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Abstract—In multi-cell massive MIMO systems, channel esti-
mation is deteriorated by pilot contamination and the effects
of pilot contamination become more severe due to hardware
impairments. In this paper, we propose a joint pilot design
and channel estimation based on deep residual learning in
order to mitigate the effects of pilot contamination under the
consideration of hardware impairments. We first investigate
a conventional linear minimum mean square error (LMMSE)
based channel estimator to suppress the interference caused by
pilot contamination. After that, a deep learning based pilot design
is proposed to minimize the mean square error (MSE) of LMMSE
channel estimation, which is utilized to the joint pilot design
and channel estimator for transfer learning approach. For the
channel estimator, we use a deep residual learning which extracts
the features of interference caused by pilot contamination and
eliminates them to estimate the channel information. Simulation
results demonstrate that the proposed joint pilot design and
channel estimator outperforms the conventional approach in
multi-cell massive MIMO scenarios. Furthermore, the joint pilot
design and channel estimator using transfer learning enhances
the estimation performance by reducing the effects of pilot
contamination when the prior knowledge of pilot contamination
cannot be exploited.

Index Terms—Massive MIMO, pilot contamination, channel es-
timation, hardware impairments, deep residual learning, transfer
learning

I. INTRODUCTION

A. Backgrounds and Motivation

Massive multiple-input multiple-output (MIMO) has been

attracted considerable attention in wireless communications to

meet the high data rate requirements and improve the link re-

liability [1]. In addition, massive MIMO has the advantages of

multiplexing gain, simple signal processing, and cost reduction

in radio frequency (RF) hardware components [2]. In order to

achieve the benefits of massive MIMO, the accurate channel

estimation technique is of vital. However, channel estimation

is challenging in massive MIMO systems since pilot length

for downlink channel estimation in frequency division duplex

(FDD) is proportional to the number of antennas as the BS.

In contrast, the pilot overhead which is proportional to the

number of user equipments (UEs) can be significantly reduced
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by exploiting the channel reciprocity in time-division duplex

(TDD) mode [1]. Despite the use of TDD mode, the pilot

overhead in multi-cell scenario has to be proportional to the

number of all UEs in all the cells for allocating orthogonal

pilots to UEs [3]. In practical systems, however, the allocated

pilot sequences are no longer orthogonal between UEs in

adjacent cells since the pilot length needs to be limited by

coherence time. As a result, it leads to pilot contamination

which is a fundamentally limiting factor degrading the channel

estimation performance [4]–[6]. Furthermore, the pilot con-

tamination induces inter-cell interference due to the reuse of

pilot sequences in multi-cell environments, which deteriorates

the system throughput [7].

Due to the feature of BS with a few hundreds of antennas,

BS can simultaneously serve a large number of UEs by

exploiting the spatial multiplexing. To implement massive

antenna components at BS, it is attractive to mount a low-

cost and power-efficient antenna component because hardware

cost and power consumption grow linearly as a function

of the number of antennas. However, the use of a cheap

component is likely to introduce hardware impairments such

as non-linear power amplifier, phase noise, and I/Q imbalance

[8]–[10]. Unfortunately, the effects of hardware impairments

cannot be perfectly removed and a certain amount of residual

hardware impairments (RHWIs) always remains even though

the compensation or calibration techniques are utilized [8].

As a result, the distortion noise caused by RHWIs is also the

source of pilot contamination as well as the lack of orthogo-

nal pilot sequences, which degrades the channel estimation

performance [2]. In order to minimize the effects of pilot

contamination, we focus on the pilot sequence design and the

distortion noise mitigation caused by pilot contamination to

obtain the accurate channel state information (CSI).

B. Related Work

Several strategies for mitigating pilot contamination have

been studied in terms of pilot design. Different from the

orthogonal based pilot design, the non-orthogonal based pilot

design significantly improves the channel estimation perfor-

mance [11]. Non-orthogonal pilot design has been investi-

gated in [12]–[15] to minimize mean square error (MSE)

with linear minimum mean square error (LMMSE) channel

estimator but the minimizing MSE is non-convex problem. To

handle the non-convexity of MSE, the non-convex problem

http://arxiv.org/abs/2108.04485v1
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is decomposed into distributed sub-problems and successive

optimization approach is adopted to solve the sub-problems

[12]. Moreover, authors in [13] suggested greedy algorithm

to obtain the pilot sequences and a linearized alternating

direction method of multipliers (L-ADMM) algorithm and

fractional programming (FP) were introduced in [14] and [15],

respectively, where these methods are used to approximate the

MSE function in a linear form. However, all of these works

do not consider hardware impairments and it cannot guarantee

the optimal solution due to the approximation of non-convex

problem. On the other attempts, deep learning based pilot

design has recently been introduced in [16]–[18]. Authors

in [16] considered the power allocation of pilot sequences

to minimize MSE using deep learning approach. However,

non-orthogonal pilot scheme offers better performance than

[16] since it restricts the pilot sequences to be orthogonal. In

[17], [18], deep learning based joint pilot design and channel

estimation was proposed but it does not address the pilot

contamination in multi-cell environment. Therefore, the pilot

design is crucial to obtain the accurate CSI and we develop

a deep learning based pilot design to suppress the effects of

pilot contamination.

Another performance bottleneck of massive MIMO is hard-

ware impairments which worsen the effects of pilot contamina-

tion. Although hardware impairments can be compensated by

using analog and digital signal processing [19], there always

exists a certain amount of RHWIs that causes the distortion

noise and degrades the channel estimation performance [8],

[9]. To address the problem of pilot contamination caused

by non-orthogonal pilot and RHWIs for channel estimation,

LMMSE channel estimator is widely used by balancing be-

tween interference suppression and noise enhancement [20].

Moreover, deep learning based channel estimation with pilot

contamination has recently investigated in [21], [22]. However,

these works as well as LMMSE estimator require the prior

knowledge of channel statistics and RHWIs. In practical sys-

tems, the distortion noise caused by RHWIs is unintended and

inevitable and the prior knowledge about RHWIs cannot be

obtained. Therefore, channel estimation has to be done without

the prior knowledge of RHIWs, which requires a technique to

eliminate the unknown effects of pilot contamination caused

by RHWIs.

It is well-known that deep residual learning can estimate the

unknown noise which subtracts from the noisy observations to

construct a original data [23]. Deep residual learning has been

also investigated for wireless communications in [24], [25].

Authors in [24], [25] model the channel estimation problem

as a denoising problem and develop convolutional neural

network (CNN) based deep residual learning for denoiser to

recover the channel from the noisy received pilot signal. In

this model, denoising block supports the channel estimation by

learning the residual noise from the received signal. However,

they only consider additive white Gaussian noise (AWGN)

but the distortion noise caused by RHWIs is non-Gaussian

noise. According to [26], denoising CNN (DnCNN) cannot

effectively suppress the real noisy data. In order to solve this

problem, adaptive instance normalization denoising network

(AINDNet) was proposed for image processing using transfer

learning [27]. It has the ability to denoise the non-Gaussian

noise by adopting adaptive instance normalization residual

block (AIN-ResBlock). Motivated by this, we adopt the AIN-

ResBlock model for deep residual learning to denoise the non-

Gaussian noise caused by RHWIs.

C. Contributions

To handle the effects of pilot contamination caused by

non-orthogonal pilot sequences and RHWIs, the statistics of

RHWIs and channel between the neighboring cells need to be

known for channel estimator. However, it is difficult to acquire

the statistics of them, and thus channel estimation should

be performed without the knowledge of pilot contamination.

Therefore, we propose the joint pilot design and channel

estimation using deep residual learning to mitigate the effects

of pilot contamination when the prior knowledge cannot be

exploited. To best our knowledge, the joint pilot design and

channel estimator for multi-cell massive MIMO systems with

hardware impairments has not been considered. The major

remarkable contributions of this paper can be summarized as

follows.

• We first propose a deep learning based pilot design to

minimize MSE of LMMSE estimator. Using the derived

MSE result, our proposed neural network is trained by

unsupervised learning that does not require the channel

samples for training. The neural network based pilot

design model is also implemented to the joint pilot design

and channel estimator to cope with the effects of pilot

contamination.

• In addition, we adopt a deep residual learning for channel

estimator to alleviate the distortion noise caused by pilot

contamination. By learning the distortion noise from the

received signal without the prior knowledge, proposed es-

timator can effectively construct the original channel. We

confirm that proposed estimator achieves almost the same

performance with LMMSE estimator and it particularly

outperforms LMMSE with the existence of RHWIs.

• Lastly, we propose a novel joint pilot design and channel

estimator by adopting the transfer learning. The pilot

design model is firstly trained for LMMSE criterion

using unsupervised learning approach without the prior

knowledge of pilot contamination. Using the pre-trained

model, pilot design and channel estimator are jointly

trained to minimize MSE of estimated channel. As a

result, it outperforms the conventional LMMSE estimator

with orthogonal pilot reuse scheme even though the

proposed scheme does not exploit the prior knowledge.

D. Organization

The rests of this paper are organized as follows. Sec. II

shows signal and system models. Sec. III presents the design of

non-orthogonal pilot sequences and Sec. IV proposes channel

estimation using deep residual learning. Based on these results,

joint pilot and channel estimator design is presented in Sec. V.

Sec. VI shows the performance evaluation results and Sec. VII

concludes this paper.
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Cell 1

Cell 3

Cell 2

Pilot contamination

Uplink pilot

Fig. 1: Illustration of multi-cell massive MIMO systems with

pilot contamination

II. SIGNAL AND SYSTEM MODELS

A. System Model

Consider a multi-cell massive MIMO system with !-cells

where each BS is equipped with # antennas and  single-

antenna UEs are deployed in each cell. Assuming TDD

mode, the uplink and downlink channels can be estimated

using uplink pilot sequences due to channel reciprocity. In

addition, block fading is assumed where channels remain static

within coherence time, ) , and the channel varies independently

during different coherence time intervals.

As in Fig. 1, pilot contamination is caused by non-

orthogonal pilot sequences across multi-cells during the uplink

training phase. In addition, pilot sequence is also contaminated

by hardware impairments which are inevitable in practical

wireless systems [2]. For massive MIMO systems, low-cost

radio frequency (RF) hardware component is desirable which

makes the the effects of hardware impairments on the per-

formance worse. Therefore, hardware impairments due to

the low-cost device should be considered, which causes a

mismatch with the desired signals and the transmitted sig-

nals over the channel. Although hardware impairments can

be mitigated with the advanced calibration or compensation

algorithms, there still exists the RHWIs which deteriorate the

link performance. In the existence of RHWIs, the received

signal at BS8 in the 8-th cell for uplink training in order to

estimate CSI can be written as

Y8 =

!∑
9=1

 ∑
:=1

h8, 9 ,:

(√
g?% 9 ,:x

�
9,: + (�UE 9 ,:

)
+ (BS8

+ n8

=
√
g?H8,8

(
P

1
2

8
X�
8 + (�UE8

)

+ √
g?

!∑
9=1
9≠8

H8, 9

(
P

1
2

9
X�
9 + (�UE 9

)
+ (BS8

+ n8 , (1)

where H8, 9 =
[
h8, 9 ,1 , · · · , h8, 9 , 

]
is the channel matrix be-

tween all users in the 9-th cell and the BS8 and each column

h8, 9 ,: =
√
V8, 9 ,:g8, 9 ,: denotes the channel response vector

from the :-th UE in the 9-th cell, denoted as UE 9 ,: , to

the BS8 . In the channel response vector, V8, 9 ,: denotes the

large-scale fading including both path loss and shadowing.1

In addition, g8, 9 ,: ∈ C#×1 denotes the small-scale fading

of which elements are modeled as independent and identical

distributed (i.i.d.) Rayleigh fading, i.e., g8, 9 ,: ∼ CN(0, I# ).
Moreover, P8 = diag

([
%8,1, · · · , %8, 

] )
is the uplink transmit

power matrix where %8,: is the uplink transmit power of UE8,: ,

X8 =
[
x8,1, · · · , x8, 

]
is the collection of pilot sequences where

x8,: ∈ Cg?×1 indicates the pilot sequence with the length

of g? with x�
8,:

x8,: = 1, and n8 ∈ C#×g? is the AWGN

where each column is distributed as CN(0, f2I). It is worthy

noting that the condition of pilot sequences is not restricted to

x�
8,:

x8,:′ = 0, ∀ : ≠ : ′ for the non-orthogonal pilot design.

As shown in (1), the distortion noise incurred by RHWI at

UE and BS in the 8-th cell are denoted as (UE8
∈ Cg?× and

(BS8
∈ C#×g? , respectively. It is revealed that the distortion

noise can be modeled as a Gaussian noise by aggregating the

effects of RHWIs where the variance of distortion noise is

proportional to the signal powers and the channel gain [9]. We

assume that the distortion noise is independent among different

antennas, UEs, and time [8]. Thus, the distortion noise induced

by RHWIs at UE8,: and BS8 can be modeled as

(UE8,:
∼ CN

(
0, X2

UE8,:
%8,: Ig?

)
, (2)

(BS8 ,C
∼ CN ©

«
0, X2

BS8

!∑
9=1

diag
(
H8, 9P 9H

�
8, 9

)ª®
¬
, (3)

where (BS8 ,C
is the C-th column of (BS8

with E
[
(BS8 ,C

(�
BS8 ,C′

]
=

0, ∀C ≠ C′, and XUE8,: and XBS8 denote the proportional

coefficients indicating the level of RHWIs in the transmitter

and receiver, respectively. We note that the level of RHWIs

can be measured by a certain metric such as the error vector

magnitude (EVM) in a practical system. For example, the

EVM at UE8,: is defined as follows [8]:

EVMUE,8,: =

√√√√
E

[
| |(UE8,:

| |2
]

E
[
| |
√
g?%8,:x8,: | |2

] = XUE8,: . (4)

Typically, EVM is often adopted to measure the quality of

transceivers, and 3GPP LTE specifies the EVM requirements

in the range [0.08, 0.175] [28]. However, the larger EVMs

are of the interest in a massive MIMO system because the

relatively low-cost antenna components are taken into account.

We here consider the level of RHWIs in the range [0, 0.2].

B. Conventional LMMSE Channel Estimator

Each BS should acquire the CSI of individual UEs to

perform the advanced receiver techniques. In the channel

estimation phase, each UE transmits its own pilot sequence

1Since the large scale fading changes slower than small-scale fading, we
assume that V8,8,: is known prior at the BS8 and it is available during the
channel estimation phase.
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at the same time and BS corresponding to each UE estimates

the channels using the known pilot sequences from each UE.

In general, the pilot orthogonality is guaranteed with  < g?
whereas the orthogonal pilot sequences need to be shared with

the neighboring cells due to the limited coherence time, which

cannot ensure the orthogonality among all the cells. Hence, the

non-orthogonal pilot design is essential to mitigate the effects

of pilot contamination in multi-cell scenario. When the non-

orthogonal pilot sequences are used, the received signal in (1)

can be rewritten as

Y8 =
√
g?H8,8P

1
2

8
X�
8 + √

g?

!∑
9=1
9≠8

H8, 9P
1
2

9
X�
9

︸                  ︷︷                  ︸
Inter−cell interference

+Ñ8 , (5)

where Ñ8 =
√
g?

∑!
9=1 H8, 9(

�
UE 9

+ (BS8
+ n8 is the distortion

noises caused by RHWIs at UEs and BS. Note that the

second term in (5) is inter-cell interference caused by pilot

contamination. It can be eliminated using the orthogonal

pilot sequences in the different cells but the sufficient pilot

duration should be guaranteed. For given channel realization,

the covariance matrix of Ñ8 can be calculated as

K#̃8
=E[Ñ8Ñ�

8 ]

=g2
?

!∑
9=1

H8, 9�UE 9P 9H
�
8, 9

+ g?X2
BS8

!∑
9=1

diag
(
H8, 9P 9H

�
8, 9

)
+ g?f2I, (6)

where �UE8 = diag
(
[X2

UE8,1
, · · · , X2

UE8, 
]
)
. Due to the RHWI at

UEs, the aggregated distortion noise is represented as colored

noise with covariance matrix, K#̃8
.

To estimate the channel using (5), least square (LS) esti-

mator can be applied such as 1√
g?

Y8X8 (X�
8

X8)−1. It is simple

to implement since it does not require the prior knowledge of

channel statistics. However, the performance of LS estimator

is worse than that of Bayesian estimator such as MMSE

estimator. LMMSE estimator is widely used for channel es-

timation which achieves the optimal performance in terms of

minimizing MSE if Y8 and H8,8 are jointly Gaussian. However,

H8, 9(
�
UE 9

term in (5) has double Gaussian distribution which

makes LMMSE estimator not optimal. On the other hand, it is

difficult to obtain the general MMSE estimator, Ĥ = E[Ĥ|Y],
as a closed-form [29]. As an alternative approach, we adopt

LMMSE estimator which can be derived in a closed form,

which provides better performance than LS estimator.

At the uplink training phase, the channel can be estimated

using LMMSE estimator as

Ĥ8,8 =Y8A8

=
1

√
g?

Y8
©«
!∑
9=1

X 9D8, 9P 9X
�
9 + q8I

ª®
¬
−1

X8P
1
2

8
D8,8 , (7)

where q8 = (∑!
9=1

∑ 
:=1(g?X2

UE, 9 ,:
+ X2

BS,8
)V8, 9 ,:% 9 ,: +f2)/g? ,

A8 is the LMMSE estimator for the 8-th cell, G8, 9 =

[
g8, 9 ,1, · · · , g8, 9 , 

]
, and D8, 9 = diag

(
[V8, 9 ,1, · · · , V8, 9 , ]

)
(i.e.,

H8, 9 = G8, 9D
1/2
8, 9

). In addition, the MSE using LMMSE

estimator can be represented as

MSE8 = #Tr

((
D−1
8,8 + X�

8 B−1
8 X8P8

)−1
)
, (8)

where B8 =
∑!
9=1, 9≠8 X 9D8, 9P 9X

�
9
+ q8I.

Proof: See Appendix A

It is worth noting that (7) can be obtained using the prior

knowledge of channel statistics and RHWIs. However, it is

infeasible to acquire the perfect knowledge of inter-cell large-

scale fading coefficients because it requires the estimation

of (! − 1) coefficients at each BS which has prohibitively

high overhead in massive connectivity [30]. Furthermore, the

exact level of RHWIs is not available due to the imperfect

compensation of hardware impairments. Considering all those

practical limitations, we propose the pilot design and deep

residual learning based channel estimator that does not require

the prior knowledge.

III. DESIGN OF NON-ORTHOGONAL PILOT SEQUENCES

In general, the orthogonal pilot sequences are desirable to

eliminate the inter-cell interference. However, the orthogonal

pilot sequences may not be available for the case of massive

connectivity such as [31] due to the relatively short coherence

time such as  > g? . Even if the orthogonal pilot sequences

are used in a cell, there is pilot contamination issue due to

the shortage of orthogonal pilot sequences between all the

cells. Thus, it is better to design the non-orthogonal pilot

sequences than the reuse of orthogonal pilot sequences in

the different cells to support multi-cell scenario. Therefore,

we need to design the non-orthogonal pilot sequences to

resolve the shortage of orthogonal pilot sequences as well as

to mitigate the effects of pilot contamination.

Based on the derived LMMSE estimator, we need to solve

the pilot design problem given as

min
X8 ,P8

!∑
8=1

#Tr

((
D−1
8,8 + X�

8 B−1
8 X8P8

)−1
)

s.t x�8,:x8,: = 1, ∀ 1 ≤ 8 ≤ !, 1 ≤ : ≤  (9)

%8,: ≤ %max

where %max is the maximum transmit power of UE. By setting

X̄8 = X8P
1/2
8

, (9) can be reformulated as

min
X̄8

!∑
8=1

#Tr

((
D−1
8,8 + X̄�

8 B̄−1
8 X̄8

)−1
)

s.t x̄�8,: x̄8,: ≤ %<0G , ∀ 1 ≤ 8 ≤ !, 1 ≤ : ≤  (10)

where B̄8 =
∑!
9=1, 9≠8 X̄ 9D8, 9 X̄

�
9
+ q8I. Note that (10) is a non-

convex problem and it is difficult to obtain the global optimum.

As in [12], [14], [15], there are some methods to solve (10)

but unfortunately they cannot guarantee the global optimum

by approximating the objective function. Also, it is hard to

implement in practical systems due to the varying level of

RHWIs and their unknown parameter values. Therefore, we

propose the deep learning based non-orthogonal pilot design

for LMMSE estimator to minimize MSE.
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A. Deep Neural Network Based Pilot Design Structure

As in (10), the optimal pilot sequences are different when

the large-scale fading of UEs is changed. Thus, each cell

needs to generate the pilot sequences using the large-scale

fading information of UEs. However, it is difficult to acquire

the information of inter-cell and other cells large-scale fading

coefficients in each cell. Hence, our aim is to design the neural

network to independently generate the pilot sequences using

only local large-scale fading coefficients in each cell.

To address the design of non-orthogonal pilot sequences

minimizing MSE as in (10), we adopt the fully connected

neural network structure as in Fig. 2. The structure of proposed

neural network based pilot design is composed of the input

layer, the " hidden layers, and the output layer. For the input

of pilot generator, its own large-scale fading coefficients are

used to obtain the pilot sequences independently when it is

implemented in on-line. In the <-th hidden layer with =<
nodes, the output of hidden layer can be expressed as

u8,< = 5<(W<u8,<−1 + b<), (11)

where W< ∈ R=<×=<−1 and b< ∈ R=<×1 are the weight matrix

and the bias vector at the <-th hidden layer, respectively, and

5< (·) denotes the function including activation and dropout in

the <-th hidden layer. Without loss of generality, u8,0 denotes

the input of pilot generator, #8,8 = [V8,8,1, · · · , V8,8, ].
After passing through the hidden layers, the output dimen-

sion should be matched to the dimension of pilot sequences

using the fully connected output layer which can be written

as

u8,out = Woutu8," + bout, (12)

where Wout ∈ R2g? ×=" and bout ∈ R2g? ×1 are the output

weights and bias, respectively. Lastly, real-valued output,

u8,out, is reshaped into complex-valued pilot matrix X̃8 ∈
C
g?× . However, the output pilot sequence, X̃8 , does not

satisfy the power constraint in (10). Thus, we also employ

a normalization layer following the fully connected output

layer to satisfy the power constraint. As in [17], projected

gradient descent (PGD) method can be applied to meet the

power constraint when the pilot sequences are mapped into the

weights of neural network. Since the weights of neural network

are not pilot sequences in our proposed model unlike [17], we

utilize a power normalization function in the proposed model

alternatively. The power normalization operates as follows,

5norm (X̃8) = X̃8P̃8 , (13)

where P̃8 is the diagonal matrix and its :-th element is given

as

[P̃8]:,: =
{
1, if ‖x̃8,: ‖2 ≤ %:√
%:/‖x̃8,: ‖, if ‖x̃8,: ‖2 > %:

(14)

where x̃8,: is the :-th column of X̃8 As a result, the pilot

sequences for the 8-th cell can be designed as X̂8 = 5norm (X̃8).

B. Training of Pilot Design

As the input of proposed pilot design model, the local large-

scale fading coefficients with the length of  are used. The

real-valued output of proposed model with the dimension of

2g? is reshaped into complex-valued matrix and its power is

normalized to construct the desired pilot sequences, X̂8 . In the

off-line training phase, we train the parameters of pilot design

model, �?, to minimize the loss function as follows,

�? (�?) =
1

!#)

#)∑
==1

!∑
8=1

Tr

((
D

(?)−1

8,8
+ X̂

(?)�
8

B̄
(?)−1

8
X̂

(?)
8

)−1
)
,

(15)

where �? = {W<, b<,Wout, bout}"<=1
denotes the set of

parameters and #) is the number of training samples. Note

that the loss function in (15) does not require the instantaneous

true channel but only statistics of channel since the loss

function is obtained by averaging over the channel realization.

Hence, there is no need to acquire the full channel information

for training and it has the advantage of training pilot design

model by using the statistics of channel.

After the phase of training pilot design model, the weights

of trained model are distributed to each cell for on-line pilot

generation. Each cell can generate its own pilot sequences

independently using the local large-scale fading even though

the inter-cell large-scale fading cannot be exploited in on-

line phase. Although the proposed pilot design model does

not require the true channel information, all the large-scale

fading coefficients and the level of RHWIs need to be known

to calculate the loss function. Thus, it cannot be directly

applied to real scenario due to the practical limitation of

obtaining the prior knowledge. To address the issue of practical

implementation, we will discuss pilot contamination unaware

pilot design model in Sec. V.

IV. DEEP RESIDUAL LEARNING BASED CHANNEL

ESTIMATOR

It is obvious that interference caused by pilot contamination

deteriorates the channel estimation performance as in (5). It

should be noted that LMMSE estimator is designed using the

statistics of channel (i.e., large-scale fading) and the level of

RHWIs. However, it is challenging to obtain the prior knowl-

edge for LMMSE estimator. Moreover, LMMSE estimator

cannot provide the optimal performance in the existence of

RHWIs, although the prior knowledge can be exploited for the

channel estimator. Therefore, it is infeasible to apply LMMSE

estimator in practical systems. As an alternative approach, we

propose the deep residual learning based channel estimator

to alleviate the effects of pilot contamination caused by non-

orthogonal pilot sequences and RHWIs. In [25], deep residual

learning is exploited to estimate the channel by modeling as

a denoising problem. On the other hand, the distortion noise

caused by pilot contamination is a complicated model rather

than a simple Gaussian model. Thus, we need to adopt another

deep residual learning approach to cope with the non-Gaussian

noise model. In [27], a generalized denoising architecture

based on AIN-ResBlock is proposed, which can learn the
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Fig. 2: The structure of proposed non-orthogonal pilot design for LMMSE estimator

general features of noise. Thus, we adopt the structure of AIN-

ResNet and it can be utilized for eliminating the distortion

noise caused by pilot contamination.

A. Pre-processing

Instead of LMMSE estimator, we utilize LS estimator that

does not require the prior knowledge of channel statistics

and RHWIs. Note that LS estimator can be applied to the

case of g? ≥  . Then, LS estimator can be given by

ALS
8

=
1√
g?

X̄8 (X̄�
8

X̄8)−1 and the estimated channel can be

written as

Ŷ8,8 = Y8A
LS
8

= H8,8 +
!∑
9=1
9≠8

H8, 9 X̄
�
9 ALS

8 + Ñ8A
LS
8

︸                          ︷︷                          ︸
Distortion noise

= H8,8 + Z8 , (16)

where Z8 =
∑!
9=1, 9≠8 H8, 9 X̄

�
9

ALS
8

+ Ñ8A
LS
8

denotes the distor-

tion noise induced by pilot contamination. It is note that (16)

can be regraded as a denoising problem since Ŷ8,8 consists

of the desired channel and noise terms. Therefore, our aim is

to denoise the distortion noise term, Z8 , using deep residual

learning to recover the desired channel.

B. Architecture of Channel Estimator

To suppress the distortion noise, we adopt deep residual

learning suggested in [27] where the neural network consists

of two components: noise estimator and denoiser. Although

it was suggested for image processing, it can be applied for

channel estimator since channel can be treated as an image.

To implement the structure of deep residual learning to multi-

cell massive MIMO systems, we adjust the neural network

architecture by reducing unnecessary modules and blocks. The

whole structure of proposed channel estimator is shown in

Fig. 3 where the proposed channel estimator consists of the

distortion noise level estimator and denoiser.

For the input of deep residual learning, the pre-processed

signal, Ŷ8,8 , is first separated with the real and imaginary parts

(i.e., Re(Ŷ8,8) and Im(Ŷ8,8 )). In addition, we add the local

large-scale fading coefficients, #8,8 , as an input to extract the

features from the pre-processed signal. Note that #8,8 with the

length of  needs to be reshaped into #× matrix to employ

as an input. Typically, the large-scale fading coefficient is the

same over different antennas at a BS. Then, the local large-

scal fading can be expanded as 1# #)8,8 where 1# represents

the all in one column vector with the size of # . Thus, we can

construct an input as Ỹ8,8 = {Re(Ŷ8,8), Im(Ŷ8,8), 1# #)8,8} ∈
R
#× ×3. As in Fig. 3, the distortion noise level estimator

is composed of " convolutional layers with rectified linear

unit (ReLu) activation function, which is used to extract the

features of the distortion noise. For this estimator, we use 64

filters with the size of 3 × 3 × 3 for the first layer to meet

the input size and 64 filters with the size of 3 × 3 × 64,

otherwise. In denoiser block illustrated in Fig. 3, the scaling

factor, "8 ∈ R#× ×2, and shifting factor, $8 ∈ R#× ×2, are

obtained using the output of distortion noise level estimator,

Î8 ∈ R#× ×64. Note that each convolution layer in denoiser

block has two filters with the size of 3×3×64 to estimate the

scaling and shifting factors. Using the obtained scaling and

shifting factors, the estimated distortion noise can be obtained

as

Ẑ8 = "8 ◦ Ŷ8 + $8 , (17)

where ◦ denotes the hadamard product. As a result, the

estimated channel can be obtained by subtracting the pre-

processed signal into the estimated distortion noise given as

Ĥ8 = Ŷ − Ẑ8

= (1 − "8) ◦ H8 + (1 − "8) ◦ Z8 − $8 . (18)

As in (16), the estimation error is affected by the additive

distortion noise term, Z8 . In the conventional approach of deep

residual learning, the distortion noise term is extracted from

the residual learning block and subtracted from the received

signal. However, it cannot perfectly eliminate the distortion

noise and cannot control the scale of estimated channel. Note

that the conventional LMMSE estimator reduces the MSE of
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Fig. 3: The structure of deep residual learning based channel estimator

estimated channel by balancing between noise enhancement

and interference suppression. As in [32], scaling of LS based

estimation can be approximated as LMMSE estimator where

the scaling factor can be calculated as the desired signal

power divided by the received signal power. In other words,

the scaling factor assists to improve the channel estimation

performance by minimizing MSE. Thus, the desired channel

and distortion noise are scaled by (1 − "8) to enhance the

estimation performance. If we set "8 as zero, the proposed

structure would be the same as the conventional deep residual

learning. It is also revealed that the well-trained deep residual

learning is equivalent to LMMSE estimator [25]. Thus, the

proposed channel estimation is also considered as LMMSE

estimator when "8 = 0 for well-trained case. Furthermore,

LMMSE estimator is no longer optimal with the existence of

RHWIs but the proposed structure can provide better perfor-

mance than LMMSE estimator by using the scaling factor to

construct the distortion noise. In addition, we exploit the local

large-scale fading coefficients as the input of distortion noise

level estimator. Since the channel is composed of large-scale

and small-scale fading and the received signal is scaled by

large-scale fading, it affects to estimate the small-scale fading

coefficients. Thus, large-scale fading plays a significant role

to extract the features of distortion noise. Last but not least,

proposed channel estimator does not require the knowledge

of channel statistics and the level of RHWIs. Therefore, each

BS can independently perform channel estimation based on its

own information.

C. Training of Channel Estimator

In the off-line training phase, we have the training data set

for the 8-th cell as {Ŷ(=)
8
, 1# #)8,8 ,H

(=)
8,8

} where Ŷ
(=)
8

and H
(=)
8,8

is

the pre-processed signal for the input of the channel estimator

and the ground truth at the =-th training sample. Also, #
(=)
8,8

is

the local large-scale fading which is known prior. To minimize

the MSE of estimated channel, the loss function of channel

estimator can be written as

�2 (�2) =
1

!#)

#)∑
==1

!∑
8=1

‖H(=)
8,8

− Ĥ
(=)
8,8

‖2
� . (19)

where Θ2 is the set of parameters used in channel estimator

model. After the training phase, the trained model is dis-

tributed to all the cells and the channel estimation performs

independently in each cell at the on-line estimation phase.

V. JOINT PILOT DESIGN AND CHANNEL ESTIMATOR

A. Transfer Learning

As described in (16), the distortion noise is determined

by pilot sequences even though intra-cell interference is

eliminated using LS estimator. Thus, the channel estimation

performance can be further improved when the pilot sequences

are well-designed. We discussed the pilot design problem for

LMMSE estimator in Sec. III, however it is not optimized for

the proposed channel estimator. Hence, the pilot design needs

to be jointly trained with the proposed channel estimator to

achieve better performance whereas it takes a long training

time to converge. For reducing the training time, we adopt

the transfer learning which aims to improve the performance

by exploiting the knowledge of pre-trained models. It has

the advantages of providing better initial points, boosting the

performance, and accelerating the training [33].

The proposed pilot generator is designed to minimize MSE

in (15) but it requires the prior knowledge of inter-cell large-

scale fading and the level of RHWIs. Since the proposed

channel estimator is designed to utilize only knowledge of

local large-scale fading, the pilot generator should be also

performed using the local knowledge. Therefore, we redesign

the loss function for pilot design as

�? (�?) =
1

!#)

#)∑
==1

!∑
8=1

Tr

((
D

(=)−1

8,8
+
g?

f2
X̂

(=)�
8

X̂
(=)
8

)−1
)
.

(20)

Note that B̄
(=)
8

in (15) cannot be utilized due to the unknown

prior knowledge. Therefore, the loss function in (20) does

not reflect the effects of pilot contamination, and thus, we

use it as the initial model for joint pilot design and chan-

nel estimator. Since it has been known that unsupervised

pre-training provides a better generalization [34], pre-trained

model minimizing (20) assists to the training of joint pilot
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design and channel estimator. At the training phase, the pilot

design model using the pre-trained model as the initial points

is correlated with the channel estimator, and thus, it should be

jointly trained to minimize loss in (19). We expect that the pre-

trained pilot design learns the features of LMMSE estimator

which can reduce the lower bound achieved by deep residual

learning based channel estimator and it also provides better

performance in consideration of pilot contamination by using

transfer learning.

B. Complexity Analysis

This subsection presents the computational complexity of

proposed pilot design and channel estimator. In the deep

learning based pilot design, main computational operation

arises from the fully-connected layer as described in Fig. 2. In

the <-th hidden layer with =< hidden nodes, the computation

complexity is given as O(=<−1=<). For pilot design model, we

design the number of hidden nodes, =< as lg? where l is

the scaling parameter. Thus, the total computation complexity

of pilot design can be calculated as

Ctrain
pilot = O

(
#ep#) !

(
=1 +

"∑
<=2

=<−1=< + 2="g? 

))

≃ O
(
#ep#) !(g? )2

)
, (21)

where #ep is the number of epochs in the off-line training. In

the on-line pilot generation phase, the computation complexity

in each cell can be expressed as Ctest
pilot

= O
(
(g? )2

)
.

In CNN structure used for deep residual learning, the

computation complexity of the <-th convolution layer with

the input size of # ×  × =<−1 is given as O(=<−1=<�
2
<# )

where �< denotes the side length of filter and =< denotes the

number of output channels of the <-th convolutional layer.

As shown in Fig. 3, LS estimator for pre-processing requires

O(g?# log2 (g?#)) with inverse fast fourier transform (IFFT)

implementation [25]. Moreover, deep residual learning based

channel estimator is composed of " convolution layers in

the distortion noise level estimator and 2 convolution layers

in denoiser block. Thus, the total computation complexity of

channel estimator is calculated as

�train
ch = O

(
#ep#) # 

(
"∑
<=1

=<−1=<�
2
N,< +

2∑
<′=1

2="�
2
D,<′

))

≃ O
(
#ep#) # 

"∑
<=1

=<−1=<�
2
N,<

)
, (22)

where �N,< and �D,< denote the side length of filter

used in the distortion noise level estimator and denoiser

block, respectively. In the same way, the computational

complexity in on-line estimation phase is given as Ctest
ch

=

O(# ∑"
<=1 =<−1=<�

2
N,<

). It is note that the proposed chan-

nel estimator has the same computational complexity with the

conventional deep residual learning based channel estimator

in [25] if it has the same number of layers.

Lastly, the joint pilot design and channel estimator uti-

lizes the pre-trained pilot design model for transfer learning.

Thus, the overall complexity of training phase is written as
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Fig. 4: An illustration of hexagonal cellular network where

! = 7 and  = 10.

Ctrain
joint

= max(Ctrain
ch

, Ctrain
pilot

). Furthermore, the online prediction

complexity is given by Ctest
joint

= max(Ctest
ch
, Ctest

pilot
).

VI. PERFORMANCE EVALUATION

A. Evaluation Settings

We consider 7 hexagonal cells with 0.5 km inter-site dis-

tance (ISD) and 10 UEs are randomly distributed in each cell

with the BS at the center. It is also assumed that each UE

cannot be closer than 35m to any BS as in Fig. 4. Each BS is

equipped with 100 antennas and each UE transmits the pilot

sequence within the maximum transmit power at 23 dBm. We

also adopt the 3GPP LTE model [35] where the large-scale

fading coefficient [dB] is modeled as

V8, 9 ,: = 128.1 + 37.6 log10 (38, 9 ,: ) + b8, 9 ,: , (23)

where 38, 9 ,: is the distance in km between UE 9 ,: and BS8
and b8, 9 ,: denotes the log-normal shadowing fading with the

standard deviation 8 dB. Moreover, we set the noise power

spectral density and spectrum bandwidth to -169 dBm/Hz and

20 MHz, respectively. In other words, the noise variance, f2,

is given as -96 dBm. For the level of RHWIs, it is assumed

XUE8,: = XBS,8 = X, ∀ 8, : and we set the level of RHWIs

to the range in X2 ∈ [0, 0.22]. For the deep learning based

pilot design and channel estimator, we use Adam optimizer

with the learning rate of 0.0001 and training set and test set

contain 10,000 and 1,000 samples. In addition, 2 hidden layers

with 4g? hidden nodes are implemented for pilot design and

7 convolutional layers for the distortion noise level estimator

in channel estimator are adopted.

B. Evaluation Results

Throughout this section, the proposed pilot design and chan-

nel estimator are compared with the benchmarks as follows:

• Orthogonal pilot scheme: In a fixed set of g? orthogonal

pilot sequences, each cell randomly chooses  orthogonal

pilot sequences out of them.

• Random pilot scheme: Pilot sequences with the length of

g? are randomly generated in each cell.
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• Fractional programming (FP) pilot scheme [15]: To min-

imize the MSE of LMMSE estimator, FP approach is

adopted for generating the non-orthogonal pilot sequences

in each cell.

• CNN based deep residual network (CDRN) channel es-

timator [25]: The distortion noise is estimated using

deep residual learning, which is subtracted from the LS

estimator based pre-processed signal. It is note that the

original structure of CDRN does not exploit the local

large-scale fading to extract the distortion noise.

Figs. 5 and 6 represent the performance of proposed pilot

design with LMMSE estimator in terms of sum of MSEs

at all the cells. We notice that the proposed pilot design

achieves better performance compared to FP pilot scheme.

In particular, as seen in Fig. 5, FP exhibits almost the same

MSE performance with orthogonal pilot scheme but proposed

pilot design outperforms the other schemes in the existence of
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Fig. 7: Comparison of sum of MSEs over different channel

estimator with orthogonal pilot scheme where g? = 10.

RHWIs. Note that the performance of orthogonal pilot scheme

is deteriorated when g? <  since it reuses the orthogonal

pilot sequences within a cell as the limitation of pilot duration.

Thus, the other schemes offer better performance for the case

of g? <  and the proposed pilot design exhibits considerable

performance enhancement. Furthermore, we can confirm that

pilot length does not significantly affect to the estimation

performance under the existence of RHWIs. Thus, it is not

desirable to increase the pilot length to acquire the accurate

channel information.

Fig. 7 compares the different channel estimators with or-

thogonal pilot scheme under the various level of RHWIs.

As in Fig. 7(a), the proposed channel estimator outperforms

LS estimator, which also approaches to the optimal LMMSE

estimator. It implies that the distortion noise is well estimated

and the effects of pilot contamination can be effectively

eliminated by using deep residual learning even if the prior

knowledge of pilot contamination is not exploited. Note that
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channel estimator with orthogonal and proposed pilot scheme

under zero RHWIs.

CDRN with local knowledge exploits the local large-scale

fading as an input of denoiser block to show the effects

of local knowledge. We observe that the local knowledge

can significantly improve the estimation performance since it

assists to extract the features of distortion noise. Furthermore,

proposed channel estimator can slightly improve the estimation

performance by exploiting the scaling factor over non-zero

RHWIs case. In this case, proposed channel estimator also

outperforms LMMSE estimator because LMMSE estimator is

no longer optimal due to the non-Gaussian distortion noise.

Fig. 8 represents the sum of MSEs versus pilot length under

zero RHWIs. For the pilot design, we use the orthogonal

and proposed pilot schemes that is obtained by minimizing

(15) to compare the proposed channel estimator with LS,

LMMSE, and CDRN channel estimator. As illustrated in Fig.

8, proposed channel estimator with orthogonal pilot effectively

eliminates the distortion noise caused by pilot contamination

and the performance of it approaches to that of LMMSE

estimator with orthogonal pilot even though proposed channel

estimator does not exploit the prior knowledge of inter-cell

large-scale fading. More importantly, the joint pilot design

and channel estimator referred to as “Joint design” in Fig.

8 outperforms LMMSE estimator with orthogonal pilot. It

shows that pilot design plays a significant role to suppress the

effects of pilot contamination. Although the aim of pre-trained

pilot design model is to minimize MSE without the prior

knowledge, it assists to improve the estimation performance

by adopting transfer learning. Furthermore, LMMSE with

proposed pilot where proposed pilot scheme exploits the inter-

cell large-scale fading in the training phase is considered as

the lower bound. Thus, there is a gap between LMMSE with

proposed pilot scheme and joint design due to the lack of prior

knowledge.

Fig. 9 illustrates the sum of MSEs with the various level

of RHWIs. LMMSE estimator exploits the prior knowledge
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Fig. 9: The sum of MSEs with the different level of RHWIs

when the proposed estimator is trained with X2
= 0.02 where

g? = 10.

of pilot contamination while the proposed channel estimator

is trained with channel samples when the level of RHWIs

is X2 = 0.02. As seen in Fig. 9, proposed channel estimator

outperforms LMMSE estimator for high level of RHWIs

even though the proposed channel estimator is trained with

X2 = 0.02. However, the performance of proposed channel

estimator with low level of RHWIs is worse than that of

LMMSE estimator. Since it overestimates the distortion noise

when the level of RHWIs is less than 0.02, the desired channel

information is also suppressed by denoising the distortion

noise. It is also noteworthy that the gap between the proposed

pilot and orthogonal pilot schemes with LMMSE estimator is

reduced as the level of RHWIs increases. Furthermore, joint

pilot design and channel estimator slightly enhance the esti-

mation performance under non-zero RHWIs because it does

not exploit the level of RHWIs for pre-trained model. We here

point out that the proposed and LMMSE channel estimators

with orthogonal pilot scheme may provide enough perfor-

mance when the impacts of RHWIs are dominant whereas joint

design can significantly improve the estimation performance

with zero RHWIs as in Fig. 8.

VII. CONCLUSION

In this paper, we propose a deep residual learning based

joint pilot design and channel estimator for massive MIMO

systems under the consideration of hardware impairments. In

particular, we exploit transfer learning for the joint training of

pilot design and channel estimator to suppress the effects of

pilot contamination caused by non-orthogonal pilot sequences

and RHWIs. Based on the derived MSE of LMMSE estimator

under the existence of RHWIs, we develop a unsupervised

learning based pilot design. We also adopt a deep residual

learning for channel estimator to suppress the unknown distor-

tion noises. Numerical simulations demonstrate and verify that

the proposed joint pilot design and channel estimator effec-

tively eliminates the effects of pilot contamination without the
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prior knowledge of it, which outperforms LMMSE estimator

with orthogonal pilot schemes.

APPENDIX A

The LMMSE estimator in (7) with non-orthogonal pilot

sequences and RHWIs can be obtained as [20]

A8 = arg minE
[
‖H8,8 − Ĥ8,8 ‖2

F

]
(24)

where ‖ · ‖F denotes the Frobenius norm. Using the property

of the Frobenius norm, the MSE in (24) can be expressed as

E
[
‖H8,8 − Ĥ8,8 ‖2

F

]
= E

[
Tr

(
(H8,8 − Y8A8)� (H8,8 − Y8A8)

)]
= E

[
Tr(H�

8,8H8,8)
]
− E

[
Tr(A�

8 Y�
8 H8,8)

]
− E

[
Tr(H�

8,8Y8A8)
]
+ E

[
Tr(A�

8 Y�
8 Y8A8)

]
, (25)

where Tr(·) denotes the trace operation. By taking the deriva-

tive of (25) with respect to A8 , the optimal LMMSE estimator

can be obtained as

A8 = E
[
Y�
8 Y8

]−1
E[Y�

8 H8,8] . (26)

In (26), E
[
Y�
8

Y8
]

can be calculated as

E
[
Y�
8 Y8

]
=g?

!∑
9=1

E

[
X 9P

1
2

9
H�
8, 9H8, 9P

1
2

9
X�
9

]
+ E

[
Ñ�
8 Ñ8

]

=g?#

!∑
9=1

X 9P 9D8, 9X
�
9 + 1

g?
E

[
Tr(K#̃8

)
]

I. (27)

Then, by (6), E
[
Tr(K#̃8

)
]

term in (27) can be written as

E
[
Tr(K#̃8

)
]

= g?

!∑
9=1

E

[
Tr

(
H8, 9 (g?�UE, 9 + X2

BS,8I)P 9H
�
8, 9

)]
+ g?#f2

= g?

!∑
9=1

Tr
(
(g?�UE, 9 + X2

BS,8I)P 9E
[
H�
8, 9H8, 9

] )
+ g?#f2

= g?#

!∑
9=1

Tr
(
(g?�UE, 9 + X2

BS,8I)P 9D8, 9
)
+ g?#f2

= g?#

!∑
9=1

 ∑
:=1

(g?X2
UE, 9 ,: + X2

BS,8)V8, 9 ,:% 9 ,: + g?#f2 . (28)

In addition, E
[
Y�
8

H8,8

]
term in (27) can be calculated as

follows using the property of independent channel between

UEs,

E
[
Y�
8 H8,8

]
=
√
g?X8P

1
2

8
E

[
H�
8,8H8,8

]
=
√
g?X8P

1
2

8
D

1
2

8,8
E

[
G�
8,8G8,8

]
D

1
2

8,8

= #
√
g?X8P

1
2

8
D8,8 . (29)

Note that 1
g?
E

[
Tr(K#̃8

)
]

term in (27) is simply expressed as

g?#q8 where q8 = (∑!
9=1

∑ 
:=1 (g?X2

UE, 9 ,:
+ X2

BS,8
)V8, 9 ,:% 9 ,: +

f2)/g? . Then, the LMMSE estimator in (26) is obtained as

A8 =
1

√
g?

©
«
!∑
9=1

X 9D8, 9P 9X
�
9 + q8Iª®¬

−1

X8P
1
2

8
D8,8 . (30)

Using the derived LMMSE estimator, the MSE of the

LMMSE estimator can be represented by substituting (26) into

(25), therefore,

MSE8 =Tr
(
E

[
H�
8,8H8,8

] )
− Tr

(
E

[
H�
8,8Y8

]
E

[
Y�
8 Y8

]−1
E

[
Y�
8 H8,8

] )
. (31)

Note that in (31), E
[
Y�
8

Y8
]

and E
[
Y�
8

H8,8

]
terms are

already obtained in (27) and (29), respectively. As a result,

the MSE can be finally derived as

MSE8

=#Tr(D8,8)

− #Tr
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( !∑
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X 9D8, 9P 9X
�
9 + q8I

)−1

X8P8D
2
8,8

)

=#Tr

((
I − X�

8

( !∑
9=1

X 9D8, 9P 9X
�
9 + q8I

)−1

X8P8D8,8

)
D8,8

)

(0)
=#Tr

((
I + X�

8

( !∑
9=1
9≠8

X 9D8, 9P 9X
�
9 + q8I

)−1

X8P8D8,8

)−1

D8,8

)

=#Tr

((
D−1
8,8 + X�

8

( !∑
9=1
9≠8

X 9D8, 9P 9X
�
9 + q8I

)−1

X8P8

)−1
)

(32)

where (A + BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1 in

(0).
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