ω), where ω is given in (19), due
to Lemma 3 and Lemma 6.

Lemma 7. The Algorithm 2 can be implemented in time
TIMEAlg2O( 1

ε2 log2
2

1
εN

2ω).

C. Performance and Complexity analysis

In this section we will analyze the complexity and the
performance of Algorithm 2, and thus complete the proof of
Theorem 1.

Performance analysis: We show that the solution x returned
by FPTAS fulfills the quality bound of F(x) ≥ (1 − 6ε) ·
OPT = (1−δ) ·OPT, as desired. To accomplish this goal, we
first prove that the solution {d∗i }i∈N (or xφ) obtained by the
DP has the value of at least 1− 5ε times the optimal value of
FEO(φ). Let {di}i∈N be the solution to MCKP(φ) defined in
Lemma 4, and recall that x̄ is the optimal solution to FEO(φ).
By Lemma 5, we have that

(∑
i∈N

Ui(d
∗
i )
)1/p

≥ (1− ε)1/p
(∑

i∈N
Ui(di)

)1/p
≥ (1− ε)(1− 4ε) · Fp(x̄)

≥ (1− 5ε) · Fp(x̄),

where the second inequality follows from (20) and the fact
that p ≥ 1 and ε > 0. On the other hand, we have

F(xφ) = α
(∑

i∈N
Ui(d

∗
i )
)1/p

+ (1− α)φ

≥ α(1− 5ε) · Fp(x̄) + (1− α)φ

≥ (1− 5ε) · OPT(φ),

as ε < 1/5.
Since x is returned by FPTAS, it must hold that

F(x) = max
φ∈S
{F(xφ)} ≥ (1− 5ε) ·max

φ∈S
{OPT(φ)}.

Finally, using (14), we obtain

F(x) ≥ (1− 5ε)(1− ε) · OPT ≥ (1− 6ε) · OPT. (21)

Complexity analysis: Since δ = 6ε, it suffices to prove that
the execution time of FPTAS is a polynomial in 1

ε and in the
input size. Indeed, we observe from the previous section that
an upper bound on the execution time of FPTAS is O(|S| ·
TIMEAlg2), where TIMEAlg2 = O( 1

ε2 log2
2

1
εN

2ω), as shown
in Lemma 7. We now upper bound the size of S. Note that
|S| = H ≤ log1+ε φ, and by the definition of φ we have
that φ ≤ Fmin(ξξξ) = mini∈N {ui(ξi)} ≤ maxi∈N {ui(ξi)}.
Hence, |S| ≤ log2 φ/ log2(1 + ε) ≤ 1

ε maxi∈N {log2 ui(ξi)},
as 0 < ε < 1. Finally, it follows that the execution time of
FPTAS is

O

(
1

ε3
log2

2

1

ε
N2ωmax

i∈N
{log2 ui(ξi)}

)
, (22)

which, by the definition of ω, is polynomial in 1
ε and in the

input size.

V. A HEURISTIC ALGORITHM

The approximation algorithm presented in the previous
section can mathematically guarantee that the solution is
arbitrarily closed to its optimal value as long as the value of ε
is small enough. However, its execution time, i.e., running
time, is cubic in the input size and in 1

ε , and thus is not
a strongly polynomial-time algorithm4. In this section, we
propose to use a heuristic algorithm, namely GREEDY, to
solve FEO. The advantage of GREEDY is that it runs in
linear time in N . The general idea is to find an allocation
(B1, . . . , BN ) of bandwidth among users in a greedy manner.
In particular, the GREEDY allocates an amount of bandwidth
of ξ

i
to user i in order to fulfill the constraints in (11).

The remaining amount of bandwidth, B′, is greedily allocated
to the users according to ratios of their utility gains. For
this, the algorithm first computes, for each user i, the ratio

δi =
ui(ξi)−ui(ξi)

ξi−ξi
. The algorithm then assigns to each user i

an amount of bandwidth which is proportional to δi with a
proportionality coefficient of exactly B′. Algorithm 4 shows
steps to implement the GREEDY algorithm. It can simply be
verified that the GREEDY algorithm has a linear complexity
of O(N). Surprisingly, as shown in the next section, the
GREEDY algorithm can significantly improve the performance
in terms of fairness and efficiency compared with the baseline
algorithm.

4A strongly polynomial algorithm is a polynomial in the number of users,
and is independent of the input size.
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Algorithm 4 GREEDY

Input: {fi, gi, ξi, ξi}i∈N , a capacity B
Output: An allocation (B1, . . . , BN )

1: Construct a vector S = {δi =
ui(ξi)−ui(ξi)

ξi−ξi
| i ∈ N}

// Normalize vector S
2: δ̄i ← δi∑

i∈N δi
, for i ∈ N

3: S̄ ← (δ̄i)i∈N
// Allocate bandwidth to users based on S̄

4: B ← B −
∑
i∈N Bi

5: if B > 0 then
6: Bi ← ξ

i
+ min{ξi − ξi, δ̄i ·B}, for i ∈ N

7: end if
8: return (B1, . . . , BN )

VI. NUMERICAL RESULTS

In this section, we present experimental results to eval-
uate our two proposed algorithms, i.e., the FPTAS and
GREEDY algorithms. For the comparison purpose, we intro-
duce the active-set sequential quadratic programming (SQP)
algorithm [8], which is known as the best algorithm for
nonlinear programming, as the baseline algorithm.

For the evaluation purpose, we consider a DJSC system
in which the number of users is N ∈ {2, 3, . . . , 10}. To
measure the efficiency of the proposed resource allocation
algorithms, we use the Euclidean norm `2 for Fp(x), i.e.,
p = 2. All the involved channels in the DJSC system are
uniformly distributed in the interval (0.5, 1). The upper bound
is ξi = 107, and the lower bound is ξ

i
= 104. We implement

all the algorithms using Python on an INTEL Core i7, 1.5 GHz,
with 16 GB of RAM. Other simulation parameters are given
in Table I, which are also similar to those in [9] and [33].
In particular, the accuracy parameter, i.e., ε, and the weight
parameter, i.e., α, are the important parameters, whose values
significantly impact the system performance and execution
time of the FPTAS algorithm. Thus, in the followings, we first
evaluate the proposed algorithm, i.e., the FPTAS algorithm, by
varying ε and α, which can help us to select the proper values
of ε and α. Then, we compare the proposed algorithms and
the baseline algorithm. We highlight that the term of efficiency
refers to the objective of maximizing the total estimation rate
and communication rate over the users.

A. Evaluation of the FPTAS Algorithm

First, we recall that ε is considered to be an accuracy
parameter. As ε is small, the algorithm can obtain an accurate
solution, but requires more execution time. To show how
to properly select ε, we change the value of 1/ε, and the
objective values obtained by the FPTAS algorithm are shown
in Fig. 2. As seen, for a given number of users, the objective
value increases with the increase of 1/ε, i.e., the decrease of
ε. Especially, the objective value seems to keep unchanged
as 1/ε > 10, i.e., ε < 0.1. As mentioned earlier, as ε is
smaller, the execution time is longer. Therefore, for the trade-
off between the objective value and the execution time, we
select ε = 0.1 as a simulation parameter.

TABLE I: Simulation parameters

Parameters Value
Total bandwidth (B) 107 Hz
Carrier frequency (fc) 108 Hz
Communication range (dC

i ) 102 m
Communication transmit power (PC

i ) 43 dBm
Gain of communication antenna of JCS users (GC

i,T ) 19 dB
Gain of receiving antenna of the BS (GC

i,B) 19 dB
Target range (dR

i ) 5× 103 m
Radar antenna gain (GR

i ) 30 dBi [9]
Radar transmit power (PR

i ) 100 kW [9]
Target cross section (σcross) 10 m2

σproc 102 m
kB 1.38× 10−23

Ttemp 103

Tpri 10−5

Fig. 2: Objective value obtained by FPTAS versus ε.

For the selection of the weight parameter, i.e., α, this task is
generally challenging due to the conflict between the efficiency
and fairness. Therefore, it is important and necessary to discuss
the trade-off between the efficiency and fairness as α varies.
The simulation results are shown in Figs. 3, 4, 5, 6, and 7. As
seen from Fig. 3, as α increases, the efficiency obtained by
FPTAS increases. This is obvious since according to (5), as α
increases, the FPTAS algorithm aims to improve the efficiency
rather than the fairness. It can be further seen from Fig. 3 that
as N increases, the efficiency increases. This is simply because
of the property of logarithmic function used in the definition of
both the sensing and communication functions. Based on (5),
we can simply explain that the fairness obtained by FPTAS
decreases as α increases as shown in Fig. 4. Furthermore,
the fairness obtained by FPTAS decreases as the number of
user increases. The reason is that given a fixed amount of
bandwidth, the more users there are, the less utility the worst-
off user has.

Now, we set α to some certain values and we discuss
the the price of fairness and the price of efficiency, denoted
by POF(α) and POE(α), respectively. In particular, we set
α = 0.2, 0.5, 0.8. The simulation results are illustrated in
Figs. 5 and 6. As seen from Fig. 5, as α increases, the POE
increases. This is again consistent with the definition of the
objective function, i.e., FEO. Also, POE increases with the
number of users. However, given a small value of α, i.e.,
α = 0.2, the POE is small, i.e., ≤ 0.05, and seems to not
change as N varies. Given a value of α = 0.2, the weight of
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Fig. 3: Efficiency versus weight parameter α.

Fig. 4: Fairness versus weight parameter α.

0.8 is associated with the fairness, which is quite close to 1 at
which we achieve the full fairness. Consequently, the change
in the loss of fairness, i.e, POE, is small and does not much
depend on the number of users. However, as shown in Fig. 6,
given α = 0.2, POF significantly increases as the number of
users increases. In contrast to the case with α = 0.2, given
α = 0.8, POF is small, i.e., 0.01, and keeps unchanged over
the number of users, but POE considerately increases as N
increases.

Fig. 5: Price of efficiency of FPTAS versus the number of
users and α.

The results in Figs. 5 and 6 show that there is a significant
loss in fairness or efficiency as α = 0.2 or 0.8, respectively.
The results further imply that α = 0.5 can be an appropriate
selection to balance the trade-off between POF and POE.
To further demonstrate this point, Fig. 7 shows POF versus

Fig. 6: Price of fairness of FPTAS versus the number of users
and α.

POE in the case of N = 5 users. We define that α = 0 is
corresponding to the full fairness and α = 1 is corresponding
to the full efficiency. As seen, if we choose α = 0, i.e., the
full fairness, the loss of efficiency is nearly 80% compared
with full efficiency. Also, if we choose α = 1, i.e., the full
efficiency, the loss of fairness is nearly 40% compared with
the full fairness. Meanwhile, if we select α = 0.5, there is only
10% loss in the fairness and nearly 20% loss in the efficiency
compared with the full fairness and full efficiency, respectively.

Fig. 7: POF versus POE for N = 5 users.

In summary, we set the accuracy parameter as ε = 0.1
and the weight parameter as α = 0.5 for the performance
comparison, which is presented in the next section.

B. Performance Comparison

Our work aims to maximize the system performance with
the objective function including the efficiency and fairness.
Moreover, the sensing function as a radar performs the target
tracking, and thus the execution time of the algorithms needs
to be considered. Therefore, in this section, we compare the
algorithms in terms of the objective value and execution time,
which are shown in Figs. 8, 10, 9, and Table II. Note that the
objective value is the value of objective function F(x) in (5),
which is the weighted sum of the achievable efficiency and
fairness.

Fig. 8 illustrates the performances obtained by the FPTAS,
GREEDY, and SQP algorithms when the number of users
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Fig. 8: Performances obtained by FPTAS, GREEDY, and SQP
algorithms versus the number of users.

vary. As seen, the objective values obtained by the proposed
algorithms, i.e., FPTAS and GREEDY, are higher than those
obtained by the SQP algorithm over the number of users. This
means that the total efficiency and fairness obtained by the
proposed algorithms are higher than those obtained by the
baseline algorithm.

Fig. 9: Objective value versus the total bandwidth.

Next, we examine how the performances obtained by the
FPTAS, GREEDY, and SQP algorithms vary as the total
bandwidth B varies. Here, we fix the number of users to
N = 5 and vary the value of B in the range [5×106, 1.4×107].
As shown in Fig. 9, over the values of B, the objective
values obtained by the FPTAS and GREEDY algorithms are
always much higher than that obtained by the SQP algorithm.
Moreover, as the total bandwidth B increases, the objective
values obtained by all the algorithms increase. This is due
to fact that the objective function (i.e., defined in F(x)) is
(strictly) increasing on its domain.

Finally, we compare the execution time of the algorithms,
and the results are shown in Fig. 10. As seen, the execution
time of the proposed algorithms, e.g., GREEDY, are much
shorter than those of the SQP. This is due to the fact that the
GREEDY algorithm has a linear complexity of O(N). It can be
seen from Fig. 10 that the execution time of most of algorithms
increases as the number of users N increases. In particular,
the increase of execution time of FPTAS is polynomial in N .
This is consistent with our complexity analysis in (22) that the
execution time is quadratic in N . Meanwhile, GREEDY has a
linear complexity of O(N), and thus the increase of execution

Fig. 10: Execution time of FPTAS, GREEDY, and SQP.

time of GREEDY seems to remain unchanged as N increases,
when compared to that of FPTAS.

N
FPTAS GREEDY

obj. time obj. time

2 11% 4.5 9.2% 180

4 9.0% 3.4 3.9% 180

6 8.0% 2.8 1.3% 180

8 6.5% 2.2 0.6% 180

10 6.9% 1.8 0.5% 180

TABLE II: A summary of the objective values and execution
time obtained by FPTAS and GREEDY, compared with the
SQP algorithm.

To clearly demonstrate how our proposed algorithms im-
prove the performance compared with SQP, we use Table
II. In the table, the “obj.” column shows the percentage of
objective value that FPTAS and GREEDY improve compared
with SQP, and the “time” column presents how many times
the proposed algorithms executes faster than SQP. As seen,
the FPTAS algorithm can improve the objective value up to
11% compared with SQP, while keeping the execution time
faster. Especially, the execution time of GREEDY is 180 times
faster compared with SQP while improving the objective value
up to 9.2%.

The results demonstrate that compared with the baseline
algorithm, our proposed algorithms better adapt the low delay
requirements of the radar systems. Clearly, our proposed
algorithms are scalable. Furthermore, the FPTAS algorithm
can be a good choice if we aim to achieve a higher objective
value within reasonable execution time, i.e., up to one second
for N = 10 users. Meanwhile, GREEDY will be a better
alternative if we need short execution time, i.e., less than 1%
second.

VII. CONCLUSION

In this paper, we have investigated the bandwidth allocation
problem in the DJSC system. First, we have formulated
the optimization problem that aims to optimize bandwidth
allocation to the sensing and communication functions of the
JSC users. The objective is to maximize the total sensing per-
formance, i.e., estimation rate, communication performance,
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i.e., communication data rate, and the max-min fairness of all
the users. To solve the non-convex problem, we propose the
polynomial time approximation algorithm that is able to find a
near-optimal solution. To further reduce the execution time, we
propose to use the heuristic algorithm that performs the band-
width allocation to the JSC users in a greedy manner. We have
provided simulation results to demonstrate the improvement
and effectiveness of the proposed algorithms, compared with
the active-set sequential quadratic programming algorithm,
which is known as the currently best algorithm for solving
non-linear optimization. The simulation results further showed
that the heuristic algorithm can be a more suitable solution to
the DJSC systems when the short execution time is required.

APPENDIX

A. The non-concavity of Fp
We prove that Fp is neither concave nor convex for p ≥ 2.

Let Γi(x) = (fi(x) + gi(x))p over the interval [0, B], where
p ∈ R \ {0}, and the second order derivative of Γi(x) can be
determined as follows:

Γ′′i (x) = − p

ln 2

(
2ν2i

Tpri (1 + νix)
2 +

τ2i

x (x+ τi)
2

)
×

×
(

2

Tpri
ln (νix+ 1) + x ln

(τi
x

+ 1
))p−1

+
(p− 1)p

ln 2

(
2

Tpri

νi
νix+ 1

− τi
τi + x

+ ln
(τi
x

+ 1
))2

×

×
(

2

Tpri
ln (νix+ 1) + x ln

(τi
x

+ 1
))p−2

.

For p > 1, we can verify that Γ′′i (x) may take both negative
and positive values over [0, B], and thus Γi(x) is neither
convex nor concave. Indeed, we consider a simple form of
the function when p = 2, τi = νi = 1 and Tpri = 2. Then, we
can compute Γ′′i (x) as follows:

−
2
(
ln (x+ 1)− ln2

(
1
x + 1

)
x2 +

(
ln
(
1
x + 1

)
− ln2

(
1
x + 1

))
x
)

x (x+ 1) ln 2
,

for which Γ′′i (1/3) · Γ′′i (1) < 0 holds.

B. Trade-off between Efficiency and Fairness

Consider an example with two users whose utility functions
are given as follows. W.l.o.g we can assume that the total
bandwidth is 1. Let

u1(x) = x log2(1 +
1

x
) + log2(1 + x), and

u2(x) = (1− x) log2(1 +
2

1− x
) + log2(2− x),

where x ∈ (0, 1) denotes the amount of bandwidth allo-
cated to user 1. Consider the case with p = 1. Then, the
maximum efficiency of the instance problem is computed as
maxx∈(0,1){u1(x) + u2(x)}. This is convex problem as the
function is concave, and thus one can easily find its optimal
point x = 0.38, with the corresponding efficiency of 2.2, as
shown in Fig 11. Note that, at this point, the utilities of the two

users are respectively 0.81 and 1.06, resulting in the fairness of
0.81. On the other hand, it is seen that the maximum fairness is
achieved at the intersection point of the two functions u1 and
u2, which gives each user an equal utility of 1.38 > 0.81.
This follows the fact that we can improve efficiency only
at the cost of increasing fairness and vice versa, making a
trade-off between the efficiency and the fairness of bandwidth
allocation.

Fig. 11: Trade-off between efficiency and fairness.

C. Proof of Lemma 2
Recall that a continuous function u : R→ R is c-Lipschitz

if for all x and x′ (in the domain of u), |u(x) − u(x′)| ≤
c|x−x′|, and a sufficient condition for this is that |u′(x)| ≤ c
for all x. Note that u′i(0) = ∞, and thus we need to restrict
ui to an interval that is sufficiently away from 0.

Claim 2. We can choose y0 > 0 such that the root y1i (at
which ui(y1i ) = εL

p√
N

) lies in the interval [y0, ξi].

Proof: Let ci > 1 be a constant and y1 := εL
2ci

p√
N

. Then,
based on the definition of ui, we can express ui(y1) as follows:

ui(y1) = fi(y1) + gi(y1) =
1

2Tpri
· log2

(
1 +

νiεL

2ci
p
√
N

)
+

εL

2ci
p
√
N

log2

(
1 +

ci
p
√
Nτi
εL

)
.

If
p
√
Nτi
εL

≤ 2, then ci = 3 and gi(y0) ≤ εL
p√
N
· log2 6

3 < εL
p√
N

.

Otherwise, let ci = 2 log2

p√
Nτi
εL . Then

gi(y1) ≤ εL

2ci
p
√
N

log2

(
(1 + ci)

p
√
Nτi
εL

)

=
εL

2 p
√
N

(
log2(1 + ci)

ci
+

1

e

)
<

εL

2 p
√
N
,

using the inequality log(1 + ea) < (e − 1)a, which is valid
for all a ≥ 1.

Otherwise, given a positive value of y2 with y2 <
1
τi

(2
TpriεL
p√
N −1), we have fi(y2) < εL

2
p√
N

. Due to the monotone
increasing of fi(x) + gi(x), it is enough to choose 0 < y0 <
min{y1, y2} such that fi(y0)+gi(y0) < εL

p√
N

. Hence, we have
ui(y0) < εL

p√
N

and the root y1i (at which ui(y
1
i ) = εL

p√
N

) lies
in the interval [y0, ξi].
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Now, for any x in the interval [y0, ξi], we have

u′i(x) = f ′i(x) + g′i(x)

=
νi

2Tpri
· 1

1 + νix
+ log2

(
τi + x

x

)
− τi
τi + x

≤ νi
2Tpri

+ log2

(
τici

p
√
N

εL
+ 1

)

≤ νi
2Tpri

+
τici

p
√
N

εL
.

By the Lipschitz condition mentioned above, it follows that
we should select

εi :=
ε2L
p
√
N

:

(
νi

2Tpri
+
τici

p
√
N

εL

)
,

such that

|ui(x̃ji )− ui(x
j
i )| ≤

(
νi

2Tpri
+
τici

p
√
N

εL

)
|x̃ji − x

j
i | ≤ εui(x

j
i ).

D. Proof of Lemma 3

Proof: Let ε0 = mini∈N εi. The discretization asks to
find, for each i ∈ N , a solution x̃ji to the equation ui(x) = uji ,
for j = 0, 1, . . . ,Ki. Hence, the overall complexity of this
process, TIMEdiscrete, is bounded by O(T ), where

T =
∑

i∈N

(
log2

ui(ξi)

εi
· log(1+ε)

p
√
Nui(ξi)

εL

)

≤ 1

log2(1 + ε)
·
∑

i∈N

(
log2

ui(ξi)

εi
· log2

ui(ξi)

ε

)
≤ 1

ε
· log2

1

ε
· log2

1

ε0
·N ·maxi∈N

{
log2

2 ui(ξi)
}
,

where the first inequality follows from the fact that L =
(
∑
i∈N (ui(ξi))

p)1/p ≥ p
√
N and ui(ξi) ≥ 1 for all i. while

the second inequality is because ε0 ≤ εi for all i. On the other
hand, from the definition of εi we have that

log2

(
1

εi

)
≤ log2

(
νi

2Tpri
+ τici

ε3

)
≤ log2

(
νi

2Tpri
+ τici

)
·log2

1

ε3
.

Therefore, it holds that

log2

(
1

ε0

)
≤ log2

1

ε3
·max
i∈N

{
log2

(
νi

2Tpri
+ τici

)}
.

This follows that

T ≤ 3

ε
log2

2

1

ε
·N · ω,

where ω = maxi∈N

{
log2

2 ui(ξi) · log2

(
νi

2Tpri
+ τici

)}
. Also,

note that ci = max{2, 2 log2

p√
Nτi
εL } ≤ max{2, 2 log2

τi
ε }, as

p
√
N ≤ L. This completes the proof of Lemma 3.

E. Proof of Lemma 6

Proof: It is not difficult to see that the execution time of
DP is TIMEDP = O(N ′ ·

∑
i∈N |Di|) = O( 1

εN ·
∑
i∈N Ki),

where Ki ≤ 1+log(1+ε)

p√
Nui(ξi)
εL ≤ 1+ 1

ε log2
1
ε log2 ui(ξi).

Hence, TIMEDP = O( 1
ε2 log2

1
εN

2 maxi∈N {log2 ui(ξi)}).
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