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Abstract—Ultra-reliable low latency communication (URLLC)
requires the packet error rate to be on the order of 10−9-
10−5 . Determining the appropriate transmission rate to satisfy
this ultra-reliability constraint requires deriving the statistics of
the channel in the ultra-reliable region and then incorporating
these statistics into the rate selection. In this paper, we propose
a framework for determining the rate selection for ultra-reliable
communications based on the extreme value theory (EVT). We
first model the wireless channel at URLLC by estimating the
parameters of the generalized Pareto distribution (GPD) best
fitting to the tail distribution of the received powers, i.e., the
power values below a certain threshold. Then, we determine
the maximum transmission rate by incorporating the Pareto
distribution into the rate selection function. Finally, we validate
the selected rate by computing the resulting error probability.
Based on the data collected within the engine compartment of
Fiat Linea, we demonstrate the superior performance of the
proposed methodology in determining the maximum transmission
rate compared to the traditional extrapolation-based approaches.

Index Terms—Extreme value theory, outage probability, rate
selection function, ultra-reliable communication, URLLC.

I. INTRODUCTION

U
LTRA-reliable low latency communication (URLLC) is

one of the most important features of the fifth-generation

(5G) networks with the aim of supporting mission critical

applications, such as remote control of robots, remote surgery,

autonomous vehicles and vehicular teleoperation applications

[1]- [3]. At URLLC, the packet error rate (PER) is guaranteed

to be as low as 10−9-10−5 to address the strict reliability

constraint, while the acceptable latency is on the order of

a few milliseconds [1]- [7]. Establishing a URLLC system

necessitates the statistical modeling of the wireless channel

tail quantifying the statistics of extreme events [3]- [7], and

the transmission strategies in the ultra-reliable region [3].

Previous studies on the statistical modeling of the wireless

channel for ultra-reliable communications extrapolate a wide

range of practically important channel models to the ultra-

reliability region [2], [3]. A simple power-law expression is

proposed to estimate the tail of the cumulative distribution

function (CDF) of the received power by extrapolating the

commonly used practical channel models. Only recently, we

have demonstrated that these extrapolated distributions are not
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accurate in the ultra-reliable region and can result in several

orders of magnitude difference in the estimated packet error

probabilities [6]- [7]. We have proposed the usage of fading

statistics from extreme value theory (EVT) and developed a

novel methodology to derive these statistics efficiently with

minimum amount of data. Nevertheless, none of these studies

determine the maximum transmission rate in URLLC or assess

the system reliability by considering ultra-reliable channel

statistics.

Calculation of the reliability and rate selection for ultra-

reliable communications has been addressed in the context

of proposing new channel parameters and new performance

measures. The definition of coherence time/distance has been

modified as the time or distance over which a channel is pre-

dictable with a given reliability in [8]- [9]. New performance

measures are defined as average reliability for dynamic envi-

ronments where the channel changes frequently; and probably

correct reliability for the static environments where the channel

statistics remain constant for a large enough time interval

[3]. However, these reliability measures have been derived

by using the extrapolation of the traditional average statistic

based channel models, which may not be accurate in the ultra-

reliable region. Deriving outage probability for assessing the

reliability of a wireless channel model is immensely important

as uncertainty may degrade the communication performance

by several orders of magnitude [3]. It is worth noting that

the asymptotic idea of outage probability, which is widely

employed in wireless communication systems, is an accurate

performance criterion even in the finite blocklength context

[10].

The goal of this study is to propose a novel EVT-based

framework for the estimation and validation of the optimal

transmission rate for ultra-reliable communications. The orig-

inal contributions of the paper are listed as follows:

• We propose a novel framework based on the modeling

of the tail distribution of the channel by using the GPD,

determination of the optimum transmission rate by using

the estimated values of the GPD parameters, and then

assessment of the system reliability by means of the

outage probability metric.

• We formulate the rate selection function of GPD by

incorporating the estimated Pareto parameters into the

optimum transmission rate that guarantees the ultra-

reliability constraints.

• We assess the reliability of the system by calculating the

outage probability based on the rate selection function for

the GPD.

• We demonstrate the superiority of the proposed method-

ology in terms of the reliability assessment, compared to

http://arxiv.org/abs/2401.05882v1
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the conventional method based on the extrapolation of the

average statistics to the ultra-reliable region, over the data

collected within the engine compartment of Fiat Linea

under various engine vibrations and driving scenarios.

The rest of the paper is organized as follows. Section

II describes the system model and assumptions considered

throughout the paper. Section III presents the EVT-based

framework for determining and validating the rate selection

for the tail distribution of the channel by using GPD. Section

IV provides the channel measurement setup and the perfor-

mance evaluation in determining the optimum rate and outage

probability. Finally, concluding remarks and future works are

given in Section V.

II. SYSTEM MODEL

In this study, we consider an ultra-reliable communication

system experiencing significant fading, resulting in extremely

low received power values. We assume that the transmitter

(Tx) sends a packet to a receiver (Rx) at the rate ' over an

unknown channel. The receiver estimates the parameters of the

GPD fitted to the channel tail distribution by applying EVT to

the received power values. Then, the transmitter determines the

transmission rate based on these estimated parameter values.

We assume that the channel is stationary, i.e., the distribu-

tion function of the received powers does not change over time,

and the parameters specifying the distribution class are fixed

over time. In the case of non-stationarity based on the results of

the Augmented Dickey-Fuller (ADF) test, the external factors

varying the parameters of the GPD are determined such that

the sequence is divided into " groups, in which the channel

can be considered stationary, as detailed in [7]. Also, the

transmit power is fixed and known in advance. In such a

case, using the received signal power is equivalent to using

the squared amplitude of the channel state information [3],

[6].

To study the outage probability and define the maximum

transmission rate, we assume that the dominant source of

error in block fading channels is the link outage, where

we neglect other sources such as environmental noise. This

model has been shown to be very suitable in the transmission

of short packets in URLLC scenarios [2]- [3], [11]. Prior

to transmission, at the training phase and after collecting

the stationary channel samples by Rx, the channel sequence

is converted into = independent and identically distributed

(i.i.d.) sample sequence by using declustering method [6],

[12], denoted by -=
= {G1, ..., G=}, where G8 is the 8Cℎ i.i.d.

sample, 8 ∈ {1, ..., =}. Let � be the CDF of the training

samples -=. The training phase uses either the dedicated pilot

signals and training sequences or, the history of previous data

transmissions and the associated feedback. The link outage is

defined as

'(-=) > log2(1 + /), (1)

where '(-=) denotes the optimum transmission rate estimated

based on the = training received power samples, and / is the

received power from the test samples. Note that in (1), unit

bandwidth is assumed; hence, '(.) represents the transmission

rate per unit bandwidth, i.e., spectral efficiency, in bits/sec.

Then, according to (1), the outage probability at transmission

rate '(-=) is defined as

?� ('(-
=)) = %

[

'(-=) > log2(1 + /)
]

. (2)

The goal of ultra-reliable communication is to choose the

maximal rate that meets a predetermined reliability constraint,

such that

?� ('(-
=)) ≤ n. (3)

Guaranteeing constraint (3), the transmitter determines the

maximum rate as a function of � as follows [3]:

'n (�) = BD?
{

'(-=) ≥ 0 : ?� ('(-
=)) ≤ n

}

= log2

(

1 + �−1 (n)
)

,
(4)

where 'n (�) denotes n-outage capacity, and �−1 (n) is the

n-quantile of �.

III. RATE SELECTION FRAMEWORK

In our EVT-based framework, the rate selection function

of GPD is formulated by incorporating the estimated Pareto

parameters, i.e., scale and shape parameters, into the derivation

of the optimum transmission rate guaranteeing ultra-reliability.

First, received power samples are collected in the training

phase. Afterwards, the training samples are converted to =

i.i.d. samples by using the declustering method [6], [12], as

an input to the EVT process. Then, GPD is fitted to the

lower tail of the i.i.d. sequence. Modeling the lower tail is

followed by formulating the rate selection function of GPD.

Finally, the channel reliability is assessed by comparing the

estimated outage probability obtained in the test phase with

the targeted PER. The proposed algorithm is depicted in Fig. 1

and explained in detail next.

A. Channel Estimation

EVT provides a robust framework for analyzing the statis-

tics of extreme events happening rarely through modeling

the probabilistic distribution of the values exceeding a given

threshold by using the GPD [6], [12]. Assume that -=
=

{G1, ..., G=} is an i.i.d. stationary sequence of received powers

G8 for 8 ∈ {1, ..., =}. Accordingly, the probabilistic distribution

of the power values exceeding a given threshold D can be

expressed as

�D (H) = 1 −
[

1 +
bH

f̃D

]−1/b
, (5)

where H is a non-negative value denoting the exceedance below

threshold D, i.e., (H = D − - , - is any G8 below threshold

D); and b and f̃D = f + b (D − `) are shape and scale

parameters of the GPD, respectively, and ` and f are the

location and scale parameters of the generalized extreme value

(GEV) distribution fitted to the CDF of "= = <0G{G1, ..., G=},

respectively [6, Theorem 1], [13].

To model the tail distribution of the received power se-

quence, the measured samples are converted into an i.i.d.

sequence by removing their dependency using the declustering

approach [6]. Then, EVT is applied to the i.i.d. samples

for optimum threshold determination and the estimation of
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Fig. 1. Flowchart of the proposed rate selection framework.

Pareto distribution parameters by using the MLE. The opti-

mum threshold is determined by utilizing two complementary

methods, mean residual life (MRL) and parameter stability

methods [6], [12]. The MLE estimates of the Pareto distribu-

tion parameters are formulated as follows.

Theorem 1. Let GPD(f,b) be the Pareto model fitted to the

training samples -=
= {G1, G2, ..., G=}. Then, the MLE of f

and b can be obtained as

b̂ =
1
:

[
∑:

8=1 log
(

1 + \̂H8
) ]

;

f̂ =
b̂

\̂

(6)

where : is the number of samples in the tail, i.e., exceeding

the optimum threshold; H8 = D − G8 for all G8 < D, where

8 ∈ {1, ..., =}; and \̂ is the root of the following equation:

Ψ: (\̂) =
[ 1

:

:
∑

8=1

(1 + \̂H8)
−1(

1

:

:
∑

8=1

log(1 + \̂H8) + 1)
]

−1. (7)

Proof. The log-likelihood function corresponding to the Pareto

distribution fitted to the tail of i.i.d. sequence -=
=

{G1, G2, ..., G=} is defined as ;. (f̂, b̂) =
∑:

8=1 ;H8 (f̂, b̂), where

. = {H1, H2, ..., H:}; f̂ and b̂ are the estimated scale and shape

parameters, respectively; and ;H8 (f̂, b̂) is expressed as [12]

;H8 (f̂, b̂) = log(
1

f̂
) − (1 +

1

b̂
) log(1 +

b̂

f̂
H8). (8)

By taking the partial derivative of (8) with respect to f̂ and

b̂, and making them equal to 0, we obtain the estimation of

scale and shape parameters of GPD, respectively. Equating

the partial derivatives to 0, we come up with the following

equations:

b̂ =
1

:

:
∑

8=1

log(1 +
b̂

f̂
H8), (9a)

1

1 + b̂
=

1

:

:
∑

8=1

1

1 +
b̂

f̂
H8

. (9b)

Substituting (9a) into (9b), we end up with a new equality as

Ψ: (\̂) function expressed in (7). Then, the MLE of \, i.e., \̂,

is the root of (7) and accordingly, the estimations of b and f

are obtained as shown in (6). �

The validity of the estimated Pareto model is then assessed

by using probability plots including probability/probability

(PP) plot and quantile/quantile (QQ) plot. We refer the readers

to [6] and [7] for more details on the channel modeling

methodology of the extreme events at URLLC.

B. Rate Selection

Rate selection requires the estimation of the GPD pa-

rameters and calculation of the rate as a function of these

parameters. Therefore, in order to determine the n-outage in

(4), we estimate �−1 (Y=) as

�−1
D (Y=) = D +

fD

b

[

1 − Y
−b
=

]

, (10)

where �−1
D (.) denotes the inverse of �D (.); D is the optimum

threshold for GPD; and Y= quantile is the probability whose

associated quantile is of interest [6]. The shape and scale

parameters of GPD in (10) are the MLE of the GPD parameters

fitted to the tail of the training samples -=
= {G1, G2, ..., G=}.

Theorem 2. Let f̂ and b̂ be the MLE of the scale and shape

parameters of the GPD(f,b) fitted to the tail distribution of

the training samples -=
= {G1, G2, ..., G=}, respectively. Then,

the maximum transmission rate is defined as

'�%� (-=) = log2

(

1 + D +
f̂

b̂

[

1 − Y
− b̂
=

] )

, (11)

where D is the optimum threshold for the channel tail estima-

tion; and Y= is the outage probability.

Proof. The transmission rate for a specific training sample

-=
= {G1, G2, ..., G=} is defined as

'(-=) = log2

(

1 + �̂−1 (Y=)
)

, (12)

where the �̂−1 (Y=) is the estimate of Y=-quantile of �, for

any distribution �. The goal is to find Y= such that '(-=) is

maximized and (3) is satisfied. Substituting (10) in (12), the

maximum transmission rate guaranteeing a certain reliability,

i.e., error probability n , is defined as (11). �

C. Validation of Selected Rate

The average outage probability, i.e., the average of error

probability due to the outage of the GPD fitted to the extreme

values exceeding a given threshold, is obtained by substituting

(11) in outage probability equation (2), and taking the expec-

tation as follows:

?� ('�%� (-=)) =

�
[

%
[

log2 (1 + D +
f̂

b̂
(1 − Y

− b̂
= ) > log2 (1 + /)

]

]

=

�
[

%
(

−
f̂

b̂
(1 − Y

− b̂
= ) < D − /

)

]

=

�
[

(

1 −
b

f
(
f̂

b̂
(1 − Y

− b̂
= ))

)−1/b
]

,

(13)

where � [.] denotes the expectation function; b̂ and f̂ are the

MLE of estimated shape and scale parameters fitted to the

training samples, respectively; and b and f are the shape and
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scale parameters of the GPD, given that �D (.) is perfectly

known and GPD is fitted to the sample sequence including the

data in training and test phases. By referring to the reliability

constraint expressed in (3), the outage probability obtained

from (13) should be less than or equal to the n . Therefore,

the maximum allowed error probability, Y=, can be calculated

with respect to the targeted PER n , as follows:

Y= =
[

1 −
b̂

f̂

(f

b

(

1 − n−b
) ) ]− 1

b̂ . (14)

If '�%� (-=) is a valid transmission rate, the corresponding

outage probability ?� ('�%� (-=)) is expected not to exceed

the targeted reliability n , according to constraint (3).

The complexity of the proposed rate selection framework is

$ (=), similar to the traditional extrapolation approach [3], [8]-

[9], since the optimum transmission rate is determined based

on = training samples.

IV. NUMERICAL RESULTS

The goal of this section is to evaluate the performance of the

proposed methodology in determining the maximum transmis-

sion rate for URLLC, evaluating the system reliability by using

the outage probability metric, comparing it to the traditional

extrapolation-based methods for the Rayleigh fading in the

estimation of the transmission rate, and illustrating the impact

of channel mismatch on the reliability performance of the

system. It is worth mentioning that throughout this section,

the Rayleigh distribution refers to the channel model under

the Rayleigh fading.

To obtain the extrapolated Rayleigh curve, we fit the

Rayleigh distribution to the first 103 samples from the received

power sequence and upon estimating the Rayleigh parameter,

we compute the transmission rate as expressed in [3, Equa-

tion 23]. Then, we extrapolate the fitted Rayleigh distribution

toward the ultra reliable region and compute the corresponding

outage probability as expressed in [3, Equation 26], yet assum-

ing that the transmission rate is the Rayleigh rate computed

based on [3, Equation 23].

To represent the impact of channel mismatch on the system

reliability, we fit the Rayleigh distribution to the received

power values and then, compute the maximum rate as ex-

pressed in [3, Equation 23]. Then, we assume that the channel

is no longer Rayleigh, i.e., � in constraint (2) is different than

Rayleigh (the true distribution � is estimated by the GPD

at different thresholds as it refers to the distribution of the

channel tail); yet Tx assumes that the channel is Rayleigh and

hence, setting the rate as in [3, Equation 23] with Y= obtained

as expressed in [3, Equation 27]. Due to mismatch, the es-

timated transmission rate w.r.t. the Rayleigh distribution does

not converge to '(-=) computed w.r.t. the true distribution �.

Additionally, the outage probability is computed such that the

channel tail distribution is estimated by the GPD while the

system operating at the Rayleigh transmission rate obtained

by [3, Equation 23].

The measured channel data were collected within the engine

compartment of Fiat Linea at 60 GHz. The locations of the

transmitter and receiver antennas are selected out of the possi-

ble locations for the wireless sensors located within the engine

compartment, namely locations 5 and 13 in [14, Fig. 1], such

that the effect of the engine vibration is observed in the re-

ceived power, as shown in Fig. 2. A Vector Network Analyzer

(VNA) (R & S® ZVA67) is connected to the transmitter and

receiver via the R & S® ZV-Z196 port cables with maximum

4.8 dB transmission loss. The horn transmitter and receiver

antennas with a nominal 24 dBi gain and 12◦ vertical beam-

width operate at 50-75 GHz. We have captured about 106

successive samples for 30 minutes with a time resolution of 2

ms. We use MATLAB for the implementation of the proposed

algorithm. Due to the existence of a non-stationarity trend

among the samples, the measured samples are categorized into

two stationary groups according to the engine vibration. Group

one includes bunches of 103 successive samples all above −12

dBm. If any sample within 103 samples is less than −12 dBm,

the set of successive samples is assigned to group two.

Fig. 2. Measurement setup with the transmitter (TX) and receiver (RX)
antennas located in the engine compartment of Fiat Linea.

A. Optimum transmission rate

To determine the maximum transmission rate at URLLC, we

plot the normalized '�%� (-=), denoted by F, for different

sample numbers. The normalization is performed with respect

to the optimal throughput, given that �D (.) is perfectly known,

i.e., the last '�%� (-=) estimated based on the whole set of

data samples, not only the training ones.

Fig. 3 shows the normalized rate F for GPD fitted to the fil-

tered i.i.d. samples of groups 1 and 2 at different sample num-

bers, threshold values, and error rates n ∈ {10−3, 10−4, 10−5}.

Fig. 3a shows that the normalized rate selection function F

converges faster to 1, meaning that the transmission rate con-

verges to its optimum value, at lower targeted PER n = 10−3.

Comparing Fig. 3a and Fig. 3b at each targeted PER n ,

the normalized rate in Fig. 3b approaches to 1 significantly

faster than that shown in Fig. 3a. This is expected since by

relaxing the threshold from −10 dBm to −5 dBm, determining

GPD and its corresponding transmission rate requires the

collection of less samples in the training phase. Additionally,

by increasing the threshold, at lower sample numbers, greater

portion of received power with higher range and variety is

included in the tail and therefore, the GPD parameters and the

transmission rate estimated at lower sample number remain

valid for higher sample numbers. Fig. 3c also demonstrates

that the convergence of F function to 1 is slow for targeted

PER n = 10−5. The fluctuations in Fig. 3c is due to the low

number of collected samples for estimating the GPD and its

corresponding rate function.
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Fig. 3. Normalized transmission rate for: (a) group 1 at D = −10 dBm, (b) group 1 at D = −5 dBm, and (c) group 2 at D = −25 dBm. The single Extrapolated
and Mismatch plots correspond to all n values. Extrapolated and Mismatch plots are both based on the Rayleigh assumptions.

Figs. 3a, 3b, and 3c also illustrate the normalized rate F for

GPD compared to the extrapolation based method for groups

1 and 2 of data and for different thresholds of −5 dBm and

−10 dBm at group 1, and −25 dBm at group 2. We observe

that the normalized rate under the GPD assumption converges

faster or simultaneously to the optimum rate, compared to

that of the extrapolated approach for both groups (referring to

Figs. 3a, 3b, and 3c), and under different thresholds (referring

to Figs. 3a and 3b). The normalized rate of extrapolated

approach in Fig. 3 corresponds to all n values, as the nor-

malized rate under the extrapolated Rayleigh rate-selection

function appears to be (almost) independent from the targeted

error probability n , implying that the rate-selection function

obtained for a given n is valid for the others as well, as also

stated in [3].

Figs. 3a, 3b, and 3c besides show the impact of mismatch

between the estimated channel and the true one. The proposed

method in Fig. 3 performs significantly better than the case

where the true channel distribution is actually modeled by the

GPD while Rayleigh distribution was assumed. As also stated

in [3], the convergence of the rate is heavily affected by the

model mismatch, degrading the normalized rate to almost 0 for

all n values. However, the effect of model mismatch can be

reduced by increasing the sample number to the higher values.

B. Reliability assessment

Fig. 4 illustrates the reliability performance of the fitted

GPD based on the calculated outage probability for a range

of thresholds for 2 groups of data. In this figure, the out-

age probability in (13) is plotted for fixed error probability

n ∈ {10−3, 10−4, 10−5} for large enough = to ensure conver-

gence [3]. This demonstrates that at both groups and for all

error probabilities, the reliability constraints in (3) are never

violated.

Figs. 4a and 4b also show the reliability performance of

the proposed Pareto model compared to the conventional

extrapolation-based method by comparing their outage prob-

abilities for n ∈ {10−3, 10−4, 10−5}. Since in the traditional

approach, the outage probability is independent of any GPD

thresholds, we plot a single outage probability obtained by

the extrapolated method at all the threshold values. In Fig. 4a,

-8 -7 -6 -5 -4
10

-15

10
-10

10
-5

10
0

10
5

(a)

-28 -26 -24 -22 -20

10
-5

10
0

(b)

Fig. 4. Reliability measure of the proposed model and the traditional
extrapolation approach for: (a) group 1, and (b) group 2; The dashed-black
lines are the reference lines at targeted error rate n ∈ {10−3 , 10−4, 10−5 }.
Extrapolated and Mismatch plots are both based on the Rayleigh assumptions.

the reliability of the extrapolated approach at each n value is

almost identical to that of the proposed approach and equal

to the desired error rate. However, in Fig. 4b, the achieved

reliability obtained by the extrapolated approach differs from

the proposed GPD-based approach, as well as the targeted n .

It is due to the fact that in Group 2, the system suffers from

more extreme values with lower received power. In such a

situation, the channel tail needs to be estimated by the GPD

and not the extrapolation.

Figs. 4a and 4b illustrate the effect of mismatch on the

reliability of the system through comparing their outage prob-

abilities for n ∈ {10−3, 10−4, 10−5}. The proposed method in

Fig. 4a has been demonstrated to perform significantly better

than the case where the true channel distribution differs from

the estimated Rayleigh distribution. The effect of mismatch is

more clear for the low n values and at higher thresholds of

the GPD. However, the proposed method in Fig. 4b performs

much better for all n values and thresholds. On the other

hand, while with the proposed GPD approach, the reliability

is always equivalent to the required error rate n , the reliability

of the mismatch case with Rayleigh rate assumption deviates

from the desired n almost at all thresholds.

V. CONCLUSIONS

In this paper, we propose an EVT-based rate selection

framework for ultra-reliable communications. First, we repre-

sent the channel by GPD distribution and estimate its parame-

ters. Then, we determine the maximum transmission rate of the
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estimated channel and validate the selected rate by assessing

the resulting error probability. The achieved reliability from

the proposed EVT-based approach outperforms the traditional

methods based on the extrapolation of average statistic channel

models. Additionally, the GPD threshold has significant impact

on the minimum required number of samples to achieve a

certain reliability order. In the future, we plan to extend

the proposed framework for the EVT analysis of the non-

stationary processes by implementing a real time algorithm

that refines the estimated channel parameters through the

regular transmission.
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