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Centralized and Decentralized Channel Estimation
in FDD Multi-User Massive MIMO Systems

Anupama Rajoriya, Rohit Budhiraja and Lajos Hanzo, Fellow, IEEE

Abstract— We design a centralized and a decentralized vari-
ational Bayesian learning (C- and D-VBL) algorithms for the
base station (BS) of a frequency division duplex massive multiple
input multiple output (mMIMO) cellular system, wherein users
send compressed information for it to estimate their downlink
channels. The BS in the decentralized algorithm consists of
multiple processing units (PUs), and each PU separately estimates
the channels of a group of users, by employing the proposed D-
VBL algorithm. To reduce channel estimation error, the PUs
exploit the structured sparsity inherent in multi-user mMIMO
channels by exchanging information among themselves. We
investigate the proposed C-VBL and low-complexity D-VBL
algorithms and show that i) they substantially outperform the
state-of-the-art centralized and decentralized algorithms in terms
of the normalized mean squared error and the bit error rate. This
is because they beneficially exploit the inherent channel sparsity,
while the existing state-of-the-art solutions fail to do so. The
proposed D-VBL is also robust to PU failures, and provides a
similar performance as its centralized counterpart (C-VBL), but
with a much reduced complexity.

Index Terms— Decentralized architecture, frequency division
duplex, variational Bayesian learning.

I. INTRODUCTION

Massive multiple input multiple output (mMIMO) systems
relying on a large number of antennas at the base station
(BS) enable a wireless system to achieve high spectral and
energy efficiency [1]. To fully realize these gains, the BS
requires downlink channel state information (CSI), which is
easy for it to infer in a time division duplex (TDD) system,
from the uplink channel by assuming reciprocity [1, and
references therein], [2]. In frequency division duplexing (FDD)
systems, having non-reciprocal uplink (UL) and downlink
(DL) channels, DL CSI estimation was investigated [3]–[7].

The authors of [3] showed that when different users share
common scatterers at the BS, their channel matrices exhibit
common sparsity, i.e., the angle of arrival (AoA) and angle of
departure pair (AoD) of the significant multipath components
is the same for all the users. On the other hand, user-
specific local scatterers at the BS cause user-specific sparsity.
Rao and Lau in [4] proposed a joint-orthogonal matching
pursuit (J-OMP) algorithm to estimate channels in multi-user
mMIMO systems by exploiting both user-specific and common
sparsities. Tseng el al. in [5] developed a two-stage weighted
ℓ1-minimization-based channel estimator to exploit both these
sparsities. These algorithms, however, require knowledge of
the sparsity level, which is non-trivial to acquire [3], [4]. Li
et al. in [7] developed a deep learning based DL channel
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estimation technique for FDD mMIMO systems with single-
antenna users. As a further advancement, the authors of [8],
[9], without considering any particular kind of shared sparsity
across users, developed an orthogonal matching pursuit based
DL channel estimation algorithm for FDD mMIMO systems.
All of these works either capture common and/or user-specific
sparsities. In addition to these sparsities, since the group of
users in close proximity of each other share the same set of
local scatterers at the BS, they share cluster-specific sparsity.

The users in [3]–[6] first compress the DL pilot obser-
vations, and then send them back to the BS for centrally
estimating their channels. In mMIMO systems, centralized
BS processing has a high computational complexity [19],
[20]. Decentralized low-complexity BS architectures were
proposed in [19]–[22], where multiple processing units (PUs)
decentrally process the signals of different antenna groups by
exchanging information via a central control unit (CCU). This
architecture is shown to be scalable with the number of users
and antennas, and is eminently suitable for the next-generation
cellular systems having a large number of antennas and users.

The existing mMIMO and the sensor network literature have
made some progress in the decentralized channel estimation
[10]–[13]. Reference [10] proposed a pair of distributed al-
gorithms for joint active user detection (AUD) and channel
estimation (CE) in uplink cloud radio systems relying on such
BS architectures, namely the alternating direction method of
multipliers (ADMM) and hybrid block coordinate descent.
The authors of [11] proposed an approximate message passing
(AMP)-based algorithm for AUD and CE in a distributed cell-
free mMIMO system with lot of access points (APs). The APs
do not communicate with each other as the users do not share
any sparsity. The authors assumed only block channel sparsity,
instead of the combination of user-specific, cluster- specific
and common sparsities. Our proposed solution, by contrast,
develops a decentralized algorithm, which completely captures
this structured sparsity and scales well with a large number of
users in multi-user mMIMO. The authors of [12] proposed a
consensus-based decentralized sparse Bayesian learning (SBL)
algorithm, which exploited the joint sparsity by using the
ADMM to solve multiple consensus optimization problems.
Reference [13] proposed a fusion-based decentralized SBL
algorithm, wherein each node computes a local maximum a-
posteriori estimate of the sparse vector, and then refines it
using the messages received from its neighboring nodes in
each iteration. However, these algorithms only consider the
jointly sparse structure of vectors across different sensors,
rather than the user-specific, cluster-specific and common
sparsities of multi-user mMIMO channels. It is difficult to
extend the above algorithms to multi-user mMIMO systems
associated with the aforementioned sparsities. Furthermore,
the computational cost of each log-likelihood ratio test is high
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Table I: Summary of decentralized channel estimation mMIMO literature.
Keywords [4] [5] [3] [6] [10] [11] [12] [13] [14] [15] [16] [17] [18] Proposed

2014 2016 2017 2019 2018 2020 2018 2019 2017 2017 2019 2020 2018
Multi-user mMIMO ✓ ✓ ✓ ✓ ✓ ✓ ✓
Downlink ✓ ✓ ✓ ✓
Structured sparsity ✓ ✓ ✓
Require sparsity
knowledge

✓ ✓

Bayesian learning ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Quantization ✓ ✓ ✓ ✓ ✓
Decentralized BS ar-
chitecture

✓ ✓ ✓ ✓ ✓

for a mMIMO system. Additionally, as discussed in [19], these
high-resolution observations may clog up the interconnect
links in a D-VBL architecture. To obviate this problem, we
assume that the CCU first quantizes observations Yk and
then sends them to each PU, which decentrally estimates the
channels of a user group by employing the proposed algorithm.

Various quantization based schemes exist in literature, for
low-complexity parameter estimation [14]–[16], [23]. The
authors of [23] developed a quantization-constrained mini-
mum mean squared error estimator for a general parameter
estimation problem. They, however, did not consider any
decentralized processing or sparsity in the unknown parameter,
and thus their solution can not be extended for DL mMIMO
channel estimation. As a further advancement, Jeon et al. in
[14] studied this effect in mmWave MIMO systems by deriving
log-likelihood ratios for the data bits based on the quantized
observations. By contrast, Schniter et al. in [16] developed
an AMP-based channel estimation algorithm for single-user
mmWave MIMO systems considering few-bit ADCs at the
receiver. These works, however, modeled the ADC noise of
single-user mmWave MIMO systems. Then Jeon et al. in [15]
also developed reinforcement learning based data detection for
single-user MIMO systems employing 1-bit ADCs. However,
none of the above authors estimated the sparse channel of
multi-user mMIMO systems using quantized observations.

Considering the gap in the existing multi-user mMIMO lit-
erature, which can be explicitly seen from Table I, we propose
centralized and decentralized channel estimation algorithms
for such systems. The detailed contributions of this work can
next be summarized as follows.
1) We propose a centralized variational Bayesian learning (C-
VBL) algorithm to estimate a mMIMO channel with common,
user-specific and additionally cluster-specific sparsity, which
is shared by the users in each other’s close proximity. We
propose a mixture of three Gaussian distributions as a prior,
where the mixing distributions are associated with multinoulli
variables. Most of the existing DL channel estimation works
i.e., [3]–[5] fail to capture the cluster-specific sparsity, which
occurs due to co-located users. Cheng et al. [17] proposed a
Dirichlet-Gaussian hybrid prior which exploits user-specific,
cluster-specific and common sparsities by adaptively grouping
the users. However, it is difficult to extend this algorithm to a
decentralized architecture, due to its adaptive user grouping.
2) We extend the C-VBL framework to design a decentral-
ized VBL (D-VBL) for a BS having multiple PUs. Each
PU separately estimates the sparse channels of a group of
users assigned to it by exchanging information with other

PUs, via the CCU, to improve estimation. We show, both
analytically and numerically, that the D-VBL algorithm has
lesser complexity than the C-VBL algorithm. This aspect is
important for next-generation BS architectures, which employ
multiple PUs to perform various signal processing tasks.
3) We analyze the convergence of our D-VBL algorithm and
show that the upper bound on the absolute error between the
C- and D-VBL updates tends to zero, when the SNR-based
criterion detects the non-zero support accurately.
4) We numerically show that the proposed D-VBL and C-VBL
algorithms have much lower normalized mean squared error
(NMSE) and bit error rate (BER) than the centralized algo-
rithms e.g., J-OMP [4], variational expectation maximization
(VEM) [3], adaptive grouping sparse Bayesian learning (AG-
SBL) [17], and the decentralized ones in [13], [24]. We also
show that proposed algorithms outperform the existing ones in
terms of spectral efficiency (SE) and energy efficiency (EE),
and that the D-VBL has better EE than the C-VBL.

Notations: The symbols Cr×s and {0, 1}r×s represent a
complex and binary matrix of dimension r × s, respectively.
The point-wise product of two vectors a and b is denoted
as a ◦ b. The trace and the expectation with respect to the
distribution p(·), are denoted by Tr{·} and ⟨·⟩p(·), respectively,
and ⟨f(z)⟩ denotes the expectation of f(z) with respect to the
posterior distribution of z. The symbol IJ denotes an J × J
sized identity matrix and diag(z) denotes a diagonal matrix
with elements of z on its diagonal. The notation NC(x|a,B)
conveys that x is a complex normal random vector with
mean vector a and covariance matrix B. The notation supp(a)
denotes the index set of non-zero entries in vector a. The
notation I(·) denotes the indicator function. The size of a set
C is denoted by |C|. The notations ℜ{y} and ℑ{y} represent
the real and imaginary parts of the vector y, respectively. The
[n,m]th entry of the matrix X is denoted as X[n,m]. The nth
entry of the vector a is denoted as a[n].

The rest of this paper is organized as follows. We describe in
Section II, the system and channel model of the downlink FDD
multi-user mMIMO. In Section III and Section IV, we develop
the proposed C-VBL and D-VBL algorithms, respectively, in
detail. We discuss the convergence of the D-VBL algorithm
in Section V, and numerically investigate the performance of
the proposed scheme in Section VI.

II. SYSTEM MODEL

We consider a FDD multi-user mMIMO system having an
N -antenna BS and K users, each equipped with M antennas.
To estimate the DL channel of users, the FDD BS broadcasts
a pilot matrix Q ∈ CN×T in T time slots. Here we have
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Tr(QHQ) = PT with P being the transmit power per slot.
The M × T pilot matrix received by the kth user is

Rk = HkQ+Nk, (1)
where Hk ∈ CM×N is the channel between the BS and the
kth user. The noise matrix at the kth user Nk ∈ CM×T

has independent and identically distributed (i.i.d.) complex
Gaussian entries with zero mean and σ2

k variance. Similar to
[3]–[5], each user sends Rk back to the BS, which has a
decentralized architecture with L baseband PUs [19]. The BS
segregates the observations received from different users into
L groups and assigns each group to a PU, which separately
estimates their channels, by exchanging information via CCU.
Since all the PUs have the same computational capabilities,
the network is assumed to be homogeneous. The lth PU is as-
signed the observation of the user set Cl ⊆ {1, . . . ,K}, where

Cl is the cluster/group of users so that
L⋃

l=1

Cl = {1, . . . ,K}

and
L⋂

l=1

Cl = ϕ. The lth PU thus has |Cl| user measurement

matrices so that
∑L

l=1 |Cl| = K. We next discuss the channel
model. Before that, a remark is in order.
Remark 1. The wireless channel exhibits wide sense station-
arity [25], i.e., its statistical properties, such that its covari-
ance matrix, remains constant for a long time duration. The
channel’s covariance matrix represents its scattering structure
[26], and consequently its sparsity. The authors of [26], [27]
proposed advanced algorithms for estimating the covariance
matrix of mMIMO channels using a limited number of sample
observations. Based on [26], [27], we assume that the BS
has the users’ covariance information, which are grouped
into multiple clusters depending on the similarity of their
covariance matrices. The similarity can be quantified, e.g.,
using chordal distance [26].

Angular domain channel model: We assume that the BS
and the users employ uniform linear arrays (ULA) for which
the DL channel of the kth user can be modeled as [25]:

Hk =

M∑
m=1

N∑
n=1

hm,n,kaR(ϑR[m])a
H
T (ϑT [n]). (2)

The scalars ϑT [n] and ϑR[m] represent the nth and the mth
entry of the AoD vector ϑT ∈ CN×1 and the AoA vector
ϑR∈CM×1 respectively, while hm,n,k is the path gain for the
nth AoD and the mth AoA. The AoD (AoA) is defined as
the angle of elevation of the path between the BS (user) and
the scatterer causing this path [25]. The vectors aT (ϑT [n])∈
CN×1 and aR(ϑR[m]) ∈ CM×1 are the steering vectors of the
BS and user antenna array, respectively. For an N -element
transmit/receive ULA, the array steering vector aT (ϑ)/aR(ϑ)

has the form [25]: 1√
N

[
1, e−j 2πd sinϑ

λ , . . . , e−j
2π(N−1)d sinϑ

λ

]T
,

where d is the antenna spacing, λ is the carrier wavelength
and ϑ ∈ [−π/2, π/2] is the physical AoA/AoD. With these
definitions, the channel Hk can be equivalently expressed as

Hk = ARH
a
kA

H
T . (3)

Here Ha
k ∈ CM×N is the angular domain channel ma-

trix. Its [m,n]th element is the gain of the path with
the mth AoA and the nth AoD [25]. The matrices
AR = [aR(ϑR[1]), . . . ,aR(ϑR[M ])] ∈ CM×M and AT =

[aT (ϑT [1]), . . . ,aT (ϑT [N ])] ∈ CN×N are the receive and
transmit array response matrices respectively, which we as-
sume to be discrete Fourier transform (DFT) matrices so that
we have AH

T AT = IN and AH
RAR = IM [28]. The DFT array

response matrices result in uniform sampling of the angles
in [−π/2, π/2]. This choice of matrices is the same as the
one used for virtual angular domain channel representation in
[28]. It is shown to accurately capture the true physical angular
channel [28]. Equation (1), using (3), can now be expressed as

Yk = ΦXk +Ek. (4)
Here we have Yk = RH

k AR ∈ CT×M , Φ = QHAT ∈
CT×N , Xk = (Ha

k)
H ∈ CN×M and Ek = NH

k AR ∈ CT×M .
The BS estimates the matrix Xk,∀k. In mMIMO systems,
there are several clusters/scatterers present, which are active
or inactive, depending on their distance from the BS and user.
This is because the distance will decide the strength of this
multipath component. A stronger multipath component will
lead to that scatterer being active. For example, in Fig. 1,
the local scatterer 1 at the BS is equi-distant from all the
users. It will thus cause significant multipath components for
all the users, and will be active for all the users. The multipath
components from this scatterer are represented by the blue
colored rows in the matrices Xk,∀k = 1, 2, 3 and 4.
• Furthermore, the presence of only few scatterers at the

BS side engenders a low number of significant multipath
components [25]. This leads to having only a few non-zero
rows in the channel matrix Xk. The user side is however
constituted by a rich scattering environment. This results in
each AoA contributing to the multipath propagation. Since
all the AoAs are active, similar to [4], we refer to them as
isotropic AoAs, shown in Fig. 1 using orange color dashed
circles. The isotropic AoAs cause all the elements of these
rows to be non-zero. Mathematically,

supp(X[:,1]
k ) = . . . = supp(X[:,m]

k ) ≜ Ωt
k, ∀k, (5)

where Ωt
k is the total sparsity support of the kth user.1

Angle of departure 
for local scatterer 4

Local scatterer 2 at 
BS for user 1 and 2

Local scatterer 4 
at BS for user 1

Local scatterer 5 
at BS for user 2

Local scatterer 6 
at BS for user 3

Local scatterer 
3 at BS for user 

3 and 4

Local 
scatterer 7 at 
BS for user 4

Local scatterer 1 
at BS for users 

1,2,3 and 4

Angle of arrival for 
local scatterer 4

Isotropic local 
scattering at 

user side

Isotropic local 
scattering at 

user side
User-specific sparsity support

Cluster-specific sparsity support

Common sparsity support
Zero entries

User 1

User 2

User 3

User 4

BS

Fig. 1: Structured sparsity in multi-user mMIMO channel.

We next discuss different kind of sparsities.
• Among all limited/active local scatterers at the BS side,
shown in the black dashed circles, few are specific to a
particular user, resulting in active AoDs corresponding to that
scatterer. For example, scatterer 4 is specific to user 1, scatterer

1We assume k, k′ = 1, . . . ,K users, l, j = 1, . . . , L clusters, m =
1, . . . ,M columns and n=1, . . . , N rows.
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5 to user 2, scatterer 6 to user 3 and scatterer 7 to user 4.
The paths, due to user-specific scatterers and shown using
red arrows, lead to user-specific sparsity, marked by red non-
zero entries in Xk. Thus, the user-specific support sets of the
angular channel matrix Xk, denoted by Ωk

k, are disjoint for
all k, i.e., ∩K

k=1Ω
k
k = ϕ.

• A cluster of closely-located users share some local scat-
terers at the BS side, which result in a partially shared set of
active AoDs, and consequently partially-shared row-sparsity in
Xk,∀k. For example, in Fig. 1, scatterer 2 is common to users
1 and 2, and scatterer 3 is common to users 3 and 4. The user
clusters here are {1, 2} and {3, 4}. The paths, due to cluster-
specific scatterers and shown using magenta arrows, lead to
cluster-specific sparsity, which is denoted using magenta non-
zero entries in Xk, and denoted as Ωℓ

l for the lth cluster.
• The local scatterers closest to the BS side, are common

to all the users, since their distance from the users is higher
than that between the users. For example, the local scatterer
1 in Fig. 1 is farthest from all the users, which results in the
same active AoD for all the users. Such paths engendered by
common scatterers, and shown by blue arrows, cause common
sparsity to all users shown using blue row entries in Xk,∀k.
The common sparsity is mathematically denoted as Ωc.
• The overall sparsity support of user k ∈ Cl is therefore

Ωt
k = Ωk

k ∪ Ωℓ
l ∪ Ωc. (6)

According to the definitions of these support sets we have, i)
common sparsity Ωc = ∩K

k=1Ω
t
k; and ii) Ωk

k ∩ Ωℓ
l ∩ Ωc = ϕ.2

This implies that the cluster-specific support set Ωℓ
l does not

contain the support set of the common-sparsity, even if it is
common to all the users in the lth cluster.

Given the above sparsity of the angular domain channel
Xk, the problem of estimating Xk,∀k, from the observation
matrices Yk,∀k, in (4) now becomes a sparse matrix recovery
problem. The BS performs this task decentrally. The angular
domain channel sparsity can also be used for reducing the
training overhead T [29]. For an N -antenna BS, T ≪ N
pilots are required to recover the sparse matrices Xk,∀k [29].

III. PROPOSED VBL-BASED ALGORITHM
We now develop a centralized Bayesian learning framework

for a FDD mMIMO BS to estimate the sparse channel matrix
Xk for all K users. The Bayesian framework incorporates a
prior belief on Xk, which should be chosen to promote its
inherent sparsity. Cheng et al. [3] recently used a GM prior,
which is a mixture of two zero-mean Gaussian distributions,
to capture common and individual user sparsities in Xk. This
work, however, considered a centralized BS wherein a single
PU estimates Xk,∀k users. It also assumed that a centralized
unit CCU receives and directly processes the compressed
observations Yk received from all K users. These high-
resolution observations, as discussed in [19] and in Section
IV, clog up the interconnections in a D-VBL architecture.
To circumvent this problem, we assume that the CCU first
quantizes the observations Yk and then sends them to each
PU, which separately estimates the channels of a user group
by employing the proposed D-VBL algorithm. To facilitate

2We use bold superscripts ‘k’, ‘ℓ’ and ‘c’ to represent the user-specific,
cluster-specific and common parameters, respectively.

our D-VBL design, we first propose a centralized C-VBL
algorithm, which specifically groups the users to exploit their
shared sparsity using the quantized observations, a design
aspect [3] did not consider. We assume a GM prior of three
Gaussian distributions to capture user-specific, cluster-specific
and common sparsities. We also note that references [3], [17]
have not developed a decentralized VBL algorithm. Before
discussing the GM prior, we briefly discuss the Bayesian
learning framework and the expectation maximization (EM)
algorithm, which are used by the proposed algorithms.
A. Bayesian learning and EM algorithm

We begin by denoting the observation and the unknown
parameter set as Y and X , respectively [30]. The unknown
parameter X is assigned a prior distribution p(X|θ) to incor-
porate the prior belief. The hyperparameter θ governing the
prior distribution is estimated as θ̂ = argmaxθ p(Y|θ) [30].
Here p(Y|θ) is the marginal likelihood of the observation Y .
This maximization does not have a closed form solution even
for simple cases, where the prior and posterior distributions
are conjugates [30]. The iterative EM algorithm is generally
used to calculate θ̂ [30]. It treats the unknown parameter X
as a hidden variable, and iteratively calculates its posterior
distribution using the likelihood, prior and the hyperparameter
estimates. For any set of observations, hidden variables and
parameters given by {Y,X ,θ}, the EM algorithm works
as follows. The log-likelihood function which we wish to
maximize w.r.t. θ is decomposed as [30]

ln p(Y;θ)=F (q,θ) +KL(q||p), where

F (q, θ) =

∫
q(X ) ln

(
p(Y,X ;θ)

q(X )

)
dX ,

KL(q||p) = −
∫

q(X ) ln

(
p(X|Y;θ)

q(X )

)
dX . (7)

Here q(X ) is an arbitrary distribution on X . The EM algorithm
consist of E and M steps, wherein the E step maximizes the
lower bound on log-likelihood, i.e., F (q,θ), iteratively w.r.t.
q(X ), by fixing θ. This results in KL(q||p) = 0, which yields
q(X ) = p(X|Y;θ) [30]. Note that the E-step equivalently
calculates the posterior distribution of the hidden variable X ,
given the old value of the hyperparameter θ. In the M-step,
the lower bound F (q,θ) is maximized w.r.t. θ, keeping the
distribution q(X ) constant; its value equals to that obtained in
the E-step. The E and M steps are repeated till convergence.
B. Centralized variational Bayesian learning

We now develop the C-VBL algorithm to estimate Xk

for all K users in (4) by exploiting its sparsity. In the
centralized framework considered in [3]–[5], the BS processes
compressed and unquantized observations [Y1, . . . ,YK ] to
recover the overall channel matrix X = [X1, . . . ,XK ]. We,
by contrast, assume that the CCU first quantizes the real and
imaginary parts of observations Yk using a q-bit quantizer
Q(·, q) as Dk = Q(Yk, q) and then processes them. This, as
discussed earlier, is desirable for avoiding communication link
bottlenecks in decentralized BS architectures [19]. In the C-
VBL algorithm, CCU processes the compressed and quantized
observation D = [D1, . . . ,DK ] to recover the overall channel
matrix X = [X1, . . . ,XK ]. We assume a GM prior over
the unknown channel matrix X, so that the (n,m)th entry
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of Xk i.e., X
[n,m]
k , is generated from a mixture of three

Gaussian distributions NC

(
0,
(
αk

k[n]

)−1
)

, NC

(
0,
(
αℓ

l[n]

)−1
)

and NC

(
0,
(
αc

[n]

)−1
)

with the mixing proportions ρk
[n],ρ

ℓ
[n]

and ρc
[n] respectively, so that ρk

[n]+ ρℓ
[n]+ ρc

[n] = 1. Here
αk

k[n],α
ℓ
l[n],α

c
[n] and ρi

[n] represent the nth entry of the N -
dimensional vectors αk

k,α
ℓ
l ,α

c andρi,∀i=k, ℓ, c, respectively.
We see that the hyperparameters αk

k,α
ℓ
l ,α

c, ρk, ρℓ and ρc

are independent of the column index m. This is because
all M columns in Xk share the row sparsity due to rich
user side scattering sparsity, given by Ωt

k in (5). The joint
column sparsity reduces the estimation error, if appropriately
harnessed [24]. Our algorithm appropriately harnesses this
row sparsity also, and as shown in Section VI yields better
performance than the existing ones.

The first distribution captures the user-specific sparsity
of the kth user; its precision hyperparameter αk

k[n] is thus
different for all K, but remains the same for all M columns.
The second distribution captures the cluster-specific sparsity,
and consequently αℓ

l[n] is same for all users k ∈ Cl of a cluster
and for all M columns. The third distribution captures the
common sparsity, and thus αc

[n] is the same for all k and m.
The prior distribution over channel X can now be written as

P (X|αk
k∀k,αℓ

l∀l,αc,ρk,ρℓ,ρc) =

L∏
l=1

∏
k∈Cl

N∏
n=1

M∏
m=1

P (X
[n,m]
k |αk

k[n],α
ℓ
l[n],α

c
[n],ρ

k
[n],ρ

ℓ
[n],ρ

c
[n]), (8)

where P
(
X

[n,m]
k

∣∣αk
k[n],α

ℓ
l[n],α

c
[n],ρ

k
[n],ρ

ℓ
[n],ρ

c
[n]

)
=

ρk
[n]NC

(
X

[n,m]
k |0,

(
αk

k[n]

)−1
)
+ ρℓ

[n]NC

(
X

[n,m]
k |0,

(
αℓ

l[n]

)−1
)

+ ρc
[n]NC

(
X

[n,m]
k |0,

(
αc

[n]

)−1
)
,∀k ∈ Cl,∀m,n, l. (9)

We define a multinoulli vector zn = [zk
[n]; z

ℓ
[n]; z

c
[n]] ∈

{0, 1}3×1 such that p(zn = [1; 0; 0]) = ρk
[n], p(zn =

[0; 1; 0]) = ρℓ
[n] and p(zn = [0; 0; 1]) = ρc

[n]. The GM prior in
(9) can be rewritten, in terms of the components of the vector
zn as follows
P (X

[n,m]
k |αk

k[n],α
ℓ
l[n],α

c
[n], z

k
[n], z

ℓ
[n], z

c
[n])

= NC

(
X

[n,m]
k |0,

(
αk

k[n]

)−1
)zk

[n]

NC

(
X

[n,m]
k |0,

(
αℓ

l[n]

)−1
)zℓ

[n]

NC

(
X

[n,m]
k |0,

(
αc

[n]

)−1
)zc

[n]

. (10)

We see from (10) that the precisions αk
k[n], α

ℓ
l[n], α

c
[n] and

the multinoulli variables zk
[n], z

ℓ
[n], z

c
[n] control the entries of

the nth row of Xk i.e., X[n,:]
k . The elements of X[n,:]

k become
zero when αk

k[n],α
ℓ
l[n] and αc

[n] approach infinity, regardless of
the values zk

[n], z
ℓ
[n] and zc

[n]. If αk
k[n],α

ℓ
l[n],α

c
[n] are small, the

elements of X
[n,:]
k are non-zero. The values of zk

[n], z
ℓ
[n] and

zc
[n] thus show whether the nth index satisfies i) n∈Ωk

k – user
specific sparsity; ii) n∈Ωℓ

l – cluster-specific sparsity or; iii)
n∈Ωc – common sparsity, giving rise to the following cases:

• If zn=[zk
[n]; z

ℓ
[n]; z

c
[n]]=[1; 0; 0], then the elements of X[n,:]

k

are only determined by αk
k[n], which implies that n ∈ Ωk

k,
i.e., the nth index corresponds to the user-specific sparsity.

• If zn = [0; 1; 0], the rows X
[n,:]
k and X

[n,:]
k′ ,∀k′, k ∈ Cl, are

coupled via αℓ
l[n], which implies that n ∈Ωℓ

l , i.e., the nth
index corresponds to the cluster-specific sparsity.

• If zn = [0; 0; 1], the elements of X
[n,:]
k and X

[n,:]
k′ have the

same sparsity ∀k, k′. This implies that n∈Ωc, i.e., the nth
index corresponds to the common sparsity.

For the centralized Bayesian inference having the proposed
GM prior, we have D as observations, Y = [Y1, . . . ,YK ],
X = [X1, . . . ,XK ] and {zk, zℓ, zc} as hidden variables and{
αk

k,∀k,αℓ
l ,∀l,αc} as hyperparameters. The likelihood of

the received data D is given as

p(D|Y) =

K∏
k=1

T∏
t=1

M∏
m=1

I(Y[t,m]
k ∈ (yl, yu])

=

K∏
k=1

M∏
m=1

I(Y[:,m]
k ∈ (yl,yu]). (11)

Here I(·) is the indicator function. The notation Y
[t,m]
k ∈

(yl, yu] represents that its real part ℜ(Y[t,m]
k ) and imag-

inary part ℑ(Y[t,m]
k ) lie in the range (ℑ(yl),ℑ(yu)] and

(ℜ(yl),ℜ(yu)], respectively. Furthermore, yl ∈ {u1, . . . , uB}
and yu ∈ {u2, . . . , uB+1} represent the range in which the
hidden variable Y

[t,m]
k lies, with ub for b = 1, . . . , B+1 being

the number of quantization levels of the quantizer Q(·, d) and
B = 2d. For example, given the quantizer output D[t,m]

k = vb,
the hidden observation Y

[t,m]
k has a value between yl = ub

and yu = ub+1, with probability one. According to the
Bayesian learning framework discussed earlier, the quantized
observations Dk are assumed to be generated from the hidden
unquantized data Yk, which are generated from the hidden
channel Xk, which in turn are generated according to the
hidden multinoulli variable z and hyperparameters αk

k, αℓ
l and

αc. We recall that the E-step of the EM algorithm computes
the posterior distribution of the hidden variables, which for
the GM prior in (10) and Dirac-delta likelihood in (11) is
intractable due to their non-conjugacy [30]. We use variational
Bayesian learning (VBL) [30] which assumes that in the E-
step, the joint posterior distribution of the hidden variable
set X ≜ {Y,X, zn,∀n} can be written as the product of
component-wise distributions, i.e., q(X ) =( K∏

k=1

M∏
m=1

q(Y
[:,m]
k )q(X

[:,m]
k )

)( N∏
n=1

q(zk
[n])q(z

ℓ
[n])q(z

c
[n])
)
.

(12)
Here Y

[:,m]
k ∈CT×1, X[:,m]

k ∈CN×1 are the mth columns of Yk

and Xk, respectively. Here q(·) denotes the estimated posterior
distribution of the argument. We now simplify E and M steps.
E-step: Updating posterior of hidden variables:

1) Posterior of {Y[:,m]
k }: The posterior q(Y

[:,m]
k ), of the hid-

den variables Y, is given as

q(Y
[:,m]
k )

(a)
= exp

(
⟨ln p(Y,X|θ)⟩

q(X )\q(Y[:,m]
k )

+ C
)

(b)
∝p(D

[:,m]
k |Y[:,m]

k ) exp

(〈
ln p(Y

[:,m]
k |X[:,m]

k , σ2
k)
〉
q(X

[:,m]
k )

)
(c)
∝I(Y[:,m]

k ∈(yl,yu]) exp
(
||Y[:,m]

k −Φ⟨X[:,m]
k ⟩||2/σ2

k

)
. (13)

Equality (a) is due to the variational approximation in (12),
where the subscript q(X )\q(Y[:,m]

k ) denotes the distribu-
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tion q(X ) with q(Y
[:,m]
k ) marginalized out. Equality (b)

is obtained by substituting Y = {D}, X = {Y,X, z},
p(D,Y,X, z|θ) = p(D|Y)p(Y|X,θ)p(X|z,θ)p(z), and
retaining the terms dependent on Y

[:,m]
k . In (c), we use (11)

and the fact that the distribution p(Yk|Xk) is Gaussian, as
the entries of the noise matrix Ek are i.i.d., zero mean with
variance σ2

k. We see that the estimated posterior distribution
in (13) is a truncated Gaussian distribution between the
lower and upper limits given by yl and yu, respectively. The
posterior mean, which is the mean of a complex truncated
Gaussian distribution is given as [18, Eq. (13.134)]

⟨Y[t,m]
k ⟩ = ⟨ℜ{Y[t,m]

k }⟩+ ⟨ℑ{Y[t,m]
k }⟩, where, (14)

⟨ℜ{Y[t,m]
k }⟩=ℜ{[Φ⟨X[:,m]

k ⟩]t}−
σk√
2

f(bR)−f(aR)

F (bR)−F (aR)
(15)

⟨ℑ{Y[t,m]
k }⟩=ℑ{[Φ⟨X[:,m]

k ⟩]t}−
σk√
2

f(bI)−f(aI)

F (bI)−F (aI)
. (16)

Here we define aR =
√
2(ℜ{yl} − ℜ{[Φ⟨X[:,m]

k ⟩]t})/σk,
bR =

√
2(ℜ{yu} − ℜ{[Φ⟨X[:,m]

k ⟩]t})/σk, aI =√
2(ℑ{yl} − ℑ{[Φ⟨X[:,m]

k ⟩]t})/σk, bI =
√
2(ℑ{yu} −

ℑ{[Φ⟨X[:,m]
k ⟩]t})/σk. The quantities f(a) and F (a) denote

the probability and cumulative density function, respectively,
of a standard normal Gaussian distribution at the point
a ∈ C. The notation [Φ⟨X[:,m]

k ⟩]t represents the tth entry of
the vector Φ⟨X[:,m]

k ⟩ ∈ CT×1.
2) Posterior of {X[:,m]

k }: The posterior distribution of X
[:,m]
k

is approximated as complex Gaussian as derived in
Appendix A, and can be written as [30]:
p(X

[:,m]
k |αk

k,α
ℓ
l ,α

c, ⟨zk⟩, ⟨zℓ⟩, ⟨zc⟩, ⟨Y[:,m]
k ⟩) =

NC(X
[:,m]
k |µ[:,m]

k ,Σk), ∀k ∈ Cl, l,m, where
µ

[:,m]
k = σ−2

k ΣkΦ
H⟨Y[:,m]

k ⟩∈CN×1, (17)

Σk =
(
Λk + σ−2

k ΦHΦ
)−1

∈CN×N , (18)

Λk = diag
(
⟨zk⟩◦αk

k+⟨zℓ⟩◦αℓ
l +⟨zc⟩◦αc)∈CN×N . (19)

The notations ◦ and ⟨f(z)⟩ represent the Hadamard product
and the expectation of f(z) with respect to the posterior
distribution of z, respectively.

3) Posterior of {zk, zℓ, zc}: The posterior of zn =

[zk
[n], z

ℓ
[n], z

c
[n]], given by p(zn|ηk

[n],η
ℓ
[n],η

c
[n]) and derived

in Appendix A, is a multinoulli distribution with mean [30]
⟨zk

[n]⟩=(1 + exp(ηc
[n] − ηk

[n]) + exp(ηℓ
[n] − ηk

[n]))
−1
, (20)

⟨zℓ[n]⟩=(1 + exp(ηc
[n] − ηℓ

[n]) + exp(ηk
[n] − ηℓ

[n]))
−1
, (21)

⟨zc
[n]⟩=(1 + exp(ηℓ

[n] − ηc
[n]) + exp(ηk

[n] − ηc
[n]))

−1
, (22)

where, ηk
[n] = M

K∑
k=1

lnαk
k[n], (23)

ηℓ
[n] = M

L∑
l=1

|Cl| lnαℓ
l[n], and ηc

[n] = KM lnαc
[n]. (24)

We note that (20)-(22) satisfy ⟨zk
[n]⟩+ ⟨zℓ[n]⟩+ ⟨zc

[n]⟩ = 1.

M Step: Updating the hyperparameters: The updates of

αk
k[n], α

ℓ
l[n], α

c
[n], derived in Appendix A, are given by [3]

αk
k[n] = M/

M∑
m=1

⟨|X[n,m]
k |2⟩,αℓ

l[n] = |Cl|/
∑
k∈Cl

1/αk
k[n], (25)

αc
[n] = K/

L∑
l=1

∑
k∈Cl

1/αk
k[n], (26)

where ⟨|X[n,m]
k |2⟩ = |µ[n,m]

k |2 +Σ
[n,n]
k . The C-VBL design,

summarized in Fig. 2, in the E-step evaluates the posterior
distributions, and in the M-step updates the hyperparameters.

Fig. 2: Schematic of C-VBL algorithm at the CCU at the BS.

Remark 2. The centralized prior for C-VBL is designed in
Eq. (10) to capture the sparsity of each cluster, and it is
therefore cluster-specific. The C-VBL updates are, however,
not cluster-specific. For example, the updates of the parameters
ηk, ηℓ and ηc (Eqs. (23)-(24)) in the E step, and; the
hyperparameter αc (Eq. (26)) in the M step. These updates
require summation over all l = 1, . . . , L clusters, and thus are
global updates. Their update, thus, requires joint processing of
the observations [D1, . . . ,DK ]. The C-VBL algorithm is thus
applied jointly to all the clusters for exploiting the structured
sparsity of the mMIMO channel.

IV. PROPOSED DECENTRALIZED ALGORITHM

The BS in the C-VBL algorithm centrally processes
[D1, . . . ,DK ] to estimate channel Xk of K users. We now
propose our D-VBL algorithm for a decentralized BS having
L PUs and a CCU. The PUs exploit user-specific, cluster-
specific and common sparsities for improving the channel
estimation accuracy by exchanging messages. We design novel
messages and global variable updates assuming the centralized
prior in (10), and exploit the aforementioned sparsities. The
D-VBL algorithm limits the messages exchanged using a
SNR-based criterion. The VEM algorithm of [3] also uses
a centralized prior. The novel D-VBL messages, the updates
and their convergence, which we design and discuss in this
section to enable decentralized implementation, are the main
contributions of this work over the VEM algorithm.

The BS, as in [26], groups the users having similar channel
covariance matrices, which are assumed to be known [27]. It
then assigns their observations to the PUs which use the D-
VBL algorithm for decentrally estimating their channels. We
note that the AG-SBL algorithm of [17] adaptively groups the
users to exploit the channel’s sparsity. The decentralized BS
architecture, by contrast, requires apriori user grouping. This
renders the extension of the AG-SBL algorithm to a decentral-
ized architecture highly non-trivial. The existing literature, to
the best of our knowledge, has not investigated decentralized
algorithms based on adaptive-grouping.

The quantized observation vector DCl
∈ CT×M |Cl| at the

lth PU is given by
DCl

= Q(YCl
, d) = Q(ΦXCl

+ECl
, d). (27)

Here the matrices YCl
,ECl

∈ CT×M |Cl| and XCl
∈ CN×M |Cl|

are obtained by column-wise stacking of Yk, Ek and Xk
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for all k ∈ Cl cluster, respectively. The matrix XCl
is the

unknown channel of the user cluster Cl which exhibits user-
specific, cluster-specific and common sparsities, and is referred
to as the cluster channel matrix. The matrix ECl

is the
overall noise matrix of the lth cluster. The clustered quantized
observations DCl

of all L clusters, are processed individually
at the respective PU, which communicates via CCU to exploit
the sparsity of the unknown channel. The lth PU updates its
parameters using the messages received from other PUs. We
call the parameters, whose updates in the C-VBL algorithm
(do not) depend on the parameters of other PUs as the (local)
global parameters. This implies that the parameter updates
involving summation over all l PUs are global, and the rest
are local. We next list them in Table II.

We note that the C-VBL algorithm in the i) E Step, updates
the local parameters ⟨Y[:,m]

k ⟩, µk and Σk,∀k users employing
(14), (17) and (18), respectively, and the global parameters ηk,
ηℓ and ηc using (23), (24); and ii) M Step, updates the local
parameters αk

k,∀k users, αℓ
l ,∀l clusters using (25), and global

parameter αc using (26). In the proposed D-VBL algorithm,
the lth PU, however, estimates the cluster channel matrix XCl

locally using the messages received from other PUs. It thus
calculates local estimates of the global parameters ηk, ηℓ, ηc

and αc denoted as η̃k,l, η̃ℓ,l, η̃c,l and α̃c,l, respectively. To
differentiate between local and global updates in both the E
and M Steps of the D-VBL algorithm, we divide the E Step
into E1 and E2 steps and M Step into M1 and M2 steps. The
E1 and M1 steps correspond to the local E and M steps, which
update the local parameters ⟨Y[:,m]

k ⟩, µk, Σk and αk
k, αℓ

l ,
respectively. The E2 and M2 steps correspond to the global
parameter updates. We now provide a brief outline of the
proposed D-VBL algorithm wherein the lth PU for all users
k ∈ Cl cluster
• E1: estimates local parameters ⟨Yk⟩, µk and Σk using (14),

(17) and (18), respectively, for user k ∈ Cl cluster.
• E2: estimates, similar to (20)-(22), global parameters
η̃k,l, η̃ℓ,l, η̃c,l and the posterior means ⟨z̃k,l⟩, ⟨z̃ℓ,l⟩, ⟨z̃c,l⟩,3
using the information received from all other PUs, in the
previous iteration.

• M1: updates local hyperparameters αk
k, for all users k ∈ Cl

cluster, and αℓ
l using (25).

• C: shares PU-specific local information with CCU, which
broadcasts this to all other PUs.

• M2: updates the global hyperparameter α̃c,l, as derived later
in (34), using information received from all other PUs.

We see that the updates of local parameters
µk,Σk,α

k
k,∀k ∈ Cl cluster, and αℓ

l in the E1 and M1
steps of the D-VBL algorithm are same as that of the
C-VBL algorithm. The respective PUs, therefore, update
them without communicating with other PUs. The lth PU, to
update global parameters η̃k,l, η̃ℓ,l, η̃c,l and α̃c,l in the E2
and M2 steps, however, as seen from (23), (24) and (26),
requires information from all other PUs. This information is
given by the hyperparameters αk

k[n], for all k ∈ Cl cluster

3The local estimate of a global parameter at the lth PU for the D-VBL
algorithm is denoted by a tilde and a superscript l over it. Notation for the
set of local parameters {⟨Yk⟩,µk,Σk,α

k
k,α

ℓ
l}, however, remains same.

and ∀l clusters. This is because all other parameters can
be evaluated using αk

k[n]. The D-VBL algorithm therefore
uses a C step (communication step) to enable this exchange
which, as shown later, will enhance the estimation accuracy.
We next discuss how to exploit the sparsity of Xk to limit
the information exchange between the PUs. Based on this
discussion, we will later derive the E2 and M2 steps.

A. Discussion of the sparsity structure of Xk to limit the
message exchange in C Step

We now consider four possible sparsity structures of X[n,:]
k ,

and show that the message exchange is required only for one
particular case.

Case 1 (user-specific sparsity, n ∈ Ωk
k): For this case,

the users are not coupled, which implies that the ele-
ments X

[n,m]
k ,∀m columns in (10), are generated from

NC

(
0,
(
αk

k[n]

)−1
)

only, i.e., zk
[n] = 1, zℓ[n] = zc

[n] = 0.

The lth PU thus estimates X
[n,:]
k ,∀k ∈ Cl cluster, by iterating

(14), (17)-(18) and the first equation in (25). This does not
require message exchange between PUs, as the updates are
independent of the summation over the cluster index l.

Case 2 (cluster-specific sparsity, n ∈ Ωℓ
l ): For this case,

the user clusters are not coupled. The users belonging to
the same cluster are, however, coupled due to their similar
scattering environment at the BS side. We thus observe that
X

[n,m]
k ,∀m columns, in (10) are generated from a mixture of

NC

(
0,
(
αk

k[n]

)−1
)

and NC

(
0,
(
αℓ

l[n]

)−1
)

, i.e., zk
[n]+zℓ[n] =

1, zc
[n] = 0. The lth PU thus estimates X

[n,:]
k , for all users

k ∈ Cl cluster, by updating the
(i) local parameters ⟨Yk⟩, µ

[:,m]
k and Σk in the E

step using (14), (17) and (18), respectively, where the
[n, n]th entry of the prior precision Λk in (19) becomes:
Λ

[n,n]
k = ⟨z̃k,l

[n]⟩α
k
k[n] + ⟨z̃ℓ,l[n]⟩α

ℓ
l[n].

(ii) parameters ⟨z̃k,l⟩, ⟨z̃ℓ,l⟩ in the E step as ⟨z̃k,l
[n]⟩ = (1 +

exp(η̃ℓ,l
[n] − η̃k,l

[n]))
−1, and ⟨z̃ℓ,l[n]⟩ = (1 + exp(η̃k,l

[n] − η̃ℓ,l
[n]))

−1,

where, η̃k,l
[n] = M

∑
k∈Cl

lnαk
k[n], η̃

ℓ,l
[n] = M

∑
k∈Cl

lnαℓ
l[n].

(iii) local hyperparameters αk
k[n],α

ℓ
l[n] in the M step us-

ing (25). We note that in absence of coupling between different
user clusters, to estimate X

[n,:]
k , for all users k ∈ Cl, the lth

PU does not have to exchange messages with other PUs.
Case 3 (all zeros, n /∈ Ωt

k): For this case, the elements
X

[n,m]
k are not coupled with each other and αk

k[n], αℓ
l[n],

αc
[n] → ∞ in (10). The elements X

[n,m]
k are thus generated

from NC

(
0,
(
αk

k[n]

)−1)
, where αk

k[n] takes very high values,

for all k ∈ Cl. The channel X[n,:]
k ,∀k ∈ Cl can be efficiently

estimated at the lth PU, without any message exchange, similar
to Case-1.

Case 4 (common sparsity, n ∈ Ωc): The elements of X[n,:]
k

for different users are coupled, for which the GM prior in (10)
and the updates given by (14)-(26) are applicable. We see from
(23), (24) and (26) that to update the global hyperparameters
η̃k,l, η̃ℓ,l, η̃c,l and α̃c,l, the lth PU requires message exchange
between the PUs in this case, as they involve summation over
the cluster index l.
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Table II: Parameters classified as global and local for the proposed D-VBL algorithm.
Step Parameter Type Step Parameter Type

E-Step ⟨Y[:,m]
k ⟩ in (14), µ[:,m]

k in (17), Σk in (18) Local M-step αk
k[n]

, αℓ
l[n]

in (25) Local
ηk
[n]

in (23), ηℓ
[n]

,ηc
[n]

in (24) Global αc
[n]

in (26) Global

We see that the message exchange is only required for Case-
4, and to enable it, we have to determine whether the index
n corresponds to Case-4 (the common support Ωc). To this
end, we introduce three binary-valued vectors related to the
non-zero support of Xk,∀k users:

1) User-specific binary support vector, denoted as sk
k ∈

{0, 1}N×1 for the kth user, whose nth entry sk
k[n] represents

the true support of the angular domain channel X
[n,:]
k , i.e.,

sk
k[n] = I

(
n ∈ Ωt

k

)
, where Ωt

k is given by (6). The lth PU
estimates this binary support, which we denote as ŝk

k[n],
4 ∀n

and ∀k ∈ Cl cluster, using the following thresholding rule:

ŝk
k[n] = I

(
γ̃t,l
k[n] >

c

SNRk

)
. (28)

Here γ̃t,l
k[n] ≜ 1/(⟨z̃k,l

[n]⟩α
k
k[n] + ⟨z̃ℓ,l[n]⟩α

ℓ
l[n] + ⟨z̃c,l

[n]⟩α̃
c,l
[n]),∀k ∈

Cl is the prior variance of the sparse row vector X
[n,:]
k from

(19). The signal-to-noise ratio for the kth cluster SNRk ≜
P/σ2

k, and c > 1 is a constant. The threshold chosen is shown
to work well in our experiments.

2) Cluster-specific binary support vector, denoted as
sℓl ∈ {0, 1}N×1 for the lth PU, whose nth entry sℓl[n]
indicates the true common support of the lth cluster, i.e.,
sℓl[n] = I

(
n ∈ Ωℓ

l ∪ Ωc). The lth PU estimates this cluster-
specific binary variable, which is denoted as ŝℓl[n],∀n. We
note that for true user-specific binary variables sk

k[n] = 1,
for all k ∈ Cl, this implies that sℓl[n] = 1. This is because
∩k∈Cl

Ωt
k = Ωℓ

l ∪ Ωc. The true cluster-specific binary variable
sℓl[n], thus depends on the user-specific binary variable sk

k[n],
for all k ∈ Cl, as follows: sℓl[n] = 1, if

∑
k∈Cl

sk
k[n]= |Cl|. To

estimate cluster-specific support, the lth PU applies majority
rule over ŝk

k[n],∀n, k ∈ Cl as

ŝℓl[n] = I

(∑
k∈Cl

ŝk
k[n] ≥

⌈
|Cl|
2

⌉)
. (29)

In the C-step of the D-VBL algorithm, the lth PU uses this
cluster-specific support estimate to share the information with
other PUs as follows – the lth PU shares the hyperparameters
αk

k[n], of the nth index, for all k ∈ Cl cluster, only if its
cluster-specific support estimate is ŝℓl[n] = 1. At each iteration,
the lth PU thus shares a message Ml ∈ CN×|Cl|, having the
kth column

M
[:,k]
l = αk

k ◦ ŝℓl ,∀k ∈ Cl. (30)

Here αk
k = [αk

k[1]; . . . ;α
k
k[N ]], ŝ

ℓ
l = [ŝℓl[1](1); . . . ; ŝ

ℓ
l[N ]] ∈

{0, 1}N×1, and ŝℓl[n] is the cluster-specific binary support esti-

mate. The nth entry of the message is thus M[n,k]
l =αk

k[n]ŝ
ℓ
l[n].

3) Common binary support vector, denoted as sc ∈
{0, 1}N×1, where each of its entry sc

[n] indicates the true com-
mon row support of the channel matrix X = [X1, . . . ,XK ].
Mathematically, sc

[n] = I (n ∈ Ωc) . (31)

4The estimate of any true support vector is denoted by a hat over it.

The lth PU shares the message Ml in (30), with the CCU,
which broadcasts it to all other PUs. The lth PU, consequently,
also receives the messages Mj , from the CCU, sent by all
other PUs j ̸= l. The received non-zero row M

[n,:]
j of message

indicates that the corresponding cluster-specific binary support
is ŝℓj[n] = 1. Using this information, the lth PU estimates
the common binary support sc

[n], which we denote as ŝc,l
[n].

We know from (29) that the binary variable ŝℓl[n] = 1 is the
estimate that the index n either belongs to the cluster-specific
support Ωℓ

l (Case-2) or to the common support Ωc (Case-4).
The lth PU now has to calculate ŝc,l

[n], which becomes one
only for common support, i.e., n ∈ Ωc, but not for the cluster-
specific support, i.e., n ∈ Ωℓ

l . We note that the nth index
belongs to the common support Ωc if sℓl[n] = 1 for all l

clusters. Mathematically, sc
[n] = 1 if

∑L
l=1 s

ℓ
l[n] = L. The lth

PU, similar to [13], calculates the common support estimate
ŝc,l
[n] by applying a majority rule to the cluster-specific support

estimates ŝℓl[n], ∀n, as

ŝc,l
[n] = I

(
|Ŝl

n| >
⌈
L− 1

2

⌉)
,where, (32)

Ŝl
n≜{1 ≤ j ≤ L :M

[n,k]
j ̸=0,∀k ∈ Cj and ŝℓl[n] = 1}. (33)

When the cluster-specific support estimate is ŝℓl[n] = 1, the
set Ŝl

n contains the following information – the lth index and
the cluster indices j for the nth non-zero row of the message
matrix Mj , sent by the jth PU. We note that the set Ŝl

n is
indicative of the common support, and at the lth PU, gives the

estimate of the set Sn =

{
{1, 2, . . . , L} if n ∈ Ωc

ϕ otherwise, where

ϕ is the null set. Thus, the non-zero indices in ŝc,l
[n] give the

estimate of the set corresponding to the Case-4 (n ∈ Ωc).
Based on this binary common support estimate ŝc,l

[n],∀n, the
lth PU computes the global hyperparameters η̃k,l, η̃ℓ,l, η̃c,l and
α̃c,l in the E2 and M2 steps, respectively, which we discuss
next. Before proceeding further, we summarize the variables
and support sets in Table III.

B. Local update of global hyperparameters with binary sup-
port estimate

The lth PU now estimates the global hyperparameters
η̃k,l, η̃ℓ,l, η̃c,l and α̃c,l by incorporating the information re-
ceived from all other PUs, and the binary common support
estimate ŝc,l. The C-VBL updates of these hyperparameters
are given by (23), (24) and (26), given the hyperparameters
αk

k,∀k. For the D-VBL algorithm, the lth PU, however, has
access only to the censored copies of the hyperparameter
set αk

k,∀k, which is given by M
[:,k]
j ,∀k ∈ Cj , j ̸= l, in (30)

and αk
k,∀k ∈ Cl. We know from the discussion in Section

IV-A that the lth PU for the first three cases can recover the
cluster channel matrix XCl

efficiently without communicating
with other PUs. The lth PU thus needs to incorporate the
messages Mj from other PUs only if n ∈ Ωc or equivalently
sc
[n] = 1. The lth PU consequently uses the common support
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Table III: List of D-VBL parameters.
Parameters Description

z̃k,l
[n]

, z̃ℓ,l
[n]

and z̃c,l
[n]

Local estimates of variables zk
[n]

, zℓ
[n]

and zc
[n]

, respectively, at the lth PU (See Eqs. (20)-(22)).

η̃k,l
[n]

, η̃ℓ,l
[n]

and η̃c,l
[n]

Local estimates of hyperparameters ηk
[n]

,ηℓ
[n]

and ηc
[n]

at the lth PU, respectively (See Eqs. (35)-(39)).

α̃c,l
[n]

and γ̃c,l
[n]

Local proxy of the common precision αc
[n]

at the lth PU, and γ̃c,l
[n]

= 1/α̃c,l
[n]

, respectively (See Eq. (34) and before Eq. (41)).
sk
k[n]

and ŝk
k[n]

User-specific non-zero support of user k, for nth row and its estimate, respectively (See Eq. (28) and the discussion therein).
sℓ
l[n]

and ŝℓ
l[n]

Cluster-specific non-zero support of cluster l, for nth row and its estimate, respectively (See Eq. (29) and the discussion therein).

sc
[n]

and ŝc,l
[n]

Common non-zero support of the nth row and its estimate at the lth PU, respectively (See Eqs. (31)-(32)).

γ̃t,l
k[n]

Total prior variance hyperparameter of the entry X
[n,m]
k , ∀m, defined as γ̃t,l

k[n]
≜ 1/(⟨z̃k,l

[n]
⟩αk

k[n]
+ ⟨z̃ℓ,l

[n]
⟩αk

l[n]
+ ⟨z̃c,l

[n]
⟩α̃c,l

[n]
) (See

after Eq. (28)).

Sn and Ŝln Sn =

{
{1, 2, . . . , L} if n ∈ Ωc
ϕ otherwise, and Ŝln ≜ {1 ≤ j ≤ L :M

[n,k]
j ̸=0,∀k ∈ Cj and ŝℓ

l[n]
= 1}, respectively (See Eq. (33) and

discussion therein).
Ŝ−l
n Ŝ−l

n = {1, 2 . . . , L}\Ŝn
M

[n,k]
l [n, k]th entry of the message matrix Ml sent from the lth PU (See Eq. (30)).

K1 and K2 K1 ≜
∑

j′∈Ŝl
n
|Cj′ | and K2 ≜

∑
j∈Ŝ−l

n
|Cj | (See before Lemma 1).

estimate ŝc,l
[n], calculated using (32), to update the global

hyperparameters η̃k,l, η̃ℓ,l, η̃c,l, α̃c,l as follows:
(a) For ŝc,l

[n] = 1, it uses the messages M
[:,k]
j ,∀k ∈ Cj , to cal-

culate the local estimate of the global hyperparameters. The lth
PU, using the limited information available, computes the local
estimates in D-VBL such that they are unbiased approximation
of their updates in C-VBL. The unbiased approximation, as
shown later, turns out to be an effective estimate in practice.
(b) For ŝc,l

[n]=0, it updates global hyperparameters without
using any information from other PUs. The global hyperpa-
rameters α̃c,l, η̃k,l, η̃ℓ,l and η̃c,l, at the lth PU, are next derived.

1) Updating α̃c,l: The lth PU, using the messages
Mj ,∀j ̸= l, defined in (30), updates the global hyperparameter
in the M2 Step, α̃c,l

[n] as follows

α̃c,l
[n] =


∑

j∈Ŝl
n
|Cj |∑

j∈Ŝl
n

∑
k∈Cj

1/αk
k[n]

if ŝc,l
[n] = 1

αℓ
l[n] otherwise.

(34)

When the common support estimate is ŝc,l
[n] = 1, (34) gives

common hyperparameter α̃c,l
[n] by taking the harmonic mean

of the available user-specific hyperparameters αk
k[n],∀k ∈ Cj ,

∀j, which acts as an unbiased approximation of αc
[n] in (26).

2) Updating η̃k,l, η̃ℓ,l, η̃c,l: The lth PU, using the messages
Mj ,∀j ̸= l, from all other PUs updates the global hyperpa-
rameters η̃k,l

[n], η̃
ℓ,l
[n] and η̃c,l

[n] and thus ⟨z̃k,l
[n]⟩, ⟨z̃

ℓ,l
[n]⟩ and ⟨z̃c,l

[n]⟩
in the E2 Step. We note that when all the hyperparameters
are available at all the PUs, which is equivalent to the C-
VBL, we have η̃k,l

[n] = ηk
[n], η̃

ℓ,l
[n] = ηℓ

[n] and η̃c,l
[n] = ηc

[n],∀l, n.
The updates of η̃k,l

[n], η̃
ℓ,l
[n], η̃

c,l
[n], are thus given by (23), (24).

However, when only censored copies of the variable αk
k are

available and the binary support estimate ŝc,l
[n] = 1, the lth PU

computes η̃k,l
[n], η̃

ℓ,l
[n], η̃

c,l
[n],∀n as follows

η̃k,l
[n] =

MK

K1

∑
j∈Ŝl

n

∑
k∈Cj

lnαk
k[n], (35)

η̃ℓ,l
[n] =

MK

K1

∑
j∈Ŝl

n

|Cj | ln

(
|Cj |∑

k∈Cj
1/αk

k[n]

)
, (36)

η̃c,l
[n] =

MK

K1

∑
j∈Ŝl

n

|Cj | ln

( ∑
j∈Ŝl

n
|Cj |∑

j∈Ŝl
n

∑
k∈Cj

1/αk
k[n]

)
. (37)

When ŝc,l
[n] = 0, the lth PU updates η̃k,l

[n], η̃
ℓ,l
[n], η̃

c,l
[n], using only

αk
k[n],∀k ∈ Cl, as follows

η̃k,l
[n] = ML

∑
k∈Cl

lnαk
k[n], (38)

η̃ℓ,l
[n] = η̃c,l

[n] = ML|Cl| ln

(
|Cl|∑

k∈Cl
1/αk

k[n]

)
. (39)

Here, K1 ≜
∑

j∈Ŝl
n
|Cj |. The lth PU then uses (20)-(22) to

update the multinoulli variables ⟨z̃k,l
[n]⟩, ⟨z̃

ℓ,l
[n]⟩ and ⟨z̃c,l

[n]⟩. We
note that the derived updates, for ŝc,l

[n] = 1, can be seen as
the unbiased estimate of a true variable, given its noisy and
censored observations.

We now summarize the proposed D-VBL design in Al-
gorithm 1, wherein the lth PU first updates the posterior
parameters in Step 2 and Step 3. It updates the local hyper-
parameters αk

k[n],∀k ∈Cl, and αℓ
l[n] in Step 4, and evaluates

the binary support estimates ŝk
k,∀k∈Cl and ŝℓl in Step 5.1. It

then sends the messages Ml to the CCU, which, in Step 5.2,
broadcasts the message to all other PUs. The lth PU next
updates the fused parameter ŝc,l in Step 5.3 and updates the
global hyperparameter α̃c,l in Step 6. The lth PU updates
X̂

[n,m]
k = µ

[n,m]
k in Step 7.

Fig. 3: Schematic of the D-VBL algorithm at the lth PU in the
decentralized architecture at the BS. The red and blue arrows after
the first C step show the outgoing and incoming message exchanges,
respectively, with the other PUs via the CCU.

Remark 3. The D-VBL algorithm, unlike C-VBL, is designed
to be independently applied to each cluster l = 1, . . . , L
by considering the structured sparsities. This is done by
deriving local updates for the global variables in the C-VBL.
Specifically, the lth PU in D-VBL algorithm estimates the
global i) parameters η̃k,l, η̃ℓ,l, η̃c,l according to (35)-(39) in
the E2 step and; ii) the hyperparameter α̃c,l, according to (34),
using the information received from all other PUs. Since all
the PUs estimate the channel for a group of users in parallel,
the complexity, as shown later, analytically in Section IV-C
and numerically in Fig. 6a, reduces drastically.
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Algorithm 1: Decentralized VBL Algorithm
Input: Set number of iterations It, error tolerance ϵ and initial

values of αk
k,α

ℓ
l , α̃

c,l, ⟨z̃k,l⟩, ⟨z̃ℓ,l⟩, ⟨z̃c,l⟩, ŝc,l,∀k∈Cl,l.
1 for it ← 1 to It do
2 E1 Step: Update ⟨Yk⟩, µk and Σk, ∀k ∈ Cl,∀l, according to

using (14), (17) and (18), respectively.
3 E2 Step: Compute η̃k,l

[n]
, η̃ℓ,l

[n]
and η̃c,l

[n]
using (35)-(37) or

(38)-(39), to update ⟨z̃k,l
[n]
⟩, ⟨z̃ℓ,l

[n]
⟩ and ⟨z̃c,l

[n]
⟩, ∀n, l, according

to (20), (21) and (22), respectively.
4 M1 Step: Update αk

k[n]
, ∀n, k∈Cl, l, αℓ

l[n]
, ∀n, using (25).

5.1 C Step: Each PU l updates its user-specific support
ŝk
k[n]

, ∀n,∀k ∈ Cl, according to (28) and the
cluster-specific non-zero support ŝℓl according to (29).

5.2 C Step: Each PU l sends the message Ml, in (30) to the
CCU which broadcasts it to all other PUs.

5.3 C Step: Compute ŝc,l
[n]

using the majority rule (32).
6 M2 Step: Compute α̃c,l

[n]
, ∀n, l, using (34).

7 Update X̂
[n,m]
k = µ

[n,m]
k , ∀l,∀k ∈ Cl, ∀m,n. Do until

convergence
if ∥X̂(it)

k − X̂
(it−1)
k ∥ ≤ ϵ∥X̂[it−1]

k ∥, ∀k ∈ Cl and ∀l then
break.

8 return X̂k, ∀k ∈ Cl and ∀l (BS calculates the channel using (3) as
Ĥk = ARX̂H

k AH
T ).

C. Complexity analysis of C-VBL and D-VBL algorithms

We show in Table IVa and Table IVb at each iteration the
step-wise complexity of the proposed C-VBL and D-VBL
algorithm per PU, respectively. We use the Woodbury identity
from [30] to reduce the computational complexity of inverting
N×N covariance matrix Σk as follows

Σk = Λ−1
k −Λ−1

k ΦH(σ2
kIT +ΦΛ−1

k ΦH)−1ΦΛ−1
k (40)

The complexity of computing Σk thus reduces from O(N3)
to O(T 3), which is included in the first rows of Table IVa
and Table IVb. We note from these tables that the com-
plexity of both the algorithms is dominated by the E-step),
which calculates the posterior mean and variance of Xk. The
overall computational complexity of the C-VBL and D-VBL
are thus O

(
T 3 +N2T )MK

)
and O

(
(T 3 +N2T )M |Cl|

)
,

respectively. We see that the complexity of C-VBL increases
linearly with the number of users, while that of the D-VBL
does not increase if it keeps the number of users per PU (|Cl|)
constant. The D-VBL algorithm thus provides a novel scalable
constant-complexity framework of channel estimation.

Hardware complexity of quantizer: We note that the
quantizer plays a pivotal role in the C-VBL algorithm only
at the E1 step, where the BS computes the posterior mean of
the unquantized observation, i.e., ⟨Yk⟩ using (14). We observe
that while updating ⟨Yk⟩, a higher number of quantization
bits q increases the complexity of calculating the upper and
lower limits yl and yu. We, however, note from the Table IVa,
that the C-VBL algorithm’s complexity is dominated by the
calculation of the covariance matrix Xk and Σk,∀k, which
is on the order of O[(T 3 +N2T )MK]. The computation of
⟨Yk⟩ has very low complexity, which can be ignored. We thus
conclude that the cost of quantization associated with different
q values remains almost the same and it is negligible.

V. CONVERGENCE OF THE PROPOSED ALGORITHM

We show that D-VBL updates converge to their C-VBL
counterparts. Depending on the sparsity type, proof is split
in two parts. Part one proveshan that the D-VBL updates
converge to their C-VBL counterparts by quantifying the
maximum absolute error between the global C-VBL variables,
and their local proxies in the D-VBL algorithm. These proofs
require non-trivial step-wise analysis of the error between
global variables and their local proxies. The second part shows
that D-VBL updates reduce to a special case of C-VBL
updates.

We note that the updates of local parameters
{⟨Y[:,m]

k ⟩,µ[:,m]
k ,Σk,α

k
k},∀k ∈ Cl and αℓ

l are the same
for both the C- and D-VBL algorithms. We thus show
the convergence of the global hyperparameter updates
α̃c,l, η̃k,l, η̃ℓ,l and η̃c,l. For the nth index, we divide the
analysis into two cases
Case A: ŝc,l

[n] = 1, which corresponds to the common sparsity
case, i.e., n ∈ Ωc.
Case B: ŝc,l

[n] = 0, which corresponds to one of the
following cases i) user-specific sparsity, i.e., n ∈ Ωk

k and
n /∈ Ωk

k′ ,∀k′ ̸= k users; ii) cluster-specific sparsity, i.e.,
n ∈ Ωℓ

l and n /∈ Ωℓ
j ,∀j ̸= l clusters; and iii) all zeros, i.e.,

n /∈ Ωk,∀k users,
For Case A, we derive upper bounds on the absolute error
between the C- and D-VBL updates, and show that it
converges to zero when K2 ≜

∑
j∈Ŝ−l

n
|Cj | → 0. For Case B,

we show that the D-VBL updates reduce to a special case of
C-VBL updates.
Case A: The following lemmas assume, for the sake of
brevity, that the number of PUs is equal to the number of
users L = K and SNRk = SNR for all k. The proofs can
be readily extended for L ̸= K and unequal SNR, but will
complicate the notation. We also define K1 ≜

∑
j′∈Ŝl

n
|Cj′ |

and K2 ≜
∑

j∈Ŝ−l
n

|Cj |. We start with α̃c,l
[n] and state the

following lemma.

Lemma 1. The absolute error of common variance hyperpa-
rameter of the D-VBL for the lth PU, defined as ∆l

γc
[n]

≜

|γc
[n]− γ̃c,l

[n]|, with γ̃c,l
[n] ≜

1

α̃c,l
[n]

and γc
[n] ≜

1
αc

[n]
, can be upper

bounded as follows

∆l
γc

[n]
≤K2

K
max

{
max

k∈Cj ,j∈Ŝl
n

(
γk
k[n]

)
,

c

SNR

}
. (41)

Proof. See Appendix B.

We prove the convergence of global hyperparameters η̃c,l
[n],

η̃ℓ,l
[n], η̃

k,l
[n] in the following lemma.

Lemma 2. The absolute error of the hyperparameter

(a) η̃c,l
[n], defined as ∆l

ηc
[n]

≜ |ηc
[n] − η̃c,l

[n]| can be upper
bounded as follows

∆l
ηc

[n]
≤ MKmax

{
− ln

K1

K
,

ln

(
1 +

K2∑
j′∈Ŝl

n

∑
k′∈Cj′

⟨z̃k,j′
[n] ⟩

)
+ ln

K1

K

}
; (42)
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Table IV: (a) Per iteration complexity of C-VBL. (b) Per cluster per iteration complexity of D-VBL.

Variable updates proposed C-VBL
(Complexity)

⟨Y[:,m]
k ⟩, ∀m, k O(TMK)

µ
[:,m]
k ,Σk,∀m, k O((T 3 +N2T )MK)
⟨zk⟩, ⟨zℓ⟩, ⟨zc⟩,

ηk,ηℓ,ηc O(N)
αk, ∀k,αℓ

l , ∀l,α
c O(NK)

(a)

Variable updates proposed D-VBL
(Complexity per PU)

⟨Y[:,m]
k ⟩,∀m, k O(TMK)

µ
[:,m]
k ,Σk, ∀m, k ∈ Cl O((T 3 +N2T )M |Cl|)

⟨z̃k,l⟩, ⟨z̃ℓ,l⟩, ⟨z̃c,l⟩, η̃k,l, η̃ℓ,l, η̃c,l O(N)
αk

k, ŝ
k
k, ∀k ∈ Cl,α

ℓ
l O(N |Cl|+N)

ŝℓl , ŝ
c,l, α̃c,l O(N)

(b)

(b) η̃ℓ,l
[n] defined as ∆l

ηℓ
[n]

≜ |ηℓ
[n]− η̃ℓ,l

[n]| or η̃k,l
[n], defined as

∆l
ηk

[n]

≜ |ηk
[n]−η̃k,l

[n]| can be bounded as

∆l
ηk

[n]
≤MK2 max

{
ln

( min
k′∈Cj′ ,j

′∈Ŝl
n

(γk
k[n])

min
k∈Cj ,j∈Ŝ−l

n

(γk
k[n])

)
,

− 1

K1

∑
j′∈Ŝl

n

∑
k′∈Cj′

ln⟨z̃k,j′
[n] ⟩

}
. (43)

Proof. See Appendix B.
The scalar K1 depicts the number of users k ∈ Cl,∀l, for

which the estimated common support ŝc,l
[n] is one. The scalar

K2, similarly, depicts the number of users k ∈ Cl,∀l, for which
the estimated common support ŝc,l

[n] is zero. When the estimated
common and true supports are equal ŝc,l

[n] = sc
[n], the set obeys

Ŝl
n = Sn. For n ∈ Ωc, the set Ŝl

n = {1, 2, . . . , L} and Ŝ−l
n =

ϕ, making the constants K1 = K and K2 = 0 and the upper
bound (RHS) in (41), (42) and (43) equal to zero. The non-
zero upper bound on the absolute error ∆l

γc
[n]

thus quantifies
the error caused due to mismatch in the estimated and the
true common support.
Case B: We will show that the proposed updates reduce to a
special case of the C-VBL algorithm. We commence by stating
the following lemma, which is proved in Appendix B.
Lemma 3. The updates of the proposed D-VBL, for the case
ŝc,l
[n] = 0, are equivalent to applying C-VBL at the lth PU in

a standalone manner with a prior on X
[n,m]
k ,∀m,∀k ∈ Cl, as

follows
P (X

[n,m]
k |αk

k[n],α
ℓ
l[n], z̃

k,l
[n], z̃

ℓ,l
[n])

= NC

(
0,
(
αk

k[n]

)−1
)z̃k,l

[n]

NC

(
0,
(
αℓ

l[n]

)−1
)2z̃ℓ,l

[n]

. (44)

We know from Section IV-A that case B includes the cases
of all zeros, user-specific and cluster-specific sparsities. Since
there is no common sparsity across the clusters in these cases,
we ideally want the prior to be independent across the clusters.
The D-VBL prior in (44) is indeed independent across clusters
as it contains all the hyperparameters, which are independent
of other clusters j ̸= l. Since the prior in (44) is a special case
of the C-VBL updates, the D-VBL updates in this case also
converge to that of the C-VBL.

VI. SIMULATION RESULTS

We numerically demonstrate the performance improvement
achieved by the proposed D-VBL algorithm upon comparing it
to the following decentralized counterparts: 1) FB-DSBL [13]:
fusion based decentralized SBL (FB-DSBL) which decentrally
estimates the sparse channel by assuming only the common

sparsity; 2) M-SBL [24]: decentrally estimates the channel
by using multiple SBL (M-SBL) schemes, where each PU
estimates the matrix XCl

, individually and in parallel. It
only assumes common cluster-specific sparsity; 3) D-VBLr:
proposed D-VBL algorithm with random user clustering; and
4) Oracle LS: assumes that the true non-zero support of the
overall channel X is known and calculates the least-squares
solution for this over-determined problem. Since the Oracle LS
algorithm uses extra information about the non-zero support, it
lower-bounds the NMSE and BER to all the algorithms which
estimate the overall channel matrix X without this knowledge.

We consider a cellular system relying on an N = 256-
antenna BS and K = 20 users, each having M = 2
antennas. We use T = 52 pilots, since for compressive-
sensing-based estimation, the pilot length has to obey T ≥
2|Ωt| [29]. Similar to [3], [4], we choose Φ, according to
the Rademacher distribution, with each of its entry drawn
from the set {

√
P/N,−

√
P/N} uniformly. For the sake of

simplicity, we assume the same sparsity levels for all the
users and all clusters i.e., (|Ωk

k| = |Ωk|,∀k, |Ωℓ
l | = |Ωℓ|,∀l)

and a known noise variance of σ2 = σ2
k,∀k. The SNR is

therefore P/σ2,∀k, and we set |Ωk|=4, |Ωℓ| = 6, |Ωc| = 14.
The non-zero angular domain channel gains obey the i.i.d
Rayleigh distribution, so that E(∥Hk∥22) = MN . We also
assume that the number of users per PU is the same, i.e.,
|Cl| = K/L,∀l. We consider L = 4 PUs and each PU is
thus assigned 5 users. The thresholding constant in (28) is
set to c = 8. The EM algorithm is executed for a maximum
of It = 150 iterations with the following initial parameters
[3]: ⟨z̃k,l

[n]⟩ = ⟨z̃ℓ,l[n]⟩ = ⟨z̃c,l
[n]⟩ = 1/3, αk

k[n] = αℓ
l[n] =

α̃c,l
[n] = 100,∀n, k, l. The error tolerance is ϵ = 10−3. These

settings remain the same unless stated otherwise.
NMSE performance: In Fig. 4a, we first compare the

NMSE of the proposed D-VBL algorithm for different number
of quantization bits q, to the unquantized D-VBL (uD-VBL)
algorithm, which is derived from D-VBL by setting q = 16.
We observe that the 7-bit D-VBL has the same NMSE as that
of the uD-VBL. The novel D-VBL algorithm thus drastically
reduces the overhead of sending the observations from CCU
to PUs and that too without affecting the NMSE. We also note
that the NMSE of D-VBL for q < 4 bits does not reduce upon
increasing the SNR. We note that the quantizer adds noise with
the variance σ2

q ∝ ∆2/12, to its input signal. Here ∆ is the
quantizer step size. For q < 4 quantization bits, the step size
∆ increases considerably. This leads to a higher quantization
noise variance σ2

q than the thermal noise variance σ2. The
overall SNRo = P/(σ2 + σ2

q ) is thus dominated by σ2
q . Even

though the SNR = P/σ2 is increased in Fig. 4a, the overall
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Fig. 5: (a) NMSE of D-VBL and C-VBL algorithms versus cluster-specific sparsity level (|Ωℓ|) for K = 20 users, |Ωc| = |Ωk| = 0, and;
(b) NMSE for two different PUs failure set-ups; and (c) BER comparison of D-VBL, C-VBL with the existing state-of-the-art algorithms.

SNRo does not increase, and the BER, therefore exhibits a
residual floor. Since the 7-bit D-VBL has the same NMSE as
that of uD-VBL, we now compare, unless otherwise stated,
7-bit C- and D-VBL to the existing unquantized centralized
and decentralized algorithms. This is because their quantized
versions are yet to be investigated.

We assume a practical channel, where the insignificant
taps are not strictly zero. These close-to-zero tap-gains are
generated randomly and uniformly between [0, 10−2]. We
see from Fig. 4b that the NMSE of the proposed D-VBL
algorithm is close to the oracle LS, and it is much lower
than that of other decentralized algorithms. This is because
the proposed GM prior aptly captures the channel sparsity, and
the variational inference correctly estimates all the parameters.
The FB-DSBL algorithm assumes that the channel has only
common sparsity, and it thus models the user- and cluster-
specific sparsities as common sparsity, which increases its
NMSE. The M-SBL algorithm estimates the channel individ-
ually at each PU, without communicating with other PUs.
It thus i) partially exploits the common sparsity among all
the users; and ii) wrongly models the user-specific sparsity as
the common cluster-specific sparsity. The D-VBLr algorithm,
which randomly clusters users, also has similar NMSE as that
of the D-VBL algorithm. We will investigate this behavior in
detail later in Fig. 5a. We observe that the D-VBL performance
also matches that of its centralized C-VBL counterpart. This
is because, as shown in the Section V, the D-VBL updates
reduce to that of C-VBL.

We next compare in Fig. 4c the NMSE of the C-VBL and
D-VBL algorithms to the following centralized algorithms:

1) J-OMP [4], which estimates the overall channel matrix X
by exploiting the joint and individual sparsities; 2) VEM [3],
which centrally estimates X and exploits joint and individual
sparsities; and 3) AG-SBL [17], which centrally estimates
X and exploits user-specific, cluster-specific, and common
sparsities. For this study, we fix the number of users to K = 8
and the sparsity levels to |Ωc| = 12, |Ωk| = 0, |Ωℓ| = 12.
We see that both the D-VBL and C-VBL outperform the J-
OMP and VEM algorithms. This is because these algorithms
do not consider the cluster-specific sparsity and wrongly
model it as either user-specific or common sparsity. We also
note that the AG-SBL algorithm has slightly inferior NMSE
than the proposed algorithms. This is due to its hierarchical
modeling, which uses a lot of hyperparameters and is thus
sensitive to their initialization, in contrast to the proposed
algorithms. The above results show that due to the Gaussian
mixture prior, the proposed algorithms outperform others cen-
tralized/decentralized ones for realistic non-sparse channels.

Earlier we observed in Fig. 4b that D-VBLr has similar
NMSE as that of C- and D-VBL. We investigate this behavior
further in Fig. 5a by comparing their NMSE upon varying the
cluster-specific sparsity |Ωℓ|, and by fixing |Ωk|= |Ωc|=0. We
see that for low |Ωℓ| values, C-VBL, D-VBL and D-VBLr have
similar NMSE, but the gap increases upon increasing |Ωℓ|.
This is because the random clustering of the D-VBLr algo-
rithm does not let it exploit the cluster-specific sparsity. We
also note that the D-VBLr algorithm models the performance
of D-VBL, when it experiences a practical scenario of users
having non-exclusive clusters. This is because it randomly
clusters the users, which might result in overlapping clusters.
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Fig. 6: (a) Run-time comparison of C-VBL and D-VBL algorithms by varying the number of users K and BS antennas N ; (b) NSER per PU versus number
of iterations, and; (c) Sum-SE comparison of the proposed C- and D-VBL, and existing centralized algorithms.

We thus infer that the D-VBLr algorithm used for such a
scenario has only slightly inferior NMSE to D-VBL. Further,
the slope of all the algorithms changes at |Ωℓ| = 24. This
is because now the number of observations reaches the well
known limit from the compressed sensing theory to recover a
sparse vector with high probability i.e., T ≥2|Ωt

k|=48 [31].
Robustness against failure: We now show in Fig. 5b for

two different setups, that the D-VBL is robust to PU failures.
In case-i, a fraction of PUs fail and the D-VBL algorithm
does not estimate the channel of users assigned to the failed
PUs. We calculate their NMSE by assuming X̂k = 0N×M . In
case-ii, users assigned to the failed PUs are reassigned to the
operational ones. The failure percentage (FP) of 25% in this
figure implies a failure of 1 PU out of L = 4. We observe for
different FPs that the D-VBL algorithm in case-i has much
lower NMSE than C-VBL, since C-VBL cannot estimate the
channel for such failures due to its centralized nature. We
next see that the D-VBL NMSE in case-ii, for a 25% to 75%
FP, is only slightly inferior to 0% FP. This is because the
reallocation in case-ii leads to different users clusters, having
different cluster-specific sparsities being processed together,
which slightly increases the NMSE.

BER performance: In Fig. 5c, we now compare the BER
of the proposed C- and D-VBL algorithms to that of the
existing centralized ones. The BS now uses estimated channels
to design a zero-forcing precoder while transmitting BPSK
data. For this study, we consider N = 128 BS antennas,
M = 2 user antennas, K = 8 users, L = 4 PUs, |Ωc| = 0
common sparsity level, |Ωℓ| = 12 cluster-specific sparsity
level, |Ωk| = 0 user-specific sparsity level, and T = 26 pilots.
We see that both of them have much lower BER than the
existing algorithms.

Run-time complexity: We plot in Fig. 6a the run-time (in
seconds) of both the C- and D-VBL algorithms by simultane-
ously varying the number of users K and the BS antennas N .
We consider L = 4 PUs for the D-VBL algorithm. We observe
from Fig. 6a that C-VBL has much higher run time than D-
VBL, particularly for large values of N . This is because it
processes the whole T × K-sized observation matrix Y to
estimate the channels of all the K users jointly, where T is the
number of pilots. By contrast, the D-VBL algorithm assigns it
to multiple decentralized PUs, which simultaneously estimate
the channel of k ∈ Cl users, using T × |Cl|-sized observation

matrix YCl
.

SE and EE comparison: The BS precodes the users
data s ∈ CMK×1 by zero-forcing (ZF) precoder W =
ĤH(ĤĤH)−1 ∈ CN×MK . Here Ĥ = [Ĥ1, . . . , ĤK ]T ∈
CMK×N is the estimated channel. The received signal of the
kth user, denoted as yk ∈ CM×1, is given by
yk = HkWs+ nk = HkWksk +Hk

∑
i ̸=k

Wisi + nk. (45)

The matrix Wk ∈ CN×M is the kth block column of the
matrix W, i.e., W = [W1, . . . ,WK ]. The vector sk ∈ CM×1

is the kth block of the vector s, i.e., s = [s1, . . . , sK ]T ,
and E[sksHk ] = PkIM . The second term in (45) is the
multi-user interference. The noise vector nk is distributed as
nk ∼ Nc(0, σ

2
kIM ). The sum-SE (in bps/Hz) for the K users

is defined as follows [32]

SE =

(
1− Tp

Tc

) K∑
k=1

E
[
log2 |IM + SsN

−1
in |
]
. (46)

Here Tp and Tc denote the length of pilots and of the coherence
interval, respectively. The matrices Ss = PkHkWkW

H
k HH

k

and Nin = PkHk

∑
i ̸=k Wi

∑
j ̸=k W

K
j HH

k + σ2
k. are the

signal and interference plus noise matrices, respectively. The
EE (in bits/J) is defined as the ratio of the sum-SE and of the
total power consumed by the system i.e.,

EE = B
SE∑K

k=1 µ
−1
k Pk + µ−1

BSPBS + PC

, (47)

where B is the system bandwidth, and the scalars µk, µBS ∈
(0, 1] denote the power amplifier efficiency at the kth user and
the BS, respectively. The term PC is the total circuit power
consumed by the system, which is modeled as follows [1]

PC = PFIX + PTC + PSP + PCE. (48)
Here the values PFIX and PTC are taken from the parameter
set 2 [1, Table 5.3], and PSP is taken from [1, Table 5.2]. The
term PCE is the power consumed by the channel estimator, and
is given by PCE = 4B

TcLBS
× C, where B is the bandwidth, Tc

is the coherence interval, LBS denotes the BS’s computational
efficiency in flops/W, and C is the complexity of the estimator.
We assumed B = 20 MHz and Tc = 1000. The value of LBS
is taken from [1, Table 5.3] and the complexities of C- and
D-VBL, from Table IVa and Table IVb, respectively, are

for C-VBL: C = (T 3 +N2T )MKIt

for D-VBL: C = (T 3 +N2T )M |Cl|It.
In Fig. 6c, we first compare that the sum-SE of the proposed
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Fig. 7: (a) EE comparison of the proposed C- and D-VBL algorithms; (b) EE of D-VBL algorithms with different levels of quantization, with varying downlink
data power, and; (c) number of BS antennas N . Here the data and pilot powers are varying with N as Pp = Pd = P0/Nϵ, with P0 = 20 dB.

algorithms to the existing ones. We observe that the Oracle-
LS has the highest SE. This is because it knows the non-
zero indices of the sparse channel. We also observe that the
proposed C- and D-VBL algorithms outperform the J-OMP
[3], VEM [6] and AG-SBL [14] algorithm. This is because, as
shown in Fig. 4c, the proposed algorithm has a lower NMSE
value. Given the better channel estimates, the ZF precoder
is able to suppress multi-user interference better. We also
observe that the SE of all the algorithms increases first and
then saturates with increase the data power. This is due to the
high multi-user interference at higher SNR values.

We next plot in Fig. 7a, the EE of the C-VBL and D-
VBL algorithms. We observe that the C-VBL algorithm has
lower EE than C-VBL. This is due to its higher computational
complexity. Further, the EE initially increases with the data
power Pd, reaches a maximum value and then reduces to
zero. This is because for low Pd values, the increase in SE
is commensurate with the energy dissipated to achieve it,
which increases the EE. At high Pd values, the SE saturates,
but the system keep on consuming power, which reduces the
EE. In Fig. 7b, we compare the EE of the proposed D-VBL
algorithm for different number of quantization bits q to that
of the unquantized D-VBL (uD-VBL) algorithm. We see that
for q ≥ 6-bits the EE of qD-VBL and uD-VBL are the same.

Power scaling: For this study, we consider T = N/5 pilots,
K = 5 users, L = 5 clusters, and sparsity of |Ωk| = 0, |Ωℓ| =
0, |Ωc| = N/10. We vary the data and pilot powers as a
function of number of antennas, as Pd = Pp = P0/N

ϵ, for
ϵ = 1/2 and ϵ = 1. We observe from the figure that when
Pd and Pp are reduced as 1/N ϵ with ϵ = 1/2, the sum SE
approaches its asymptotic limit. When Pd and Pp are reduced
as 1/N ϵ with ϵ = 1, we see that the sum SE goes to zero with
the increase of N . The proposed design thus follows O(

√
N)

reduction in the transmission power in mMIMO systems [1,
Lemma 5.1, Fig. 5.3].

Convergence: We next show in Fig. 6b that the common
binary support ŝc,l, calculated at the lth PU, converges to
the true binary support of the angular domain channel X
given by sc

[n],∀n. We use the normalized support error rate
(NSER) metric at the lth PU, which is defined as NSERl =
1
N

∑N
n=1 I(ŝ

c,l
[n] ̸= sc

[n]) [12]. Here I(·) is the indicator func-
tion. The metric NSERl gives the normalized error in the
estimated common support ŝc,l

[n],∀n at the lth PU. We see from
Fig. 6b that NSER reduces upon iterating which shows that

ŝc,l
[n] converges to sc

[n],∀n.

VII. CONCLUSION AND FUTURE WORKS

We proposed the C-VBL and the low-complexity D-VBL
algorithms for the BS to estimate the DL channels of FDD
mMIMO systems. We analytically showed that the upper
bound on the absolute error between the updates of D-VBL
and its centralized counterpart C-VBL tends to zero, when the
non-zero support is estimated accurately. We investigated the
NMSE, BER, SE and EE of the C- and D-VBL algorithms,
and showed that it outperforms multiple other state-of-the-art
centralized and decentralized algorithms.

The current work considered digital transceiver architec-
tures, where each antenna is connected to a RF chain. It
can also be readily extended to a hybrid mMIMO transceiver
architecture, where multiple antennas are connected to a
single RF chain. This architecture will further compress the
existing observations, which are already compressed due to
the reduced number of pilots. The current algorithm can be
designed to alleviate the performance loss imposed by the
hybrid architecture.

APPENDIX A
Posterior of X

[:,m]
k : We derive the optimal distribution

using (12) as follows.

ln q(X
[:,m]
k )

(a)
= ⟨ln p(Y,X|θ)⟩

q(X )\q(X[:,m]
k )

+ C
(b)
= ⟨ln p(Y[:,m]

k |X[:,m]
k , σ2

k)

+ ln p(X
[:,m]
k |αk

k,α
ℓ
l ,α

c, zn,∀n)⟩q(Y)·q(z)+ C

(c)
= 2σ−2

k ⟨Y[:,m]
k ⟩

H
ΦX

[:,m]
k −

(
X

[:,m]
k

)H(
σ−2
k ΦHΦ+Λk

)
X

[:,m]
k

+ C = lnNC

(
µ

[:,m]
k ,Σk

)
. (49)

Here q(X )\q(X[:,m]
k ) is the distribution q(X ) with q(X

[:,m]
k )

marginalized out, where µ
[:,m]
k ,Σk and Λk are given by

(17), (18) and (19), respectively. Equality (b) is obtained
by considering terms dependent on X

[:,m]
k . The expectation

term ⟨Y[:,m]
k ⟩ in (c) is due to variational approximation [26],

wherein we take expectation over the hidden variable Y
[:,m]
k .

Posterior of zk
[n], z

ℓ
[n], z

c
[n]: Using the factorization in (12):

ln q(zk
[n], z

ℓ
[n], z

c
[n])

(a)
= ⟨ln p(Y,X|θ)⟩q(X )\q(zn) + C

(b)
=

⟨
K∑

k=1

M∑
m=1

ln
[
p(X

[n,m]
k |αk

k[n],α
ℓ
l[n],α

c
[n], zn)p(zn)

]
⟩
q(X

[:,m]
k )

+C
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(c)
=

K∑
k=1

M∑
m=1

zk
[n]{lnρ

k
[n]+(lnαk

k[n]−αk
k[n]⟨|X

[n,m]
k |2⟩)}

+zℓ[n]{lnρ
ℓ
[n]+(lnαℓ

l[n] −αℓ
l[n]⟨|X

[n,m]
k |2⟩)}

+ zc
[n]{lnρ

c
[n]+(lnαc

[n]−αc
[n]⟨|X

[n,m]
k |2⟩)}+C

(d)
= zk

[n]{M
K∑

k=1

lnαk
k[n] + lnρk

[n]}+ zℓ[n]{M
K∑

k=1

lnαℓ
l[n]

+ lnρℓ
[n]}+ zc

[n]{M
K∑

k=1

lnαc
[n] + lnρc

[n]}+ C.

In equality (a), q(X )\q(zn) denotes q(X ) with q(zn) re-
moved. Equality (b) is derived by writing the terms depen-
dent on zn. Equality (c) is obtained by dropping the terms
independent of zn, by taking the expectation inside and by
rearranging the terms. We get equality (d) by using i)

K∑
k=1

αk
k[n]

M∑
m=1

⟨|X[n,m]
k |2⟩ =

L∑
l=1

αℓ
l[n]

∑
k∈Cl

M∑
m=1

⟨|X[n,m]
k |2⟩

= αc
[n]

K∑
k=1

M∑
m=1

⟨|X[n,m]
k |2⟩ = KM, (50)

which is obtained from the updates of αk
k[n], α

ℓ
l[n], α

c
[n] in Sec.

“Hyperparameter updates” below; and ii) zk
[n]+zℓ[n]+zc

[n] = 1.
Using a uniform prior on zn, i.e., ρk

[n]=ρℓ
[n]=ρc

[n]=1/3:

ln q(zn) = zk
[n]

K∑
k=1

M∑
m=1

lnαk
k[n] + zℓ[n]

K∑
k=1

M∑
m=1

lnαℓ
l[n]

+ zc
[n]

K∑
k=1

M∑
m=1

lnαc
[n] + C. (51)

Thus, q(zn) is a multinoulli distribution with posterior expec-
tations ⟨zk

[n]⟩, ⟨z
ℓ
[n]⟩, ⟨z

c
[n]⟩ given by (20)- (22), and ηk

[n], η
ℓ
[n],

ηc
[n], given by (23), (24).
Hyperparameter updates: The M-step maximizes

the expected complete log-likelihood with respect to
hyperparameters, θ = {αk

k,∀k ∈ Cl,αℓ
l ,∀l,αc} i.e., θ̂ =

argmaxθ⟨ln p(Y,X|θ)⟩q(X|θold).The hyperparameter αk
k[n]

(a)
=

argmaxαk
k[n]

∑K
k=1

∑M
m=1

[
⟨zk

[n]⟩(lnα
k
k[n] −αk

k[n]⟨|X
[n,m]
k |2⟩)

]
.

Equality (a) is obtained by expanding p(Y,X|θ) and by
ignoring the terms independent of αk

k[n]. Using first order
optimality, we get the first equation in (25). We similarly
obtain αℓ

l[n],∀l in the second equation in (25), and αc
[n],∀n,

in (26). Observe from (25), (26), that we get the relationship
between αk

k[n], α
ℓ
l[n] and αc

[n] given in (50), which is used to
update q(zn) in (51).

APPENDIX B
We commence by proving a proposition which will be used

in the sequel.
Proposition 1. If the common support of the nth index at the
lth PU is estimated as
(a) ŝc,l

[n] = 0, the sum
∑

j∈Ŝ−l
n

∑
k∈Cj

γk
k[n] can be bounded as

0 ≤
∑

j∈Ŝ−l
n

∑
k∈Cj

γk
k[n] ≤ K2

c

SNR
, and; (52)

(b) ŝc,l
[n] = 1, the user-specific variance γk

k[n] can be bounded as
c

SNR

∑
j∈Ŝl

n

∑
k∈Cj

⟨z̃k,j
[n]⟩ ≤

∑
j∈Ŝl

n

∑
k∈Cj

γk
k[n] < K1 max

k∈Cj ,j∈Ŝl
n

(
γk
k[n]

)
.

Proof of (a). We bound the total variance γ̃t,l
k[n] =

1/(⟨z̃k,l
[n]⟩α

k
k[n]+⟨z̃ℓ,l[n]⟩α

ℓ
l[n]+⟨z̃c,l

[n]⟩α̃
c,l
[n]) as follows.

⟨z̃k,l
[n]⟩α

k
k[n] + ⟨z̃ℓ,l[n]⟩α

ℓ
l[n] + ⟨z̃c,l

[n]⟩α̃
c,l
[n]

(a)

≤

max{αk
k[n],α

ℓ
l[n], α̃

c,l
[n]}

(b)
= αk

k[n] =⇒ γ̃t,l
k[n]≥γk

k[n]. (53)

Inequality (a) is because ⟨z̃k,l
[n]⟩+⟨z̃ℓ,l[n]⟩+⟨z̃c,l

[n]⟩=1. Inequality
(b) uses α̃c,l

[n] = αℓ
l[n] = αk

k[n], which is obtained from (34)
for ŝk

k[n] =0 and L=K. By combining (53) with γ̃t,l
k[n]≤

c
SNR ,

obtained from (28) and ŝk
k[n] = 0, we get γk

k[n] ≤
c

SNR . By
summing over j ∈ Ŝ−l

n and k ∈ Cj , we get the upper bound
in (52). The lower limit in (52) is the trivial minimum, the
variance γk

k[n] can take.

Proof of (b). We bound the total variance γ̃t,l
k[n] =

1/(⟨z̃k,l
[n]⟩α

k
k[n]+⟨z̃ℓ,l[n]⟩α

ℓ
l[n]+⟨z̃c,l

[n]⟩α̃
c,l
[n]) as follows.

⟨z̃k,l
[n]⟩α

k
k[n] + ⟨z̃ℓ,l[n]⟩α

ℓ
l[n] + ⟨z̃c,l

[n]⟩α̃
c,l
[n]

(a)

≥ ⟨z̃k,l
[n]⟩α

k
k[n]

=⇒ γ̃t,l
k[n] ≤ γk

k[n]/⟨z̃
k,l
[n]⟩. (54)

Inequality (a) is obtained since LHS is a summation of three
positive terms. By combining (54) and γ̃t,l

k[n] >
c

SNR , obtained
from (28) and ŝk

k[n] = 1, and by summing over all the PUs
j ∈ Ŝl

n and users k ∈ Cj , we get the lower bound in
Proposition 1(b). We will also use a weaker and trivial lower
bound i.e.,

∑
j∈Ŝl

n

∑
k∈Cj

γk
k[n] ≥ 0, wherever needed. The

upper bound in Proposition 1(b) is obtained by noting that
γk
k[n] ≤ maxk∈Cj ,j∈Ŝl

n

(
γk
k[n]

)
, and by summing all the PUs

j ∈ Ŝl
n and k ∈ Cj .

Proof of Lemma 1: We begin by simplifying the expres-
sion of γc

[n] using (26):

γc
[n]

(a)
=

1

K

(
γ̃c,l
[n]

∑
j′∈Ŝl

n

|Cj′ |+
∑

j∈Ŝ−l
n

∑
k∈Cj

γk
k[n]

)

(b)
= γ̃c,l

[n] −
γ̃c,l
[n]

K

∑
j∈Ŝ−l

n

|Cj |+
1

K

∑
j∈Ŝ−l

n

∑
k∈Cj

γk
k[n]. (55)

Equality in (a) uses {1, 2, . . . , L} = Ŝl
n

⋃
Ŝ−l
n , where

Ŝ−l
n ≜ {1, 2, . . . , L}\Ŝl

n and (34). Equality in (b) is because∑
j′∈Ŝl

n
|Cj′ |+

∑
j∈Ŝ−l

n
|Cj |=K. We now use (55) to compute

∆l
γc

[n]
= |γc

[n] − γ̃c,l
[n]|:

(a)
=

1

KK1

∣∣∣K1

∑
j∈Ŝ−l

n

∑
k∈Cj

γk
k[n] −K2

∑
j′∈Ŝl

n

∑
k′∈Cj′

γk
k′[n]

∣∣∣. (56)

In equality (a), we use first equation in (34) to replace γ̃c,l
[n] and

K1=
∑

j′∈Ŝl
n
|Cj′ | and K2=

∑
j∈Ŝ−l

n
|Cj |. To bound both terms

in (56), we next use Proposition 1(a) and 1(b), to get (41).
Proof of Lemma 2(a): We prove this lemma for η̃c,l

[n],
whose update from (37) is given as

η̃c,l
[n] =

MK

K1

∑
j∈Ŝl

n

|Cj | ln

( ∑
j∈Ŝl

n
|Cj |∑

j∈Ŝl
n

∑
k∈Cj

1/αk
k[n]

)
(a)
= MK ln α̃c,l

[n]. (57)
Equality in (a) is due to (34) and

∑
j∈Ŝl

n
|Cj | = K1. We now

calculate ∆l
ηc

[n]
= |ηc

[n] − η̃c,l
[n]|:
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∆l
ηc

[n]

(a)
=
∣∣∣MK lnαc

[n] −MK ln α̃c,l
[n]

∣∣∣
(b)
=
∣∣∣MK ln

(
1 +

∑
j∈Ŝ−l

n

∑
k∈Cj

γk
k[n]∑

j′∈Ŝl
n

∑
k′∈Cj′

γk
k′[n]

)
+MK ln

K1

K

∣∣∣. (58)

Equality (a) uses second equation in (24), and (57). Equality
(b) is obtained by using (26) and (34). We further use
Proposition 1(a) and 1(b), to get (42).

Proof of Lemma 2(b): The absolute error for ηk
[n], ∆

l
ηk

[n]

=

|ηk
[n]−η̃k,l

[n]| can be bounded as ∆l
ηk

[n]

(a)
=MK2

∣∣∣ 1

K1

∑
j′∈Ŝl

n

∑
k′∈Cj′

lnγk
k′[n]−

1

K2

∑
j∈Ŝ−l

n

∑
k∈Cj

lnγk
k[n]

∣∣∣. (59)

Equality (a) is obtained by using (23) and (35) and γk
k[n]=

1/αk
k[n]. We next use

ln
(

min
k∈Cj ,j∈Ŝ−l

n

(
γk
k[n]

))
≤ lnγk

k[n] ≤ ln
c

SNR
,

∀k ∈ Cj , j ∈ Ŝ−l
n , and (60)

ln
c⟨z̃k,j′

[n] ⟩
SNR

≤ lnγk
k′[n] ≤ ln

(
max

k′∈Cj′ ,j
′∈Ŝl

n

(
γk
k′[n]

))
,

∀k′ ∈ Cj′ , j′ ∈ Ŝl
n, (61)

which are derived from Proposition 1(a) and 1(b), to get (43).
Proof of Lemma 3: When ŝc,l

[n] = 0, the lth PU updates
α̃c,l

[n], η̃
ℓ,l
[n] and ⟨z̃c,l

[n]⟩ as follows:

α̃c,l
[n]

(a)
= αℓ

l[n]; η̃ℓ,l
[n]

(b)
= η̃c,l

[n]; ⟨z̃c,l
[n]⟩

(c)
= ⟨z̃ℓ,l[n]⟩; (62)

Λ̃
[n,n]
k

(d)
= ⟨z̃k,l

[n]⟩α
k
k[n] + 2⟨z̃ℓ,l[n]⟩α

ℓ
l[n]. (63)

Equality (a) is due to (34), equality (b) is due to (39), and
equality (c) is obtained by substituting equality in (b) above, in
(22). Equality (d) is obtained by using equalities (a), (b) and
(c) of (19) to calculate the [n, n]th entry of prior precision
parameter. We notice from (62) that the common global
hyperparameters α̃c,l

[n], η̃c,l
[n] and ⟨z̃c,l

[n]⟩ becomes redundant.
They, thus, get removed from the algorithm for the nth index.
The prior precision in (63) thus corresponds to the GM prior
given in (44) over X[n,m]

k ,∀m and for k ∈ Cl.
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