
Collaborative Beamforming Aided Fog Radio
Access Networks

W. Zhu1,2, H. D. Tuan2, E. Dutkiewicz2, and L. Hanzo3

Abstract—The success of fog radio access networks (F-RANs)
is critically dependent on the potential quality of service (QoS)
that they can offer to users in the face of capacity-constrained
fronthaul links and limited caches at their remote radio heads
(RRHs). In this context, the collaborative beamforming design
is very challenging, since it constitutes a large-dimensional
nonlinearly constrained optimization problem. The paper de-
velops a new technique for tackling these critical challenges
in fog computing. We show that all the associated constraints
can be efficiently dealt with maximizing the geometric mean
(GM) of the user throughputs (GM-throughput) subject to the
affordable total transmit power constraints. To elaborate, the
GM-throughput maximization judiciously exploits the fronthaul
links and the RRHs’ caches by relying on our novel algorithm,
which evaluates low-complexity closed-form expressions in each
of its iterations. The problem of F-RAN energy-efficiency is also
addressed while maintaining the target throughput. Numerical
examples are provided for quantifying the efficiency of the
proposed algorithms.

Index Terms—Frog radio access network (F-RAN), multi-input
single output (MISO), collaborative beamforming, geometric
mean (GM) maximization

I. INTRODUCTION
Fog radio access networks (F-RANs) [1]–[3] have been

conceived for bringing distributed computation, communica-
tion, control, and storage closer to end users for supporting a
range of emerging Internet-of-Things (IoT) applications, such
as augmented reality/virtual reality (AR/VR), device-to-device
(D2D) communications, smart living and smart cities, etc.
(see e.g. [4]–[7] and references therein). For providing low-
latency services for all users [8], F-RANs rely on caching
memory at their remote radio heads (RRH) [9]–[11], which
are uniformly distributed over the service area and thus are
close to all users. Usually, each user’s request is served by a
number of the nearest RRHs and due to the limited capacity of
the RRHs’ caches, the baseband unit (BBU) still has to fetch
some segments of the users’ requests that are not in the RRHs’
caches through the costly and limited-capacity fronthaul links
[12], [13]. Thus, collaborative beamforming (CBF) at RRHs
plays a pivotal role in maintaining the quality-of-service (QoS)
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provided by F-RANs. Compared to the traditional CBF of
sensor or generic wireless networks [14]–[20], under which
multiple single-antenna nodes form a virtual beamformer for
fetching and assembling the contents, the RRHs in a F-
RAN equipped with multiple-antenna arrays typically employ
multi-user beamformers for transmitting the contents [21]–
[27]. Then the concerted F-RAN is only deemed successful,
if the throughput of the users is above the minimum threshold
subject to the constraints on both the fronthaul capacity
and the transmit power. Since the throughput is a complex
nonlinear function of all the beamformer weights and there
are numerous beamformers, determining the CBF weights con-
stitutes a large-dimensional nonlinearly constrained optimiza-
tion problem [21], [22], [25]–[28]. The family of advanced
optimization algorithms such as those proposed in [26], [28],
which iteratively solve convex problems were only capable
of handling scenarios of up to five four-antenna based RRHs
serving ten users.

At the time of writing, most contributions on CBF are based
on the conventional proper Gaussian signaling (PGS), which
is based on linearly beamforming proper Gaussian source
signals. However, it has been shown e.g. in [29]–[35] that
PGS is outperformed by improper Gaussian signaling (IGS),
which is generated by widely linearly beamforming proper
Gaussian source signals [36]. However, in contrast to PGS,
which is based on single beamformers, IGS is based on pairs of
correlated beamformers. Hence, the design of the CBF weights
under IGS involves twice the number of decision variables
compared to its PGS counterpart. As such, convex-solver based
algorithms employed for CBF weight optimization under IGS
are only capable of handling limited-dimensional scenarios of
up to five users [35].

Against the above background, this paper offers the follow-
ing contributions:
• We show that the problem of providing similar through-

puts for all users subject to capacity-constrained fron-
thaul links and limited RRH caches can be formulated
as the problem of maximizing the geometric mean of
their throughputs (GM-throughput) subject to the total
affordable transmit power constraints. We will demon-
strate that the GM-throughput maximization results in
similar throughputs for the users and at the same time
it judiciously exploits the constrained capacity of the
fronthaul links and finite RRH caches;

• We develop a sophisticated but low-complexity opti-
mization algorithm for this GM-throughput maximization
problem, which has the explicit benefit of relying on
solving closed-form expressions in each iteration. Hence
it is eminently suitable for large-scale F-RANs;



2

TABLE I
BOLDLY AND EXPLICITLY CONTRASTING OUR CONTRIBUTIONS TO THE

LITERATURE

this [21], [22] [26] [28] [37]
paper [24], [25]

FRAN X X X X
Content-service X X X X
IGS X X X
QoS X X X X
Energy-efficiency X X
Scalable Complexity X X
Convex-solver based X X
Semi-definite relaxation X

• We also employ IGS for improving the GM-throughput of
F-RANs. The problem of maximizing the GM-throughput
under widely linear beamforming is much more computa-
tionally challenging than that under linear beamforming,
not only because the number of decision variables is
doubled but the throughput becomes a log-determinant
function. Again, another algorithm is developed for its
computation, which still only relies on closed-form ex-
pressions in each iteration.

Our novel contributions are boldly and explicitly contrasted
to the state-of-the-art in Table I at a glance.

The paper is organized as follows. Section II is devoted
to the linear beamforming aided design of F-RANs capable
of supporting a certain target GM-throughput. Then a similar
problem is considered in Section III for designing widely
linear beamformers. Our simulations characterizing FRANs
having with 20 multiple-antenna RRHs and supporting 30
users are discussed in Section IV. Section V concludes the
paper.

Notation. Our notations are standard, where only optimiza-
tion variables are boldfaced to emphasize their appearance in
nonlinear functions; |A| is the cardinality of the set A; The dot
product 〈A,B〉 of two matrices A and B is the trace(AHB);
Accordingly, the Frobenius norm of the matrix A is defined
as ||A|| =

√
〈A,A〉; We use [A]2 to refer to AAH , so the

quadratic form xHAx associated with a Hermitian symmetric
matrix A is often expressed by 〈A, [x]2〉; CN (0, 1) is the set
of circular Gaussian random variables with zero mean and unit
covariance, while C(0, 1) is the set of non-circular Gaussian
random variables with zero means and unit covariance; Note
that E(x2) = 0 for x ∈ CN (0, 1) but E(x2) 6= 0 for
x ∈ C(0, 1).

The following inequality [38] that holds for all matrices V
and V̄ of size n× and positive definite matrices Y and Ȳ of
size n× n is frequently used:

ln |In + [V]2Y−1| ≥ ln |In + [V̄ ]2Ȳ −1|
− 〈Ȳ −1, [V̄ ]2〉+ 2<{〈Ȳ −1V̄ ,V〉}

− 〈Ȳ −1 −
(
[V̄ ]2 + Ȳ

)−1
, [V]2 + Y〉.

(1)

II. PROPER GAUSSIAN SIGNALING FOR FRAN

Fig. 1 illustrates a F-RAN of a baseband unit (BBU) linked
with NR RRHs (indexed by i ∈ NR , {1, . . . , NR}) through
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Fig. 1. F-RAN Architecture

the fronthaul links to provide contents for K users (UEs)
(indexed by k ∈ K , {1, . . . ,K}). The RRHs are equipped
with Nt-element antenna arrays, while the UEs are equipped
with single antennas. Each UE k is assumed to request the
content fk from a library of F files having the total capacity
of Fc. Under the uncoded strategy, each file f is split into L
subfiles (f, `), ` ∈ L , {1, . . . , L}. The fractional caching
capacity at each RRH is fixed at µ = Nc/Fc, so each RRH
can store a fraction µ of each file during the pre-fetching phase
[39]. For binary-valued cif,` satisfying cif,` = 1 if and only if
(f, `) is cached by RRH i, we have

∑F
f=1

∑L
`=1 c

i
f,`/L ≤

µF, i ∈ NR.
The set of requested files is defined as

Freq , {fk ∈ F : k = 1, . . . ,K}.

In what follows, for convenience of presentation, we use the
notation cik,` to refer to cifk,`.

Given (fk, `), we define

dik,`=

{
1 if subfile (fk, `) is transferred to RRH i,

0 otherwise.
(2)

To satisfy the rate requirement, the subfile (fk, `) requested
by UE k is fetched through the fronthaul links to the number
NF of RRHs having the highest channel gains from them to
this UE among all the RRHs that do not have (fk, `) in their
cache. For i = 1, . . . , NR, the set of subfiles that are either
in RRH i’s cache or are received by RRH i from the BBU is
defined as

Ni , {(k, `) : k ∈ K, and cik,` = 1 or dik,` = 1}. (3)

We set vik,` = ∅ if (k, `) /∈ Ni to define

vk,` ,


v1
k,`

v2
k,`

. . .

vNRk,`

 , (k, `) ∈ K × L, (4)

which concatenates all beamforming (BF) vectors for the
information source sk,` ∈ C(0, 1) encoding (fk, `), and then
we define v , {vk,` : (k, `) ∈ K × L}, which represents
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the set of all beamformers. With nk,` Nt-dimensional vectors
vik,` in (4), the dimension of vk,` in (4) is given by

Nk,` = Nt · nk,`. (5)

We define the matrix Λik,` ∈ RNt×Nk,` to represent vik,`
associated with (k, `) ∈ Ni as a component of vk,` as1

Λik,`vk,` = vik,`. (6)

Let us also define Ξi , Ni \ {(k, `) : cik,` = 1}. The BBU
must fetch the following beamformed subfiles to RRH i:

ξi =
∑

(k,`)∈Ξi

vik,`sk,`, (7)

where vik,` ∈ CNt is the baseband beamformer for sk,` ∈
CN (0, 1).

Let hk,i ∈ C1×Nt represent the channel spanning from
RRH i to UE k, which is assumed to be known [21]–
[27], and zk ∈ C be the noise having the covariance of
σ, which incorporates both the background noise and other
uncertainties, such as the channel estimation error [40].The
robust design relying on imperfect channel state information,
which explicitly incorporates channel estimation error into the
optimization formulation is beyond the scope of this paper.
The signal received at UE k is formulated as

yk =

NR∑
i=1

hk,i

 ∑
(k′,`)∈Ni

vik′,`sk′,`

+ zk

=

L∑
`=1

 ∑
i:(k,`)∈Ni

hk,iv
i
k,`

 sk,`
+

∑
k′∈K\{k}

L∑
`=1

∑
i:(k′,`)∈Ni

hk,iv
i
k′,`sk′,` + zk (8)

=

L∑
`=1

 ∑
i:(k,`)∈Ni

hk,iΛ
i
k,`vk,`

 sk,`
+

∑
k′∈K\{k}

L∑
`=1

∑
i:(k′,`)∈Ni

hk,iΛ
i
k′,`vk′,`sk′,` + zk

=

L∑
`=1

Ak,k,`vk,`sk,` +
∑

k′∈K\{k}

L∑
`=1

Ak,k′,`vk′,`sk′,` + zk,

(9)

for

Ak,k′,` ,
∑

i:(k′,`)∈Ni

hk,iΛ
i
k′,` ∈ C1×Nk,` . (10)

Based on (9), UE k successively detects sk,1, sk,2, . . . , sk,L as
follows:

1Assume that Λi
k,` = Row[Λ

ij
k,`]j=1,...,nk,` with Λ

ij
k,` ∈ RNt×Nt .

Assume furthermore that vi
k,` is from the [(ri − 1)Nt + 1]-st entry to the

(riNt − 1)-st entry in vk,`. Then we have Λ
iri
k,` = INt and Λ

ij
k,` = 0 for

j 6= ri.

• It detects sk,1 by treating Ak,k,1vk,1sk,1 in (9) as the
signal of interest (to be detected) and the remainder

L∑
`=2

Ak,k,`vk,`sk,` +
∑

k′∈K\{k}

L∑
`=1

Ak,k′,`vk′,`sk′,` + zk

as the interference plus noise. As such the throughput of
sk,1 is given by

rk,1(v) = ln
[
1 + |Ak,k,1vk,1|2/ψk,1(v)

]
, (11)

where

ψk,1(v) ,
L∑

`′=2

|Ak,k,`′vk,`′ |2

+
∑

k′∈K\{k}

L∑
`=1

|Ak,k′,`vk′,`|2 + σ. (12)

• The UE then detects sk,` for 1 < ` ≤ K by successive
cancelation (SC): it subtracts the detected signal

`−1∑
`′=1

Ak,k,`′vk,`′sk,`′ (13)

from the RHS of (9), yielding

L∑
`′=`

Ak,k,`′vk,`′sk,`′ +
∑

k′∈K\{k}

L∑
`=1

Ak,k′,`vk′`sk′,`+zk,

(14)
for detecting sk,` by treating Ak,k,`vk,`sk,` in (14) as the
signal of interest, and the remainder

L∑
`′=`+1

Ak,`′,kvk,`′sk,`′ +
∑

k′∈K\{k}

L∑
`=1

Ak,k′,`vk′,`sk′,`

+ zk, (15)

as the interference plus noise. As such, the throughput of
sk,` is2

rk,`(v,x) = ln
[
1 + |Ak,k,`vk,`|2/ψk,`(v)

]
, (16)

where we have

ψk,`(v) ,
L∑

`′=`+1

|Ak,k,`′vk,`′ |2

+
∑

k′∈K\{k}

L∑
`=1

|Ak,k′,`vk′,`|2 + σ. (17)

A. GM-throughput maximization

We now consider the following problem of maximizing the
GM of the subfile throughput (GM-throughput):

max
v

ϕ(v) ,

(
K∏
k=1

L∏
`=1

rk,`(v)

)1/(KL)

(18a)

||v||2 ≤ P, (18b)

2vk,` ∈ CNk,`×1 by (5) and Ak,k,` ∈ 1×Nk,` by (10) so Ak,k,`vk,` ∈
C
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where (18b) is the sum transmit power constraint given the
total power budget P .

Let us mention that this problem formulation ignores the
so-called fronthaul link constraint on transferring ξi defined
by (7) concerning the BBU to RRH link i:∑

(k,`)∈Ξi

rk,`(v) ≤ log2(e)C, i = 1, . . . , NR, (19)

where C is the fronthaul capacity. Instead, after computing
(18) we will calculate

CF =
1

log2(e)
max

i=1,...,NR
[
∑

(k,`)∈Ξi

rk,`(v)] (20)

to show that it is far below the practical values of C in (19),
which range from 5 bps/Hz to 10 bps/Hz.

Furthermore, the problem (18) does not impose throughput
constraints, such as

rk,`(v) ≥ r̄, (k, `) ∈ K × L, (21)

for the successful delivery of all subfiles (k, `), since optimiz-
ing the GM-throughput in (18) will be shown to lead to fair
user-throughput distributions, automatically satisfying (21).

Finally, the problem (18) does not include the transmit
power constraints at the RRHs, as routinely done in cell-free
multiple input multiple output networks [41], [42], because
again, optimizing the GM-throughput in (18) will be shown
to lead to fairly similar transmit powers at the RHHs.

In other words, the problem (18) provides a new approach
to F-RAN CBF designs which achieve the targets (19) and
(21) along with similar transmit powers at the RRHs.

Following [37], to solve problem (18), we use its following
equivalent max-min formulation:

max
v

min
γk,`>0,

∏K
k=1

∏L
`=1 γk,`=1

∑K
k=1

∑L
`=1 γk,`rk,`(v)

KL

s.t. (18b). (22)

We will now use alternating optimization between v and γ ,
{γk,`, (k, `) ∈ K × L}.

Let v(κ) be a feasible point for (18) that is found from the
(κ− 1)-st alternating iteration in v, and

r(κ)
max , max

(k,`)∈K×L
rk,`(v

(κ)). (23)

Then, the optimal solution of the alternating optimization in
γ, which is formulated as

min
γk,`>0,

∏K
k=1

∏L
`=1 γk,`=1

∑K
k=1

∑L
`=1 γk,`rk,`(v

(κ))

KL
(24)

is given by γ
opt,(κ)
k,` =

r(κ)max

ϕ(v(κ))rk,l(v(κ))
, (k, `) ∈ K × L. Thus

the alternating optimization in v at the κ-th iteration round is
expressed as

max
v

r
(κ)
max

KL

K∑
k=1

L∑
`=1

rk,`(v)

rk,`(v(κ))
s.t. (18b), (25)

which is equivalent to

max
v

ϕ(κ)(v) ,
K∑
k=1

L∑
`=1

γ
(κ)
k,` rk,`(v) s.t. (18b), (26)

for

γ
(κ)
k,` ,

r
(κ)
max

rk,`(v(κ))
, (k, `) ∈ K × L. (27)

Furthermore, applying the inequality (1) yields the following
concave lower-bounding approximation for rk,`(v):

rk,`(v) ≥r(κ)
k,` (v)

,rk,`(v
(κ))−

|Ak,k,`v(κ)
k,` |2

ψk,`(v(κ))

+ 2
<{〈Ak,k,`v(κ)

k,` ,Ak,k,`vk,`〉}
ψk,`(v(κ))

−
|Ak,k,`v(κ)

k,` |2
(
|Ak,k,`vk,`|2 + ψk,`(v)

)
(|Ak,k,`v(κ)|2 + ψk,`(v(κ)))ψk,`(v(κ))

(28)

=χ
(κ)
k,` + 2<{〈g(κ)

k,` ,vk,`〉} −
L∑
`′=`

〈C(κ)
k,`,k,`′ , [vk,`′ ]

2〉

−
∑

k′∈K\{k}

L∑
`′=1

〈C(κ)
k,`,k′,`′ , [vk′,`′ ]

2〉, (29)

for νi,(κ)
k,` = 1

ψk,`(v(κ))
, ζ(κ)

k,` ,
|Ak,k,`v(κ)k,` |

2

(|Ak,k,`v(κ)|2+ψk,`(v(κ)))
ν
i,(κ)
k,` ,

χ
(κ)
k,` , rk,`(v

(κ)) − |Ak,k,`v(κ)|2νi,(κ)
k,` − ζ

(κ)
k,` σ, and g

(κ)
k,` ,

ν
i,(κ)
k,` [AHk,k,`]2v

(κ)
k,` , C(κ)

k,`,k′,`′ , ζ
(κ)
k,` [AHk,k′,`′ ]2.

Then,

ϕ(κ)(v) ≥ϕ̃(κ)(v) (30)

,
K∑
k=1

L∑
`=1

γ
(κ)
k,` r

(κ)
k,` (v)

=χ(κ) + 2
K∑
k=1

L∑
`=1

γ
(κ)
k,`<{〈g

(κ)
k` ,vk,`〉}

−
K∑
k=1

L∑
`=1

γ
(κ)
k,`

(
L∑
`′=`

〈C(κ)
k,`,k,`′ , [vk,`′ ]

2〉

+
∑

k′∈K\{k}

L∑
`′=1

〈C(κ)
k,`,k′,`′ , [vk′,`′ ]

2〉


=χ(κ) + 2

K∑
k=1

L∑
`=1

γ
(κ)
k,`<{〈g

(κ)
k` ,vk,`〉}

−
K∑
k=1

L∑
`=1

〈C(κ)
k,` , [vk,`]

2〉, (31)

for χ(κ) ,
∑K
k=1

∑L
`=1 γ

(κ)
k,`χ

(κ)
k,` , and C(κ)

k,` ,∑`
`′=1 γ

(κ)
k,`′C

(κ)
k,`′,k,` +

∑
k′∈K\{k}

∑L
`′=1 γ

(κ)
k′,`′C

(κ)
k′,`′,k,`,
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because
K∑
k=1

L∑
`=1

γ
(κ)
k,`

L∑
`′=`

〈C(κ)
k,`,k,`′ , [vk,`′ ]

2〉 =

K∑
k=1

[
γ

(κ)
k,1

L∑
`′=1

〈C(κ)
k,1,k,`′ , [vk,`′ ]

2〉

+ γ
(κ)
k,2

L∑
`′=2

〈C(κ)
k,2,k,`′ , [vk,`′ ]

2〉

+ · · ·+ γ
(κ)
k,L〈C

(κ)
k,L,k,L, [vk,L]2〉

]
=

K∑
k=1

L∑
`=1

〈
∑̀
`′=1

γ
(κ)
k,`′C

(κ)
k,`′,k,`, [vk,`]

2〉,

while
K∑
k=1

L∑
`=1

γ
(κ)
k,`

∑
k′∈K\{k}

L∑
`′=1

〈C(κ)
k,`,k′,`′ , [vk′,`′ ]

2〉 =

K∑
k′=1

L∑
`′=1

γ
(κ)
k′,`′

∑
k∈K\{k′}

L∑
`=1

〈C(κ)
k′,`′,k,`, [vk,`]

2〉 =

K∑
k=1

L∑
`=1

〈
∑

k′∈K\{k}

L∑
`′=1

γ
(κ)
k′,`′C

(κ)
k′,`′,k,`, [vk,`]

2〉.

We solve the following convex problem at the κ-th iteration
to generate the next feasible point v(κ+1) for (18):

max
v,x

ϕ̃(κ)(v) s.t. (18b), (32)

which admits the closed-form solution3

v
(κ+1)
k,` =



γ
(κ)
k,` (C(κ)

k,` )−1g
(κ)
k`

if
∑K
k=1

∑L
`=1 ||γ

(κ)
k,` (C(κ)

k,` )−1g
(κ)
k` ||2 ≤ P,

γ
(κ)
k,` (C(κ)

k,` + λINk,`)
−1g

(κ)
k`

otherwise,
(33)

where λ is found from bisection based search, so that we have
K∑
k=1

L∑
`=1

||γ(κ)
k,` (C(κ)

k,` + λINk,`)
−1g

(κ)
k` ||

2 = P. (34)

Note that ϕ(κ)(v(κ+1)) ≥ ϕ̃(κ)(v(κ+1)) by (30), while
ϕ̃(κ)(v(κ+1)) > ϕ̃(κ)(v(κ)) = ϕ(κ)(v(κ)) as far as
ϕ̃(κ)(v(κ+1)) 6= ϕ̃(κ)(v(κ)) because v(κ+1) and v(κ) are the
optimal solution and a feasible point for the problem (32). We
thus arrive at

ϕ(κ)(v(κ+1)) > ϕ(κ)(v(κ)), (35)

i.e. v(κ+1) is a better feasible point for the problem (26), and as
thus Algorithm 1 provides steep descent iterations for solving
problem (18), namely on GM-throughput maximization.

The computational complexity of (33) is on the order of
O(Nk,` logNk,`) [43], so the computational complexity of
each iteration of Algorithm 1 is formulated as:∑

(k,`)∈K×L

O(Nk,` logNk,`), (36)

3The inverse here is actually a pseudo-inverse, if the matrices considered
are near to singularity

Algorithm 1 PGS CBF Algorithm

1: Set κ = 0. Take a feasible point v(0) to satisfy the power
constraint (18b).

2: Repeat until convergence of the objective function in
(18). Iterate v(κ+1) by (33). Reset v(κ) ← v(κ+1) and
update γ(κ)

k,` by (27).
3: Output v(κ) as the optimal solution of (18).

Algorithm 2 Energy-efficient PGS Algorithm

1: Set κ = 0. Take a feasible point v(0) to satisfy the power
constraint (18b).

2: Repeat until convergence of the objective function in
(39). Iterate v(κ+1) by (45). Reset v(κ) ← v(κ+1) and
update γ(κ)

k,` by (27).
3: Output v(κ) as the optimal solution of (39).

which represents a scalable complexity. This is in contrast to
the computational complexity order O((

∑
(k,`)∈K×LNk,`)

3)
of the convex-solver based algorithms [28].

B. Energy-efficiency maximization

Let us now define the total power consumption as

πc(v) , α||v||2 + Psc +NR [P0 + PbtKLϕ(v)] , (37)

where α is the reciprocal of the power amplifier’s drain
efficiency at APs, Psc is the power dissipation of the circuit
components, P0 is the power consumption of each backhaul,
and Pbt is the traffic-dependent power (in Watt per bits/s).
Their values are given in Table II in Section V. The first
and second terms in (37) represent the transmission power
consumption, while the third term reflects the power con-
sumption of the backhauls. Note that in contrast to [44],
we insert KL(

∏K
k=1

∏L
`=1 rk,`(v))1/KL into (37) instead of∑K

k=1

∑L
`=1 rk,`(v). We consider the following problem of

energy-efficiency (EE) maximization:

max
v

KLϕ(v)

πc(v)
s.t. (18b). (38)

The rationale behind considering (38) is that by maximizing
the objective in (38) one achieves both the subfiles’ throughput
target, because the GM-throughput in its numerator must be
maximized and also high EE, because the power consumption
in its denominator must be minimized.

Note that we have

KLϕ(v)

πc(v)
=

(
α||v||2 + Psc +NRP0

KLϕ(v)
+NRPbt

)−1

,

so the problem (38) is equivalent to the following problem:

max
v

f(v) ,
ϕ(v)

πe(v)
s.t. (18b), (39)

where we have

πe(v) , α||v||2 + Psc +NRP0. (40)
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In fact,

max (38) =

(
1

KLmax (39)
+NRPbt

)−1

. (41)

Let v(κ) be a feasible point for (39) that is found from the
(κ−1)-st iteration, and accordingly r(κ)

max and γ(κ)
k,` are defined

by (23) and (27). Similarly to (26), we develop a steep descent
for (39) by examining the following problem:

max
v

f (κ)(v) ,
K∑
k=1

L∑
`=1

γ
(κ)
k,` rk,`(v)− θ(κ)πe(v)

s.t. (18b), (42)

for

θ(κ) , KL
r

(κ)
max

πe(v(κ))
. (43)

Recalling the function ϕ̃(κ)(v) from (31), we solve the fol-
lowing convex problem to generate v(κ+1):

max
v

ϕ̃(κ)(v)− θ(κ)πe(v) s.t. (18b), (44)

which admits the following closed-form solution:

v
(κ+1)
k,` =



γ
(κ)
k,`

(
C(κ)
k,` + θ(κ)αINk,`

)−1

g
(κ)
k`

if
K∑
k=1

L∑
`=1

||γ(κ)
k,`

(
C(κ)
k,` + θ(κ)αINk,`

)−1

g
(κ)
k` ||

2

≤ P,

γ
(κ)
k,`

(
C(κ)
k,` + θ(κ)αINk,` + λINk,`

)−1

g
(κ)
k`

otherwise,
(45)

where λ > 0 is found from bisection search, so that we have
K∑
k=1

L∑
`=1

||γ(κ)
k,`

(
C(κ)
k,` + θ(κ)αINk,` + λINk,`

)−1

g
(κ)
k` ||

2 = P.

(46)
Similarly to (35), we can show that

f̃ (κ)(v(κ+1)) > f̃ (κ)(v(κ)), (47)

whenever we have f̃ (κ)(v(κ+1)) 6= f̃ (κ)(v(κ)), i.e. v(κ+1) is
a better feasible point than v(κ) for (42). Thus Algorithm
2 provides steep descent iterations for the energy-efficient
maximization in (39).

The computational complexity of each iteration of Algo-
rithm 2 is the same as that of its counterpart of Algorithm 1,
which is defined by (36).

III. WIDELY LINEAR PROCESSING

In (4), each sk,` for (k, `) ∈ Ni is linearly beamformed
by the weight vector vik,` ∈ CNt . Now, sk,` for (k, `) ∈ Ni
is beamformed by a pair of beamformers wi,1

k,` ∈ CNt and
wi,1
k,` ∈ CNt as

λik,`(sk,`) = wi,1
k,`sk,` + wi,2

k,`s
∗
k,`, (48)

i.e. sk,` is widely linearly beamformed [36]. In contrast
to the signal vik,`sk,` in (4), which is proper Gaussian

as sk,` itself, because we have E(vik,`sk,`(v
i
k,`sk,`)

T ) =

vik,`E(s2
k,`)(v

i
k,`)

T = 0, the signal defined by (48) is an im-
proper Gaussian signal because E(λik,`(sk,`)(λ

i
k,`(sk,`))

T ) 6=
0. Thus, from now on we will refer to the beamforming scheme
using (4) as proper Gaussian signaling (PGS), while to that
using (48) as improper Gaussian signaling (IGS).

Let us now introduce the definitions

λ̃ik,`(sk,`) ,

[
<{λik,`(sk,`)}
={λik,`(sk,`)}

]
=

[
<{wi,1

k,`}+ <{wi,2
k,`} −={w

i,1
k,`}+ ={wi,2

k,`}
={wi,1

k,`}+ ={wi,2
k,`} <{wi,1

k,`} − <{w
i,2
k,`}

]

×
[
<{sk,`}
={sk,`}

]
(49)

=Vi
k,`s̃k,`, (50)

where we have

s̃k,` ,

[
<{sk,`}
={sk,`}

]
, (51)

and

Vi
k,` ,

[
vi,11
k,` vi,12

k,`

vi,21
k,` vi,22

k,`

]
(52)

=

[
<{wi,1

k,`}+ <{wi,2
k,`} −={w

i,1
k,`}+ ={wi,2

k,`}
={wi,1

k,`}+ ={wi,2
k,`} <{wi,1

k,`} − <{w
i,2
k,`}

]
∈R(2Nt)×2, (53)

and Nk,` is defined in (5). Note that the transform (53) is
indeed legitimate, since its inverse is given by[
<{wi,1

k,`} ={wi,1}
<{wi,2

k,`} ={w
i,2
k,`}

]
=

1

2

[
vi,11
k,` + vi,22

k,` vi,21
k,` − vi,12

k,`

vi,11
k,` − vi,22

k,` vi,21
k,` + vi,12

k,`

]
.

(54)
Furthermore, we have:

||wi,1
k,`||

2 + ||wi,2
k,`||

2 =
1

2

2∑
j1=1

2∑
j2=1

||vi,j1j2k,` ||
2. (55)

Again, recalling that Nk,` is defined in (5), we set Vi
k,` = ∅

if (k, `) /∈ Ni to define

Vk,` ,


V1
k,`

V2
k,`

. . .

VNR
k,`

 ∈ R(2Nk,`)×2, (k, `) ∈ K × L, (56)

which is the beamforming matrix for the subfile sk,`, and
then V , {Vk,` : (k, `) ∈ K × L}, which is the set
of all beamforming matrices. We also introduce the matrix
Λ̃ik,` ∈ R(2Nt)×(2Nk,`) to present Vi

k,` with (k, `) ∈ Ni as a
component of Vk,`,4 which satisfies

Λ̃ik,`Vk,` = Vi
k,`. (57)

4Λ̃i
k,` , Row[Λ̃

ij
k,`]j=1,...,nk,` with each Λ̃

ij
k,` ∈ R(2Nt)×(2Nt).

Assume that Vi
k,` is the ((ri − 1)2Nt + 1)-th row to (ri2Nt − 1)-th row

in Vk,`, then Λ̃
iri
k,` = I2Nt and Λ̃

ij
k,` = 0 for j 6= ri.
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The signal received at UE k is formulated as

yk =

NR∑
i=1

hk,i
∑

(k′,`)∈Ni

(wi,1
k′,`sk′,` + wi,2

k′,`s
∗
k′,`) + zk. (58)

Its equivalent real composite form is given by

ỹk ,

[
<{yk}
={yk}

]
(59)

=

NR∑
i=1

H̃k,i

 ∑
(k′,`)∈Ni

Vi
k′,`s̃k′,`

+ z̃k (60)

=

L∑
`=1

 ∑
i:(k,`)∈Ni

H̃k,iVi
k,`

 s̃k,`
+

∑
k′∈K\{k}

L∑
`=1

∑
i:(k′,`)∈Ni

H̃k,iVi
k′,`s̃k′,` + z̃k (61)

=

L∑
`=1

 ∑
i:(k,`)∈Ni

H̃k,iΛ̃ik,`Vk,`

 s̃k,`
+

∑
k′∈K\{k}

L∑
`=1

∑
i:(k′,`)∈Ni

H̃k,iΛ̃ik′,`Vk′,`s̃k′,` + z̃k

=

L∑
`=1

Ãk,k,`Vk,`s̃k,` +
∑

k′∈K\{k}

L∑
`=1

Ãk,k′,`Vk′,`s̃k′,`

+ z̃k, (62)

for

H̃k,i ,
[
<{hk,i} −={hk,i}
={hk,i} <{hk,i}

]
, z̃k ,

[
<{zk}
={zk}

]
, (63)

and
Ãk,k′,` ,

∑
i:(k′,`)∈Ni

H̃k,iΛ̃ik′,`. (64)

Similarly to (13)-(17), in detecting s̃k,1, . . . , s̃k,L by suc-
cessive cancelation (SC), UE k subtracts the detected signal

`−1∑
`′=1

Ak,k,`′Vk,`′sk,`′ (65)

from the RHS of (62) to arrive at

L∑
`′=`

Ãk,k,`′Vk,`′ s̃k,`′ +
∑

k′∈K\{k}

L∑
`=1

Ãk,k′,`Vk′,`s̃k′,`

+ z̃k (66)

for detecting sk,` by treating

Ãk,k,`Vk,`s̃k,` (67)

in (66) as the signal of interest, and

L∑
`′=`+1

Ãk,k,`′Vk,`′ s̃k,`′ +
∑

k′∈K\{k}

L∑
`=1

Ãk,k′,`Vk′,`s̃k′,`

+ z̃k (68)

as the interference plus noise. Then the throughput of sfk,` at
user k is 1

2 r̃k,`(V,x) [36] with

r̃k,`(V) , ln
∣∣∣I2 + [Ak,k,`Vk,`]

2Ψ−1
k,`(V)

∣∣∣ , (69)

for

Ψk,`(V) ,
L∑

`′=`+1

[Ãk,k,`′Vk,`′ ]
2

+
∑

k′∈K\{k}

L∑
`=1

[Ãk,k′,`Vk′,`]
2 + σI2. (70)

A. GM-throughput maximization

Based on (18), we consider the following problem:5

max
V

Φ(V) ,

(
K∏
k=1

L∏
`=1

r̃k,`(V)

)1/(KL)

(71a)

||V||2 ≤ 2P. (71b)

Note that the BBU must forward the following beamformed
subfiles to RRH i instead of (7):

ξi =
∑

(k,`)∈Ξi

(
wi,1
k,`sk,` + wi,2

k,`s
∗
k,`

)
, (72)

or
ξ̃i ,

[
<{ξi}
={ξi}

]
=

∑
(k,`)∈Ξi

Vi
k,`s̃k,`, (73)

with Vi
k,` and s̃k,` defined in (53) and (51). Then the fronthaul

capacity is defined as the following instead of (20):

C̃F =
1

2 log2(e)
max

i=1,...,NR
[
∑

(k,`)∈Ξi

r̃k,`(V)]. (74)

Let V (κ) be a feasible point for (71) that is found from the
(κ− 1)-st iteration and

γ̃
(κ)
k,` , max

(k′,`′)∈K×L
r̃k,`(V

(κ))/r̃k,`(V
(κ)). (75)

Similarly to (26) constructed for PGS, at the κ-th iteration we
examine the following problem:

max
V,x

Φ(κ)(V,x) ,
K∑
k=1

L∑
`=1

γ̃
(κ)
k,` r̃k,`(V) s.t. (71b). (76)

Applying the inequality (1) yields the following concave
lower-bounding approximation for r̃k,`(V):

r̃k,`(V) ≥ r̃(κ)
k,` (V)

, r̃k,`(V
(κ), x(κ))− 〈[Ãk,k,`V (κ)

k,` ]2,Ψ−1
k,`(V

(κ))〉

+ 2〈Ψ−1
k,`(V

(κ))Ãk,k,`V (κ)
k,` , Ãk,k,`Vk,`〉

− 〈Ψ−1
k,`(V

(κ))−
(

[Ãk,k,`V (κ)
k,` ]2 + Ψk,`(V

(κ))
)−1

,

[Ãk,k,`Vk,`]
2 + Ψk,`(V)〉 (77)

= χ̃
(κ)
k,` + 2〈G̃(κ)

k,` ,Vk,`〉 −
L∑
`′=`

〈C̃(κ)
k,`,k,`′ , [Vk,`′ ]

2〉

5the optimal value must be divided by two in comparison to (18a)
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−
∑

k′∈K\{k}

L∑
`=1

〈C̃(κ)
k,`,k′,`′ , [Vk′,`′ ]

2〉, (78)

for χ̃(κ)
k,` , r̃k,`(V

(κ))−〈[Ãk,k,`V (κ)
k,` ]2Ψ−1

k,`(V
(κ))〉−σ〈Γ(κ)

k,` 〉,
G̃(κ)
k,` , ÃTk,k,`Ψ

−1
k,`(V

(κ), x(κ))Ãk,k,`V (κ)
k,` , Γ

(κ)
k,` ,

Ψ−1
k,`(V

(κ)) −
(

[Ãk,k,`V (κ)
k,` ]2 + Ψk,`(V

(κ))
)−1

� 0,

C̃(κ)
k,`,k′,`′ , ATk,k′,`′Γ

(κ)
k,`Ak,k′,`′ � 0.

Thus we have

Φ(κ)(V) ≥Φ̃(κ)(V) (79)

,
K∑
k=1

L∑
`=1

γ̃
(κ)
k,` r̃

(κ)
k,` (V)

=χ̃(κ) + 2

K∑
k=1

L∑
`=1

γ̃
(κ)
k,` 〈G̃

(κ)
k,` ,Vk,`〉

−
K∑
k=1

L∑
`=1

γ̃
(κ)
k,`

(
L∑
`′=`

〈C̃(κ)
k,`,k,`′ , [Vk,`′ ]

2〉

+
∑

k′∈K\{k}

L∑
`′=1

〈C̃(κ)
k,`,k′,`′ , [Vk′,`′ ]

2〉


=χ̃(κ) + 2

K∑
k=1

L∑
`=1

γ̃
(κ)
k,` 〈G̃

(κ)
k,` ,Vk,`〉

−
K∑
k=1

L∑
`=1

〈C̃(κ)
k,` , [Vk,`]

2〉, (80)

for χ̃(κ) ,
∑K
k=1

∑L
`=1 γ̃

(κ)
k,`χ

(κ)
k,` , and C̃(κ)

k,` ,∑`
`′=1 γ̃

(κ)
k,`′C

(κ)
k,`′,k,` +

∑
k′∈K\{k}

∑L
`′=1 γ̃

(κ)
k′,`′C

(κ)
k′,`′,k,`.

We solve the following convex optimization problem at the
κ-th iteration to generate the next feasible point V (κ+1) for
(71):

max
V,x

Φ̃(κ)(V) s.t. (71b), (81)

which admits the following closed-form solution:

V
(κ+1)
k,` =



γ̃
(κ)
k,` (C̃(κ)

k,` )−1G̃(κ)
k,`

if
∑K
k=1

∑L
`=1 ||γ̃

(κ)
k,` (C̃(κ)

k,` )−1G̃(κ)
k,` ||2 ≤ 2P,

γ̃
(κ)
k,` (C̃(κ)

k,` + λI2Nk,`)
−1G̃(κ)

k,`

otherwise,
(82)

where λ is found from bisection search, so that we have
K∑
k=1

L∑
`=1

||γ̃(κ)
k,` (C̃(κ)

k,` + λI2Nk,`)
−1G̃(κ)

k,` ||
2 = 2P. (83)

Similarly to its PGS dual pair in (35), we can show that
Φ(κ)(V (κ+1)) > Φ(κ)(V (κ)) as far as Φ(κ)(V (κ+1)) 6=
Φ(κ)(V (κ)), i.e. V (κ+1) is a better feasible point for the
problem (76) and as such Algorithm 3 provides steep descent
iterations for computing (71).

The computational complexity of each iteration of Algo-
rithm 3 is given by (36).6

6O(2Nk,` log(2Nk,`)) = O(Nk,` log(Nk,`))

Algorithm 3 IGS CBF Algorithm

1: Set κ = 0. Take a feasible point V (0) to satisfy the power
constraint (71b).

2: Repeat until convergence of the objective function in
(71). Iterate V (κ+1) by (82). Reset V (κ) ← V (κ+1) and
update γ̃(κ)

k,` by (75).
3: Output V (κ) as the optimal solution of (71).

Algorithm 4 Energy-efficient IGS Algorithm

1: Set κ = 0. Take a feasible point V (0) to satisfy the power
constraint (71b).

2: Repeat until convergence of the objective function in
(85). Iterate V (κ+1) by (92). Reset V (κ) ← V (κ+1) and
update γ̃(κ)

k,` by (75).
3: Output V (κ) as the optimal solution of (85).

B. Energy-efficiency maximization

Instead of its PGS dual pair in (37), the function of total
power consumption is defined by

π̃c(V) ,
α

2
||V||2 + Psc +NR

(
P0 +

Pbt
2
KLϕ̃(V)

)
, (84)

and instead of (38), the problem of EE maximization is
formulated as

max
v

KLΦ(v)

2π̃c(V)
s.t. (71b). (85)

Like (39)-(41), the problem (85) is equivalent to the following
problem:

max
v

F (V) ,
Φ(V)

π̃e(V)
s.t. (71b) (86)

where we have

π̃e(V) , α||V||2 + 2Psc + 2NRP0, (87)

because

max (85) =

(
1

KLmax (86)
+NRPbt

)−1

. (88)

Let V (κ) be the feasible point for (71) that is found from the
(κ−1)-st iteration. Similar to its PGS counterpart in (42), we
examine the following problem for generating V (κ+1):

max
V

F (κ)(V) ,
K∑
k=1

L∑
`=1

γ̃
(κ)
k,` r̃k,`(V)− θ̃(κ)π̃e(v)

s.t. (71b), (89)

for γ̃(κ)
k,` defined in (75) and

θ̃(κ) , KL
max(k′,`′)∈K×L r̃k′,`′(V

(κ))

π̃e(V (κ))
. (90)

Recalling the function Φ(κ)(V) from (80), we solve the
following convex problem to generate V (κ+1):

max
V

F̃ (κ)(V) , Φ(κ)(V)− θ̃(κ)π̃e(V) s.t. (71b), (91)
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Fig. 2. The simulation scenario of 20 RRHs and 30 UEs distributed in the
cell

TABLE II
PARAMETER SETTINGS

Parameter Value
Carrier frequency / Bandwidth(Bw) 2 GHz / 10 MHz
Shadowing standard deviation 8 dB
Noise power density -174 dBm/Hz
(α, Psc, P0, Pbt) in (37) (1/0.4, 0.2W, 0.825W, 0.25W)

which admits the following closed-form solution:

V
(κ+1)
k,` =



γ̃
(κ)
k,`

(
C̃(κ)
k,` + θ̃(κ)αI2Nk,`

)−1

G̃(κ)
k`

if
K∑
k=1

L∑
`=1

||γ̃(κ)
k,`

(
C̃(κ)
k,` + θ̃(κ)αI2Nk,`

)−1

G̃(κ)
k` ||

2

≤ 2P,

γ̃
(κ)
k,`

(
C̃(κ)
k,` + θ̃(κ)αI2Nk,` + λI2Nk,`

)−1

G̃(κ)
k`

otherwise,
(92)

where λ is found from bisection search, so that we have

g̃(λ)

,
K∑
k=1

L∑
`=1

||γ̃(κ)
k,`

(
C̃(κ)
k,` + θ(κ)αI2Nk,` + λI2Nk,`

)−1

G̃(κ)
k` ||

2

= 2P. (93)

Similar to (47), we can show F (κ)(V (κ+1)) > F (κ)(V (κ))
as far as F (κ)(V (κ+1)) 6= F (κ)(V (κ)), i.e. V (κ+1) is a better
feasible point for the problem (89). Algorithm 4 thus provides
steep descent iterations for the problem (85).

The computational complexity of each iteration of Algo-
rithm 4 is given by (36).

IV. SIMULATION RESULTS

The efficiency of the proposed algorithms along with their
convergence is demonstrated through the numerical results of
this section. All these algorithms are centralised.

There are 200 files in the library (F = 200), which
are labelled in the order of their popularity obeying Zipfs
distribution having the popularity exponent of γz = 0.6. Each
file is split into 4 subfiles (L = 4). The caching capacity of

each RRH is µ = 1/2. The RRHs are uniformly distributed
in the circular area with radius R = 500 m, while the UEs
are randomly distributed in the area, as illustrated in Fig. 2.
Unless stated otherwise, we use the following settings: the sum
transmit power is P = 40 dBm; the number of RRHs (UEs,
resp.) is NR = 20 (K = 30, resp.); each RRH is equipped
with a three-element antenna array (Nt = 3) and each UE is
served by the three nearest RRHs (NF = 3).

The channel vector hk,i between the RRH i and UE k at
the distance dk,i in km is modeled as hk,i =

√
10−ρk,i/10h̃k,i,

where ρk,i = 148.1+37.6 log10(dk,i) (dB) is the pathloss and
h̃k,i having independent and identically distributed complex
entries is the small-scale fading [45]. The error tolerance for
declaring convergence is set to ε = 1e-4. The other parameters
are given by Table II.

The ultimate objective of our simulations is to show that
the CBF design based on the GM-throughput maximization
problems (18) and (71) and their energy-efficient extension
(38) and (85) help to achieve the rate target (21) for the
successful delivery of all subfiles under the fronthaul capacity
constrained by (19) with moderate C < 10 bps/Hz, under the
following caching strategies:
• Caching the most popular files (CMP): Each RRH stores

the Fi most popular files, so |Fi| = bµF c and cif,` = 1
if and only if f ≤ |Fi|.

• Caching fractions of distinct files (CFD): Each RRH
stores up to bµLc fragments of each file that are randomly
chosen, so cif,` = 1 if and only if ` ∈ Lif , where Lif is
a set of bµLc random numbers from L , {1, . . . , L},
which are independent across the file f and the RRH
index i.

• Random caching (RanC): Each RRH stores a set Fi of
distinct files, which are arbitrarily selected from the F
files, so |Fi| = bµF c and cif,l = 1 if and only if f ∈ Fi.

Note that under the above setting, these design problems in-
volve at least KLNFNt = 1080 decision variables, ruling out
any chance of using convex solver based iterative algorithms
for solution.

A. Efficacy of GM-throughput maximization in limiting the
fronthaul burden and meeting the rate-constraint

Fig. 3 shows that the individual subfile throughputs are quite
similar, which demonstrates the benefit of the dense deploy-
ment of RRHs in the cell and as such the rate requirement
(21) for the successful delivery of all subfiles is automatically
satisfied. Compared to the PGS CBF Algorithm 1, the IGS
CBF Algorithm 3 improves both the GM-throughput and also
the individual subfile throughput.

Fig. 4 and Fig. 5 show that the fronthaul capacities required
by the RRHs are more or less similar under each of the
three aforementioned caching schemes, and they are the lowest
under the CMP scheme.

Fig. 6 shows that the transmit powers of the RRHs are
evenly distributed among twelve of the 20 RRHs located in
an outer circle of the cell depicted in Fig. 2, and among the
remaining eight RRHs located in an inner circle. Those in
the inner circle experience better service conditions and thus
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Fig. 3. The distribution of the individual subfile throughput by Algorithm 1 and 3 using the parameters of Table II
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parameters of Table II
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Fig. 10. The GM-throughput versus sum transmit power budget P using the
parameters of Table II

need lower transmit powers from the RRHs to achieve the
throughput requirements.

Fig. 7 plots the fronthaul capacity defined by (20)/(74) for
the PGS and IGS scenarios versus the sum transmit power
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Fig. 11. The GM-throughput versus the number NR of RRHs using the
parameters of Table II
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Fig. 12. The GM-throughput versus the number Nt of RRH antennas using
the parameters of Table II
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Fig. 13. The convergence behaviors of the GM-throughput maximization
schemes

budget P under the three aforementioned caching schemes.
The IGS CBF Algorithm 3 requires higher fronthaul capacity
than the PGS CBF Algorithm 1. Observe that the CMP
scheme requires the lowest fronthaul capacity. This result
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Fig. 14. The distribution of the individual subfile throughput by Algorithm 2 and 4 using the parameters of Table II
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Fig. 15. The distribution of the fronthaul capacity by Algorithm 2 using the
parameters of Table II
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Fig. 16. The distribution of the fronthaul capacity by Algorithm 4 using the
parameters of Table II
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using the parameters of Table II
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Fig. 21. The convergence behaviors of the energy-efficiency maximization
schemes

clearly shows that caching the most popular files at the RRHs
indeed helps to mitigate the fronthauling burden. Naturally,
the fronthaul requirement increases monotonically with P .
However, under the RanC scheme it fluctuates owing to the
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Fig. 22. Energy efficiency versus the number K of UEs using the parameters
of Table II
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Fig. 23. Energy efficiency versus the number Nt of RRH antennas using the
parameters of Table II

random selection of the cached files from the file library. This
trend is consistent with that observed in Fig. 4 and Fig. 5.

Fig. 8 shows that the fronthaul capacity requirement is
monotonically decreasing with the number NR of RRHs, as
expected. The capacity gap between IGS and PGS fluctuates
under the RanC scheme due to its random nature. Again,
caching the most popular files at the RRHs is the most
appropriate require for alleviating the fronthaul load.

Fig. 9 shows that the GM-throughput is monotonically de-
creasing with the number K of UEs. This is because the same
resources must be shared among the increased numbers of
UEs, hence dropping the subfile throughput. The performance
gap between the IGS CBF Algorithm 3 and the PGS CBF
Algorithm 1 becomes wider under more UEs, showing that
the IGS CBF Algorithm 3 has the edge, since it is capable of
more UEs.

Fig. 10, Fig. 11, and Fig. 12 show that the GM-throughput
is monotonically increasing both with the power budget P ,
as well as with the number NR of RRHs - which tend to be
closer to the UEs - and with the number Nt of RRH antennas.
Again, the IGS CBF Algorithm 3 outperforms the PGS CBF
Algorithm 1 in all these figures. However, there is almost no
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difference between the two performances in Fig. 12 for Nt >
5, because in general PGS also performs well with the aid
of more transmit antennas. Fig. 9, Fig. 11, and Fig. 12 also
demonstrate that the IGS CBF Algorithm 3 has an advantage
over its PGS counterpart Algorithm 1 for less RRHs, or smaller
numbers of RRH antennas, and larger numbers of UEs.

Fig. 13 shows the convergence behaviors of the GM-
throughput maximization schemes in simulating Fig. 10 with
P = 40 dBm. The GM-throughput improves after each
iteration.

B. EE optimization
This subsection demonstrates the efficacy of the PGS EE

Algorithm 2 and of the IGS EE Algorithm 4 in achieving the
energy-efficient delivery of all subfiles at moderate fronthaul
rates, while meeting the individual user-rate requirements.

Fig. 14 shows that the individual subfile throughputs auto-
matically become similar both without imposing constraints.

Fig. 15 and Fig. 16 plot the fronthaul capacities required by
the RRHs for satisfying the fronthaul link capacity constraint
(19) with C being substantially below 10 bps/Hz.

Further, Fig. 17 plots the transmit powers of the RRHs
calculated by solving the problems (39) and (85) by the PGS
EE Algorithm 2 and the IGS EE Algorithm 2. The trends are
similar to those in Fig. 6. Those RRHs that are located in the
outer circle of Fig. 2 use more transmit power to reach their
served UEs.

Fig. 18 reveals that the CMP requires lower fronthaul ca-
pacities than the other two. The IGS EE Algorithm 4 requires
higher fronthaul capacity than its PGS counterpart Algorithm
2. As a further trend, the fronthaul capacity is insensitive to
the power budget P under the CMP and CFD schemes, but
slightly fluctuates under the RanC scheme.

Fig. 19 plots the fronthaul capacity versus the number NR
of RRHs, which tends to decay with NR, similarly to Fig. 8.

Fig. 20 shows that the EE drops when the number of RRHs
increases. Thus, the increase of the total subfile throughput
does not keep up with the growth of the total power consump-
tion when more RRHs are deployed. Fig. 20 also shows that
the advantage of IGS diminishes with more RRHs deployed.

Fig. 21 shows the convergence behaviors of the EE maxi-
mization schemes in simulating Fig. 20 with NR = 20. The EE
improves after each iteration. The PGS algorithm converges
faster than the IGS algorithm, since the latter has to handle
more decision variables.

Fig. 22 shows that the IGS EE Algorithm 4 handles the
EE requirement much better than its counterpart PGS EE
Algorithm 2. Finally, Fig. 23 shows that the EE of the PGS EE
Algorithm 2 and of the IGS EE Algorithm 4 by the number
Nt of RRH antennas is quite similar, which is consistent with
what observed from Fig. 12.

V. CONCLUSIONS

The problem of CBF design for F-RANs equipped with
capacity-constrained fronthaul links and RRH caches is com-
putationally challenging due to the large numbers of beam-
forming variables involved. We tackled this problem by con-
ceiving the novel concept of the GM-throughput maximization

subject to total transmit power constraints. We derived new
low-complexity closed-form expressions to be evaluated at
each iteration of our optimization procedure. The simula-
tions conducted for large-scale F-RANs showed that indeed
GM-through maximization only requires moderate fronthaul
throughput and limited RRH caches, while meeting the content
throughput requirements. An extension of the proposed ap-
proach to the problem of three-dimensional (3D) beamforming
design is under current study.
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