
1

A Business Model for Resource Sharing in
Cell-Free UAVs-Assisted Wireless Networks

Yan Kyaw Tun, Yu Min Park, Tra Huong Thi Le, Zhu Han, Fellow, IEEE,
and Choong Seon Hong, Senior Member, IEEE

Abstract—Unmanned aerial vehicles (UAVs) are widely de-
ployed to enhance the wireless network capacity and to provide
communication services to mobile users beyond the infrastructure
coverage. Recently, with the help of a promising technology
called network virtualization, multiple service providers (SPs)
can share the infrastructures and wireless resources owned
by the mobile network operators (MNOs). Then, they provide
specific services to their mobile users using the resources obtained
from MNOs. However, wireless resource sharing among SPs is
challenging as each SP wants to maximize their utility/profit
selfishly while satisfying the QoS requirement of their mobile
users. Therefore, in this paper, we propose joint user association
and wireless resource sharing problem in the cell-free UAVs-
assisted wireless networks with the objective of maximizing the
total network utility of the SPs while ensuring QoS constraints
of their mobile users and the resource constraints of the UAVs
deployed by MNOs. To solve the proposed mixed-integer non-
convex problem, we decompose the proposed problem into two
subproblems: users association, and resource sharing problems.
Then, a two-sided matching algorithm is deployed in order to
solve users association problem. We further deploy the whale
optimization and Lagrangian relaxation algorithms to solve the
resource sharing problem. Finally, extensive numerical results
are provided in order to show the effectiveness of our proposed
algorithm.

Index Terms—Two-sided matching game, whale optimization,
Lagrangian relaxation, mobile network operators (MNOs), un-
manned aerial vehicles (UAVs), service providers (SPs), user
association, resource sharing.

I. INTRODUCTION

W ITH the help of the wireless network virtualization
technology, multiple services providers (SPs) can pro-

vide specific services (e.g., messaging, video streaming, online
gaming, and so on) to their mobile users by sharing wireless
communication infrastructures (e.g., terrestrial base stations
(BSs) including macro BSs and small-cell BSs, access points,
cell sites, etc.,) and wireless resources, such as bandwidth
and power, owned by the mobile network operators (MNOs)
[1] [2]. As a result, SPs can reduce their capital expenditure
(CAPEX) and operational expenditure (OPEX). However, it
is challenging to efficiently share wireless resources among
SPs without interfering each others because of selfishness
of SPs. Therefore, in [3], authors have proposed an efficient
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two-level resource sharing framework in the wireless resource
virtualization. In the upper-level, an MNO efficiently share
its wireless resources, i.e., bandwidth and power to multiple
SPs while ensuring inter-isolation among SPs, and then, in
the lower-level, SPs allocates the resource it received from
the MNO to its mobile users efficiently. Finally, authors
deployed generalized Kelly mechanism and Karush-Kuhn-
Tucker (KKT) conditions in order to address both upper-level
and lower-level problems.

According to [4], only 63.2% of world’s population can get
internet access till Oct 2020, so the remaining 36.8% are
out of the internet coverage. Consequently, researchers from
both academic and industry are avid to deploy unmanned aerial
vehicles (UAVs) such as drones, balloons, and airships as com-
munication and computation platforms in order to bring one-
third of the world’s population back into the Internet coverage
and increase the global connectivity. Due to the flexibility
and cost effective deployment, UAVs are also disposed in
the temporary events such as concerts and football matches,
etc., to reduce the traffic congestion at the existing nearby
terrestrial base stations (BSs). Moreover, UAVs can be de-
ployed in order to provide Internet services to the users in the
disaster areas where the existing terrestrial networks already
collapsed, and to perform search and rescue operations [5]
[6]. Though UAVs deployment is a solution to extend network
coverage of the existing terrestrial networks, there are several
challenging issues, e.g., optimal UAVs trajectory and UAVs-
users association in order to get good air-to-ground channel
quality, efficient communication resources (e.g., subchannels,
and power) allocation, and so on [7] [8]. The work in [9]
proposed an efficient UAV trajectory optimization, communi-
cation and computation resources allocation framework in the
UAV-assisted multi-access edge computing with the aim of
minimizing the energy consumption of both UAV and mobile
devices.

A. Challenges and Research Contributions

When we consider resource sharing amongst SPs in the
UAVs-assisted wireless networks, it is challenging to ensure
efficient resource (i.e., channels) utilization, inter-SP isolation
(i.e., no interference among SPs), and intra-SP isolation (i.e.,
no interference among users in the same SP). Furthermore,
unlike terrestrial BSs, UAVs have limited power. Thus, effi-
cient power management is also a significant challenge. To
address the above-mentioned challenging issues, in this work,
we develop an efficient user association and resource sharing
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framework in the cell-free UAVs-assisted wireless networks
by applying a matching algorithm and a distributed iterative
algorithm based on joint whale optimization and Lagrangian
relaxation approach. The summary of main contribution of this
paper is as follows:
• Firstly, we formulate a joint user association and wireless

resource sharing problem in the cell-free UAVs networks.
Here, we maximize the total utility/profit of SPs while
satisfying the QoS constraints of mobile users, and the
resource constraints of the UAVs deployed by the MNOs.
Then, we notice that the formulated problem is a mixed
integer, non-convex problem, which is NP-hard.

• We next decompose the formulated problem into two sub-
problems: users association and resource sharing prob-
lems. Then, we deploy two-sided matching algorithm in
order to solve the user association problem. Furthermore,
whale optimization and Lagrangian relaxation methods
are used to address the resource sharing problem.

• Finally, we perform extensive simulation in order to
demonstrate our proposed solution approach outperforms
other benchmark schemes, such as Random channels
with optimal power (RCOP), Equal channels with op-
timal power (ECOP), Random power with optimal chan-
nels (RPOC), and Equal power with optimal channels
(EPOC), and existing algorithms, namely, Generalized
Kelly Mechanism (GKM), Kelly Mechanism (KM), and
Equal Sharing (ES). Simulation results show that the total
network utility under our proposed algorithm is 2.003%,
2.06%, and 8.15% higher than that of the GKM, KM,
and ES, respectively.

B. Organization

The rest of this paper is structured as follows: related
works are summarized in Section II. Section III represents the
proposed system model and problem formulation. The pro-
posed solution approaches in order to address the formulated
problem are presented in Section IV. Section V demonstrates
the numerical results. Finally, we conclude the paper in Section
VI.

II. RELATED WORKS

A. Virtualized Wireless Networks

In [10], authors have proposed resource sharing framework
in virtualized wireless networks where they modeled the
interaction between SPs MNO as a stochastic game. In each
resource allocation round, SPs bid for the wireless resources
and MNO decides the winning bids. Then, the Vickrey-Clarke-
Groves (VCG) mechanism is deployed in order to decide the
market clearing price of the resource for the winning SPs. A
three-layer game based resource sharing framework for the
end users (UEs), mobile virtual network operators (MVNOs),
and wireless infrastructure providers (WIPs) in the virtualized
wireless networks has been discussed in [11]. Here, WIPs
divide its own radio frequency into multiple slices and lease
to MVNOs. Then, MVNOs allow their mobile users to use
their subleased frequency slices. In the proposed game, both
WIPs and MVNOs choose the best strategies in order to

maximize their profits. Furthermore, the work [12] studied the
hierarchical matching game based resource sharing framework
in the wireless network virtualization. In [13], authors has
proposed the user clustering, and resource, i.e., resource blocks
and power allocation problem in virtualized wireless networks
by adopting the non-orthogonal multiple access (NOMA)
scheme. Next, the two-sided matching algorithm is applied to
cluster the users, and then, the Lagrangian relaxation method is
deployed to solve the resource allocation problem. The authors
in [14] studied the dynamic radio resource blocks allocation
problem in the virtualized multi-cell networks. Then, the fast
centralized and heuristic algorithm was proposed to solve the
formulated problem. In [15], authors proposed the market
driven resource allocation problem in the virtualized wireless
networks with the aim of maximizing the revenue of the MNOs
while satisfying the QoS constraints of the mobile users. Here,
authors considered the mobility of the users and it follows the
Poisson point process (PPP). Finally, the matching algorithm
is applied in order to solve the proposed problem. Further-
more, a distributed three-sided matching based radio resource
allocation framework in the virtualized wireless networks is
proposed in [16]. In [17], authors studied the hierarchical
resource scheduling mechanism in the multi-service networks
with the help of wireless network virtualization technology.
Here, they divided resource scheduling problem into two-
dimension-time scale: large time scale, and small time scale,
where inter-slice resource scheduling happens in large time
scale and intra-slice resource allocation is in small time scale.

B. UAV-Assisted Wireless Networks

The work in [18] investigated secure data transmission in
multi-UAV assisted wireless networks. Moreover, an efficient
iterative algorithm has been deployed to solve the formulated
problem. A novel framework for joint UAVs’ trajectory and
power control with the aim of maximizing the sum rate of
the mobile users while satisfying the QoS requirement of
mobile users has been proposed in [19]. Then, a three-step
solution approach based on the multi-agent Q-learning has
been proposed in order to get the mobility of the mobile users
and UAVs’ trajectory. In [20], authors proposed the machine
learning based efficient UAVs deployment in order to offload
the traffic load of the terrestrial BSs. After that, a contract
theory is deployed in order to reinforce the truthful information
exchange between the UAVs and ground BSs. The work
[21] investigated the joint UAVs deployment, UAVs-users
association, wireless backhaul resource allocation problem in
the multi-UAV-assisted wireless networks. In [22], authors
considered UAV flight time minimization problem in the UAV-
assisted sensor network in which UAV collects sensing data
from the set of sensor nodes. Moreover, the work of [23]
considered joint sensor scheduling scheme, power allocation,
UAV trajectory optimization problem in the sensor network
with the aim of minimizing the total energy consumption of
the UAV. Then, they applied the block coordinate descent
method and successive convex approximation approach in
order to solve the problem. Analysis of the outage probability
for blockage environment at the millimeter wave (mmWave)
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Fig. 1: Illustration of our system model.

band in UAV-aided wireless networks has been discussed in
[24]. The authors in [25] proposed the dynamic interference
management and sum rate maximization problem in the inte-
grated air-ground network where UAVs are deployed as a relay
between ground BSs and mobile users. In [26], authors have
considered softwarization in the UAV-aided wireless networks.
The work in [27] proposed network slicing architecture and
lightweight virtualization in the UAV networks. In [28], the
authors introduced software-define networking (SDN) frame-
work to ensure reliable and efficient communication in the
UAV-assisted wireless networks with intermittent connectivity
and changing network topology according to UAV movement.

All existing studies considered resource sharing amongst
SPs in virtualized wireless networks and UAVs-assisted wire-
less networks independently. Different from existing studies, in
this paper, we jointly consider wireless network virtualization
technology in UAVs-assisted wireless networks. Then, we for-
mulate the SPs’ utility maximization problem in the considered
network model by jointly optimizing the users association and
resource sharing.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Overview System Model

As illustrated in Fig. 1, we consider a UAV-assisted wireless
network where a set M of M SPs rent wireless resources
(i.e., sub-channel and power) from a set of MNOs, N =
{1, 2, . . . , N} with the help of wireless network virtualization
technology. For simplicity, we consider each MNO deploys
a single UAV embedded with the communication chips to
provide connectivity out of the coverage area of the terrestrial
network. The UAVs installed by the MNOs are operating on
the different frequency bands, and therefore, there will not
be inter-cells interference among UAVs. Moreover, following
the orthogonal frequency division multiple access (OFDMA)
scheme, the total available bandwidth W at each UAV de-
ployed by MVNO n ∈ N is further divided into a set of
subchannels, Bn = {1, 2, . . . , Bn} with the carrier frequency
of ω per subchannel. Therefore, B , ∪|N |n=1Bn is the total
number of subchannels available in the considered network
system. Each SP m ∈M is providing specific services such as
messaging, video streaming, online gaming, augmented reality
(AR) and virtual reality (VR) services, and so on, to their
mobile users, Um = {1, 2, . . . , Um} with the help of radio

TABLE I: Summary of Notations.

Notation Definition
M Set of SPs, |M| =M
N Set of MNOs, |N | = N
W Total bandwidth at each UAV
Bn Set of available subchannels, |Bm| = Bm at the UAV

UAV deployed by MNO n ∈ N
B Set of available subchannels, |B| = B in the considered

network
Um Set of mobile users of SP m ∈ M, |Um| = Um

U Total number of mobile users in the considered network
omu Location of mobile user u ∈ U of SP m ∈ M
cn Location of the UAV deployed by MNO n ∈ N
A UAV-user association matrix
anmu UAV-user association variable
X Subchannels assignment matrix
xnb
mu Subchannels assignment variable
pnb
mu transmit power the UAV deployed by MNO n ∈ N on

subchannel b ∈ B assigned to user u of SPm ∈ M
dnmu Distance between mobile user u ∈ U of SP m ∈ M

and the UAV deployed by MNO n ∈ N
g0 Channel gain at the reference distance d0 = 1 m
gnb
mu Channel gain of the mobile user u ∈ U of

SP m ∈ M
γnb
mu Received SINR of mobile user u ∈ U of SP m ∈ M on

subchannel b ∈ B of the UAV deployed by MNO n ∈ N
α Path loss exponent
ω Carrier frequency of each subchannel
Rnb

mu Achievable data rate of the mobile user u ∈ U of SP
m ∈ M on subchannel b ∈ B of the UAV deployed
by MNO n ∈ N

Rmin
mu Minimum data rate requirement of mobile user u ∈ U

of SP m ∈ M
Um Network utility of SP m ∈ M
URev
m Revenue of the SP m ∈ M

UCost
m Total cost of the SP m ∈ M

δum The payment (unit price per Mbps) of mobile user u ∈ U
to SP m ∈ M

βb
n Unit price per subchannel set by the MNO n ∈ N
θn Unit price per a unit of transmit power set by the MNO

n ∈ N

resources from MNOs. As a result, U , ∪|M |m=1Um is the total
number of users in the system.

B. UAV-Assisted Wireless Communication Model

The UAVs deployed by MVNOs are hovering at the fixed
location over the users of the SPs in order to provide wireless
communication support. Let omu = [xmu , y

m
u ]T and cn =

[xn, yn, hn]
T be the horizontal coordinate of the mobile user

u ∈ U of SP m ∈ M and the location of the UAV installed
by the MNO n ∈ N , respectively.

Users Association. Let A ∈ R|U|×|N| be association matrix
for all users |U| in the system over all UAVs deployed by |N |
MNOs. Then, we can describe each element of association
matrix as follows:

anmu =


1, if user u of SP m is associated to the UAV

deployed by MNO n,

0, otherwise.
(1)

In this work, we assume that the user of each SP can be
associated with at most one UAV, i.e.,
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N∑
n=1

anmu ≤ 1,∀u ∈ U ,∀m ∈M. (2)

Subchannels Assignment. Let X ∈ R|U|×(|N |×|B|) be
the subchannel assignment matrix for all users U over all
subchannels |B| of all UAVs deployed by the |N | MNOs.
Then, the element of the subchannels assignment matrix can
be introduced as follows:

xnbmu =


1, if user u of SP m is assigned to subchannel b

of UAV deployed by MNO n,

0, otherwise.
(3)

We also consider that each subchannel cannot can be assigned
to more than one mobile user, i.e.,

M∑
m=1

Um∑
u=1

xnbmu ≤ 1,∀b ∈ B,∀n ∈ N . (4)

Downlink Tranmission Rate. The downlink received signal
to noise ratio (SNR) of user u of SP m on subchannel b of
the UAV deployed by MNO n as follows:

γnbmu =
pnbmug

nb
mu

σ2
,∀u ∈ U ,∀m ∈M,∀b ∈ B,∀n ∈ N , (5)

where pnbmu and gnbmu are the channel gain and the transmit
power of the UAV deployed by MNO n on subchannel b
assigned to user u of SP m, respectively, and σ2 is additive
Gaussian noise power. Denote P ∈ R|U|×(|N |×|B|) is the
transmit power matrix of the UAVs deployed by |N | MNOs.
In this work, we consider that the downlink data transmission
from UAV to user is dominated by the line-of-sight (LoS)
link, moreover, the free-space path loss model is adopted.
Therefore, the achievable channel gain between UAV deployed
by MNO n and user u of SP m assigned to subchannel b as
follows:

gnbmu =
g0

(dnmu)
α
,∀u ∈ U ,∀m ∈M,∀b ∈ B,∀n ∈ N , (6)

where g0 is the channel gain at the reference distance d0 = 1
m, α is the pass loss exponent. dnmu is the distance between
user u of SP m and UAV of MNO n and it is as follows:

dnmu =
√
(h2n + ||omu − cn||2),∀u ∈ U ,∀m ∈M,∀n ∈ N .

(7)
Finally, we can write the achievable data rate of user u of

SP m assigned to subchannel b at the UAV of MNO n as
follows:

Rnbmu = ω log2(1+γ
nb
mu),∀u ∈ U ,∀m ∈M,∀b ∈ B,∀n ∈ N .

(8)
QoS Requirement. The achievable downlink transmission

of each user has to be higher than its minimum rate re-
quirement. Therefore, by mathematically, we can express the

required QoS constraint of user u of SP m assigned on
subchannel b of the UAV deployed by MNO n as follows:

N∑
n=1

Bn∑
b=1

anmux
nb
muR

nb
mu ≥ Rmin

mu,∀u ∈ U ,∀m ∈M, (9)

where Rmin
mu is the minimum required data rate of user u of

SP m.

Network Utility Function. Let Um(A,X,P) be network
utility function of SP m in this UAV-assisted wireless network
and we can express as follows:

Um(A,X,P) = URev
m (A,X,P)− UCost

m (A,X,P),∀m ∈M,
(10)

where URev
m (A,X,P) is the total revenue of SP m from its

mobile users Um, i.e.,

URev
m (A,X,P) =

N∑
n=1

Bn∑
b=1

Um∑
u=1

δuma
n
mux

nb
muR

nb
mu,∀m ∈M,

(11)
where δum is the payment (unit price per Mbps) of the mobile
user u to SP m. Then, UCost

m (A,X,P) is total cost that SP
m needs to pay to the MNOs for leasing wireless resources,
subchannels and transmit power, i.e.,

UCost
m (A,X,P) =

N∑
n=1

Bn∑
b=1

βbn

Um∑
u=1

anmux
nb
mu +

N∑
n=1

θn

Bn∑
b=1

Um∑
u=1

anmup
nb
mu,∀m ∈M,

(12)

where βbn and θn are the unit price per subchannel and transmit
power set by MNO n.

C. Problem Formulation

In this subsection, we will present the detailed problem
formulation of the proposed system model. The main objective
of this work is to maximize sum of the utility of SPs under
the given price of the resources (i.e., subchannels and power)
while satisfying the QoS requirement of their mobile users.
Therefore, we can pose our optimization problem formally as
follows:
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P: maximize
A,X, P

M∑
m=1

Um(A,X,P) (13a)

subject to

N∑
n=1

Bn∑
b=1

anmux
nb
muR

nb
mu ≥ Rmin

mu,∀u,∀m ∈M,

(13b)
N∑
n=1

anmu ≤ 1, ∀u ∈ U ,∀m ∈M,

(13c)
M∑
m=1

Um∑
u=1

anmu ≤ Qn, ∀n ∈ N , (13d)

M∑
m=1

Um∑
u=1

xnbmu ≤ 1, ∀b ∈ B,∀n ∈ N ,

(13e)
Bn∑
b=1

M∑
m=1

Um∑
u=1

xnbmup
nb
mu ≤ Pmax

n , ∀n ∈ N ,

(13f)

0 ≤ pnbmu ≤ Pmax
n ,∀u ∈ U ,∀m ∈M,∀b ∈ B,

(13g)
anmu ∈ {0, 1}, ∀u ∈ U ,∀m ∈M,∀n ∈ N ,

(13h)

xnbmu ∈ {0, 1},∀u ∈ U ,∀m ∈M,∀n ∈ N ,
(13i)

where constraint (13b) ensures the QoS constraint of each
mobile user of each SP, (13c) presents that each mobile
user can associate with at most one UAV, (13d) ensures that
each UAV serves at most Qn users in the network, (13e)
demonstrates a sub-channel of each UAV cannot be assigned
to more than one mobile user, (13f) and (13g) assure the total
transmit power of the UAV on the channels to the users of
SPs have to be less than the maximum transmit power of the
UAV. Finally, (13h) and (13i) are the binary constraints of the
UAV-user association and subchannel assignment.

IV. PROPOSED SOLUTION APPROACHES FOR
FORMULATED PROBLEM

We can see from (13) that our formulated problem is a
mixed-integer non-linear (MINL) problem. In other words, it
is an NP-hard problem, and therefore, it is not possible to get
solution within polynomial time. Hence, we decompose the
problem into two subproblems: 1) users association problem
and 2) resource sharing problem in the following subsections.

A. Two-Sided Matching-Based Users Association

We assume that the total transmit power of the UAV
deployed by MNO n ∈ N is divided equally among the set
of subchannels Bn. Then, the user u ∈ U is presumed to be
oblivious to all the subchannels provided by that UAV. This
allows the power and subchannel assignment variables to be
ignored from our proposed problem in (13). Therefore, we can

reformulate the problem in (13) as a users association problem
and it is as follows:

P1: maximize
A

M∑
m=1

Um(A) (14a)

subject to

N∑
n=1

Bn∑
b=1

anmuR
nb
mu ≥ Rmin

mu,∀u,∀m ∈M,

(14b)
N∑
n=1

anmu ≤ 1, ∀u ∈ U ,∀m ∈M,

(14c)
M∑
m=1

Um∑
u=1

anmu ≤ Qn, ∀n ∈ N , (14d)

anmu ∈ {0, 1}, ∀u ∈ U ,∀m ∈M,∀n ∈ N .
(14e)

Then, in order to get the tractable solution, the users
association problem in (14) can be modeled as a two-sided
matching game [29]. In this game, there are two disjoint sets
of players: the set of users U , and the set of UAV N . In our
proposed matching game, each user u ∈ U can be associated
with at most one UAV. Though, each UAV can serve a certain
number of users, which depends on the number of available
subchannels and the maximum number of allowable users Qn

at UAV n ∈ N . Therefore, our model refers to a one-to-many
matching given by the tuple (U ,N , Qn,�U ,�N ) where
�U, {�um}um∈U and �N, {�n}n∈N states the set
of preference relations between users of SPs and UAVs.
Definition 1. A matching ϑ is defined as the function from
the set U ∪ N into the set of U ∪ N such that:

(1) |ϑ(um)| ≤ 1 and ϑ(um) ∈ N ,
(2) |ϑ(n)| ≤ Qn and ϑ(n) ∈ 2|Q

n| ∪ ∅,
(3) ϑ(um) = n if and only if um is in ϑ(n),

where |ϑ(·)| represents the cardinality of the matching
outcome ϑ(·). Moreover, the first two conditions of the
above-mentioned definition satisfy constraints (14c) and
(14d).

Preference Lists of Players. Each user um ∈ U of SP m ∈
M calculates the achievable utility and data rate with each
UAV n ∈ N , then, sorts UAVs which have data rate greater
than the required data rate in a decreasing order in order to
construct his/her preference list. Let Pum be the preference
list of SP’s user um, and it can be demonstrated by the vector
of utility function. Mathematically, it is as follows:

Tum(n) = [Unmum = URev
mum − U

Cost
mum ]n∈N ,Rnbmu≥Rmin

mu
. (15)

On this spot, the user of each SP desires in order to associate
with the UAV, and so it can achieve the maximum utility
function. For instance, n �um n′ represents that mobile user
um of SP m ∈M prefers to associate with UAV n as opposed
to UAV n′, i.e., Tum(n) > Tum(n

′). Similarly, to construct the
preference profile Pn, each UAV n determines the achievable
data rate with each SP’s user um and ranks in a decreasing
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order. The preference of UAV n can be expressed as the vector
of its utility function and it is as follows:

Tn(um) =
[
Rnmum = ω log2(1 + γnbmum)

]
um∈U

, (16)

Our goal for the formulated two-sided matching game
described is to find a stable matching, which is a key solution
concept. To get the stable matching, there should be no block-
ing pair. Therefore, we formally define the stable matching of
the formulated two-sided matching game as follows:

Definition 2. A matching ϑ is stable if there is no
blocking pair (um, n), where a pair (um, n) is blocking when
um /∈ ϑ(n), n /∈ ϑ(um), and n �um ϑ(n) and um �n ϑ(um).

Algorithm 1 describes the matching-based users association
problem. The users association problem is formulated as a
many-to-one matching game, as previously stated. To that end,
our objective is to derive a stable matching, which is the
outcome of deferred-acceptance algorithm [30]. The process
starts with building preference profiles, i.e., Pum for user um
and Pn for UAV n, while in each iteration, each user um opt
to highest preferred UAV for association, as presented in line
5 of Algorithm 1. On receiving the proposal from user um,
each UAV n temporarily accepts Qn proposals of users having
the highest ranked in UAV n’s preference list and rejects
the other lower ranked proposals as shown by lines 6–8 of
Algorithm 1. However, if UAV n prefers the new proposal to
the current one, as demonstrated by lines 9-12 of Algorithm 1,
it will reject the existing proposal and accept the new one. The
users with least preference profile u′m′ ∈ Sn[t] get rejected
and dropped from the preference list of each UAV Pn[t].
Correspondingly, these users also extract UAV n from their
preference list Pu′

m′ [t] (line 13-15). The iterative approach of
rejection, and deference (line 13-15) continues unless all users
have received a satisfactory proposal, at which stage a stable
solution to the users association problem is obtained. Finally,
the output of the many-to-one matching ϑ, is transformed to
drive the users association vector A for the problem (line 17),
i.e., ϑ → A. The complexity of two-sided matching game
based users association algorithm depends on the required
number of accepting/rejecting decisions to attain the stable
matching ϑ. In each iteration of Algorithm 1, each user in the
network proposes to associate with the most preferred UAV in
their preference list, and then the UAV determines whether to
accept or reject the proposal. Here, the maximum size of the
preference list of each user is |N |. As a result, Algorithm 1
converges to the stable matching in O(|U ×N|) iterations, in
any case of a matching problem [31], where U and N are the
number of users and UAVs in the considered network.

B. Iterative Algorithm-Based Resource Sharing

At the fixed users association, we can rewrite the resource
sharing problem amongst SPs’ users as follows:

Algorithm 1 Two-Sided Matching-Game Based Users Asso-
ciation

1: Input: Pum , Pn, ∀um ∈ U ,∀n ∈ N
2: Initialize: t = 0; ϑ[0] , {ϑ(n)[0], ϑ(um)[0]}∀n,um = ∅
Sn[0] = ∅, Pum [0] = Pum ,∀um ∈ U , Pn[0] = Pn,∀n ∈
N ,

3: repeat
4: t← t+ 1;
5: for um ∈ U , choose n ∈ N depending on the

preference list Pum [t] do;
6: while um /∈ ϑ(n)[t] do
7: if |ϑ(n)[t]| < Qn then
8: ϑ(n)[t] = ϑ(n)[t] ∪ um;
9: else if |ϑ(n)[t]| = Qn and um �n ϑ(n)[t] then

10: ϑ(n)[t]← ϑ(n)[t] \ u′m′ ;
11: ϑ(n)[t] = ϑ(n)[t] ∪ um;
12: Sn[t] = {u′m′ ∈ ϑ(n)[t]|um �n u′m′} ;
13: for s ∈ Sn[t]do;
14: Ps[t]← Ps[t] \ n ;
15: Pn[t]← Pn[t] \ s ;
16: until ϑ[t] = ϑ[t− 1];
17: Users Association: ϑ→ A.

P2: maximize
X,P

M∑
m=1

Um(X,P) (17a)

subject to

N∑
n=1

Bn∑
b=1

xnbmuR
nb
mu ≥ Rmin

mu,∀u,∀m ∈M,

(17b)
M∑
m=1

Um∑
u=1

xnbmu ≤ 1, ∀b ∈ B,∀n ∈ N ,

(17c)
Bn∑
b=1

M∑
m=1

Um∑
u=1

xnbmup
nb
mu ≤ Pmax

n , ∀n ∈ N ,

(17d)

0 ≤ pnbmu ≤ Pmax
n ,∀u ∈ U ,∀m ∈M,∀b ∈ B,

(17e)

xnbmu ∈ {0, 1},∀u ∈ U ,∀m ∈M,∀n ∈ N ,
(17f)

From (15), we observe that the variables X , and P are
coupling in both objective function and constraints. Moreover,
(15f) is a binary variable. Therefore, our proposed resource
sharing problem in (15) is MINL problem, i.e., non-convex
problem and it is challenging to solve. Even though the
problem is a non-convex problem, at the given subchannels
assignment scheme, the power allocation problem becomes
convex, and vice versa. Therefore, we decompose the resource
sharing problem into two subproblems: subchannels assign-
ment problem and power allocation problem. Then, the two
subproblems are solved iteratively.
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C. Whale Optimization Based Subchannels Assignment at
Given Power Allocation

At a given power allocation, we can formulate subchannls
assignment problem as follows:

P21: maximize
X

M∑
m=1

Um(X) (18a)

subject to

N∑
n=1

Bn∑
b=1

xnbmuR
nb
mu ≥ Rmin

mu,∀u,∀m ∈M,

(18b)
M∑
m=1

Um∑
u=1

xnbmu ≤ 1, ∀b ∈ B,∀n ∈ N ,

(18c)

xnbmu ∈ {0, 1},∀u ∈ U ,∀m ∈M,∀n ∈ N .
(18d)

The decomposed problem in (18) is a non-convex and com-
binatorial problem. Thus, to solve the decomposed problem
(18), we deploy whale optimization algorithm (WOA) [32].
WOA is a meta-heuristic algorithm inspired by the prey hunt-
ing behavior of whales. WOA features adaptive mechanisms
that balance this algorithm’s exploration and exploitation
characteristics. In comparison to other heuristic methods, this
enhances the likelihood of avoiding local optimum solutions.
Furthermore, as WOA is simple to use and adaptable, it may
be used to a wide range of optimization problems. The whale’s
behavior is divided into three, and according to the behavior,
we can approach the optimal root.

Encircling Prey. When whales perform in this action, they
first evaluate their prey’s position before totally engulfing
them. The current best whale is thought to be quite close to the
optimal solution. The position of the other whales is updated
based on the best whale’s position. The following equations
can describe the behavior:

~D =
∣∣∣~C · −→X∗(t)− ~X(t)

∣∣∣ , (19)

~X(t+ 1) = b
−→
X∗(t)− ~A · ~Dc, (20)

where t is the current iteration, |·| is the absolute value, b·c
is the floor function for the discrete space of the channel,
and · denotes the element-wise multiplication. ~C = 2 · ~r and
~A = 2~a · ~r − ~a are coefficient vectors in which ~a is linearly
decreased from 2 to 0 over iterations, and ~r is a random
vector in the range [0, 1].

Bubble-Net Attacking Method. After that, a spiral path
with a helix shape is formed to simulate the movement of
humpback whales, which can be expressed as follows:

~D′ =
∣∣∣−→X∗(t)− ~X(t)

∣∣∣ , (21)

~X(t+ 1) = b
−→
D′ · ebl · cos (2πl) +

−→
X∗(t)c, (22)

Algorithm 2 WOA based Subchannels Assignment at Given
Power Allocation

1: Input: the current subchannel assignment X0, the given
power allocation P .

2: Initialize: the whale population Xi, i = {1, ...,K},
iteration t = 1, maximum number of iterations Imax.

3: Calculate the fitness of the search agents Xi by (25) and
set the best search agent

−→
X∗(0).

4: repeat
5: for k ← 1 to K (the number of whales) do
6: Update a,A,C, l and p.
7: if p < 0.5 then
8: if |A| < 1 then
9: Update ~D by (19) and ~X by (20).

10: else
11: Select a random

−−−→
Xrand and update ~D by (23).

12: Update the position ~X by (24).
13: end if
14: else
15: Update ~D by (21) and ~X by (22).
16: end if
17: end for
18: Calculate the fitness of each search agent by (25).
19: Update X∗(t) of the best search agent.
20: t← t+ 1
21: until t > Imax

22: Output: The best Subchannels Assignment X∗.

where b is a constant value used to determine the logarithmic
spiral’s shape, and l is a random number in the range [−1, 1].

Search for Prey. The exploration is utilized to explore the
global optimum by randomly selecting a position vector Xrand

from the present position to create the random search for the
prey. The following is a description of the model:

~D =
∣∣∣~C · −−−→Xrand(t)− ~X(t)

∣∣∣ , (23)

~X(t+ 1) = b
−−−→
Xrand(t)− ~A · ~Dc. (24)

Fitness function for the constraint. We must use the
efficient constraint-handling algorithms to tackle proposed
constrained problems because the original WOA was designed
for unconstrained optimization [33]. The fitness function that
was used to choose the optimal search agent is:

Fitness(X) =

M∑
m=1

Um(X)− ξ
N∑
n=1

Fn(fn(X))f2n(X), (25)

fn(X) =

Bn∑
b=1

xnbmuR
nb
mu −Rmin

mu,∀n ∈ N . (26)

In (25), ξ and Fn(fn(X)) are penalty factors and index func-
tion that Fn(fn(X)) = 0 if fn(X) ≥ 0 and Fn(fn(X)) = 1
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if fn(X) < 0. Algorithm 2 depicts the pseudocode for
the WOA algorithm. Computing fitness has a computational
complexity of O(ND), where N represents the population of
whale and D is the dimension of search agents. Then, the
complexity of updating the position vector of all the search
agents at each iteration is O(ND). As a result, the complexity
of Algorithm 2 can be represented as O(NDI), in which I is
the number of maximum iterations/generations.

D. Lagrangian Relaxation-Based Power Allocation at Given
Subchannels Assignment Scheme

For problem (15) with fixed subchannels assignment
scheme, the transmit power allocation problem can be ex-
pressed as follows:

P22: maximize
P

M∑
m=1

Um(P) (27a)

subject to

N∑
n=1

Bn∑
b=1

xnbmuR
nb
mu ≥ Rmin

mu, (27b)

Bn∑
b=1

M∑
m=1

Um∑
u=1

xnbmup
nb
mu ≤ Pmax

n , ∀n ∈ N ,

(27c)

0 ≤ pnbmu ≤ Pmax
n ,∀u ∈ U ,∀m ∈M,∀b ∈ B.

(27d)

Lemma 1. At the given subchannels assignment scheme,
the optimization problem in (27) is a convex problem.

Proof: The first order derivative of the objective function
in (16a) with respect to Pnbmu is as follows:

∂Um(P )

∂pnbmu
=

 δumx
nb
muωg0

ln(2)(dnmu)
ασ2

[
1 +

pnbmug0
(dnmu)

ασ2

]
− θn

∀n ∈ N ,∀b ∈ B,∀m ∈M,∀u ∈ U .

(28)

Then,

∂2Um(P )

∂(pnbmu)
2 =− δumx

nb
muωg

2
0

ln(2) [(dnmu)
ασ2 + pnbmug0]

2 ,∀n ∈ N ,∀b ∈ B,

∀m ∈M,∀u ∈ U ,
(29)

From (18), it is clear that ∂2Um(P )

∂(pnbmu)
2 < 0. Therefore, (16a)

is a concave function. Moreover, (16b) and (16c) are convex
and linear constraints, respectively. Finally, constraint (16d) is
affine. Thus, we can conclude that (16) is a convex problem.

Here, we introduce non-negative Lagrangian multipliers,
λum, µn, and νnbmu for constraints (16b), (16c), and (16d),
respectively. Then, by integrating the objective function in
(16a), and constraints (16b), (16c), (16d), the Lagrangian
function of (16) can be expressed as follows:

Algorithm 3 Lagrangian Relaxation-Based Power Allocation

1: Input: δum, θn, X
2: Initialize: t = 0; Pnbmu(0), ε > 0, λum(0), µn(0), ν

nb
mu(0) >

0, and ςi(0) > 0, (i = 1, 2, 3),
3: repeat
4: t← t+ 1;
5: Update ςi(t+ 1), (i = 1, 2, 3) according to (25);
6: Update λum(t+ 1), µn(t+ 1), νnbmu(t+ 1) according to

(22), (23), and (24);
7: Update Pnbmu(t+ 1) according to (26);
8: until |Pnbmu(t+ 1)− Pnbmu(t)| ≤ ε;
9: Then, set Pnbmu(t+ 1) as the desired solution.

L(P ,λ,µ,ν) =
N∑
n=1

Bn∑
b=1

M∑
m=1

Um∑
u=1

δumx
nb
muω log2

(
1 + γnbmu

)
−

(
N∑
n=1

Bn∑
b=1

βbn

M∑
m=1

Um∑
u=1

xnbmu +

N∑
n=1

θn

Bn∑
b=1

M∑
m=1

Um∑
u=1

pnbmu

)

+

M∑
m=1

Um∑
u=1

λum

(
N∑
n=1

Bn∑
b=1

xnbmuR
nb
mu −Rmin

mu

)
+

N∑
n=1

Bn∑
b=1

M∑
m=1

Um∑
u=1

νnbmu

(
Pmax
n − pnbmu

)
+

N∑
n=1

µn

(
Pmax
n −

Bn∑
b=1

M∑
m=1

Um∑
u=1

xnbmup
nb
mu

)
(30)

where λ = [λum]1×(MU), µ = [µn]1×N and ν =[
νnbmu

]
1×(NBMU)

, respectively. The dual problem of P21 is
formulated as follows:

min
(λ≥0,µ≥0,ν≥0)

D(λ,µ,ν), (31)

where
D(λ,µ,ν) = max

P
L(P ,λ,µ,ν)

subject to (16b), (16c), and (16d).
(32)

As shown above, problem (16) is a convex problem, and
thus, there exists a strictly feasible point so that the Slater’s
condition holds, resulting in strong duality [34]. Therefore, we
can solve the problem in (16) via the dual problem of (20).
The dual problem of (20) can be solved by using the sub-
gradient method in which the dual variables are updated as
follows:

λum(t+1) =

[
λum(t)− ς1(t)

(
N∑
n=1

Bn∑
b=1

xnbmuR
nb
mu −Rmin

mu

)]+
,

(33)

µn(t+1) =

[
µn(t)− ς2(t)

(
Pmax
n −

Bn∑
b=1

M∑
m=1

Um∑
u=1

xnbmup
nb
mu

)]+
,

(34)
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νnbmu(t+ 1) =

[
νnbmu(t)− ς3(t)

(
Pmax
n − pnbmu

)]+
, (35)

where ςi(t), (i = 1, 2, 3) are the step sizes which can be
derived as follows:

ςi(t) =
z√
t
, z > 0, i = 1, 2, 3. (36)

Proportion 1. Based on the Karush-Kuhn-Tucker (KKT)
conditions [34], the optimal power allocation of problem P21
is as follows:

pnb∗mu =

[
xnbmuω(δ

u
m + λum)

θn + µnxnbmu + νnbmu
− (dnmu)

ασ2

g0

]+
. (37)

Proof: The first order derivative of the Lagrangian func-
tion in (19) with respect to Pnbmu is as follows:

∂L(P ,λ,µ,ν)
∂pnbmu

=

 δumx
nb
muωg0

ln(2)(dnmu)
ασ2

[
1 +

pnbmug0
(dnmu)

ασ2

]
− θn

+λum

 xnbmuωg0

ln(2)(dnmu)
ασ2

[
1 +

pnbmug0
(dnmu)

ασ2

]
− µnxnbmu − νnbmu

≤ 0, if pnbmu ≥ 0,∀n ∈ N ,∀b ∈ B,∀m ∈M,∀u ∈ U .
(38)

When pnbmu > 0, ∂L(P ,λ,µ,ν)
∂pnbmu

= 0. Therefore, δumx
nb
mug0

ln(2)(dnmu)
ασ2

[
1 +

pnbmug0
(dnmu)

ασ2

]
− θn − µnxnbmu − νnbmu

+λum

 xnbmug0

ln(2)(dnmu)
ασ2

[
1 +

pnbmug0
(dnmu)

ασ2

]
 = 0.

(39)

Finally, by doing numerical calculation, we can obtain:

pnb∗mu =

[
xnbmuω(δ

u
m + λum)

θn + µnxnbmu + νnbmu
− (dnmu)

ασ2

g0

]+
. (40)

V. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed
solution approach for the joint users association and wireless
resource sharing problem in the cell-free UAVs-assisted wire-
less networks.

A. Simulation Setup

The network configuration considered in this study consists
of 3 MNOs with 3 UAVs and 3 PSs with 20, 10, 5 users who
are distributed randomly within a 400 m × 400 m area. More-
over, UAVs owned by the MNOs are assumed to be hovering
at the fixed altitude of 100 m. At each UAV, the maximum
available transmit power is 35 dBm, the maximum available
subchannels at each UAV is 20 where each subchannel has the
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Fig. 2: Network Topology.

total bandwidth of 150 kHz, the noise density is considered as
-174 dBm/Hz, and the channel gain at the reference distance
is -10 dBm. Moreover, the Rician channel fading model and
free-space path loss model are adopted in this work. The unit
price per subchannel and transmit power set by the MNOs
are between [2, 3] and [4, 5], respectively. The minimum rate
requirement of each user in each SP is between [20, 30] Mbps.
Finally, the payment (unit price per Mbps) of each mobile user
to its associated SP is between [0.3, 0.5].

B. Detailed Numerical Results

This subsection focuses primarily on the performance im-
provement of our proposed algorithm. Firstly, we compare
the performance of our proposed solution approach to the
performance of the benchmark schemes, which are as follows:
• RCOP: In this method, the subchannels available at each

UAV are randomly allocated to the users of SPs. However,
the transmit power of the UAV is allocated to the users
by using our proposed Lagrangian relaxation approach.

• ECOP: In this scheme, the subchannels of each UAV are
equally allocated among its associated users who belong
to different SPs, and our proposed Lagrangian relaxation-
based solution approach is being used to allocated the
UAV’s transmit power the the mobile users.

• RPOC: In this approach, the transmit power of each
UAV is randomly allocated to its associated users, and
meanwhile, the available subchannels of each UAV are
allocated to its associated users by deploying our pro-
posed whale optimization algorithm.

• EPOC: In this design, the transmit power of the UAV is
equally allocated among its associated users who belong
to different SPs. Then, the subchannels of each UAV
are allocated to users by adopting our proposed whale
optimization approach.

Moreover, we also compare the performance of our pro-
posed solution approach with Generalized Kelly Mechanism
which was used in our previous work [3], and Kelly Mecha-
nism (KM) [35].
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Fig. 3: Convergence of utility of SPs under the proposed
algorithm.

Fig. 2 demonstrates the network topology of our work which
consists of 3 UAVs and 35 mobile users. Fig. 3 depicts the
convergence of the utility of each SP and the total utility in
the network. From the figure, we observe that our proposed
algorithm converges to the solution in lesser than 22 iterations.
Therefore, our proposed algorithm is suitable to implement
in real network environment. Furthermore, when compared to
other SPs, we find that SP-1 achieves the highest utility. The
explanation for this is that SP-1 has more users than SP-2 and
SP-3, and that the payment for each user established by SP-1
is higher than the other SPs.
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Fig. 4: Comparison of achieved utility of SPs.

Fig. 4 compares the achieved utility of each SP under dif-
ferent algorithms: proposed algorithm, RCOP method, ECOP
approach, RPOC and EPOC algorithms. From Fig. 4, we
observe that the utility achieved by the SP-1: 513 (Proposed),
34.1 (RCOP), 5.36 (ECOP), 102.98 (RPOC), 87.48 (EPOC),
the utility of SP-2: 377.77 (Proposed), 346.3 (RCOP), 10.54
(ECOP), 11.67 (RPOC), 85.26 (EPOC), and achieved utility
of SP-3: 180.63 (Proposed), 48.25 (RCOP), 72.48 (ECOP),
169.28 (RPOC), 67.33 (EPOC). From the above results, our
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Fig. 5: Comparison of achieved utility of SPs.

proposed method provides a higher utility than other bench-
mark schemes, for all SPs. Therefore, it is obvious that our
solution technique is superior than benchmark schemes. More-
over, in Fig. 5, we compare the performance of the proposed
algorithm with GKM, KM, and ES schemes. From Fig. 5, the
median of the total utility in the considered network is around
1030.76 (Proposed), 1010.32 (GKM), 1009.78 (KM), and 950
(Equal Sharing). Furthermore, the lowest and highest utility
of the network is 949.96-1120 (Proposed), 900-1102 (GKM),
850-112.2 (KM), and 750-950 (ES). Thus, it is clear that the
performance of our proposed algorithm outperforms existing
approaches.
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Fig. 6: Number of channels allocated to each SP.

In Fig. 6, we show the number of subchannels allocated to
each SP under our proposed whale optimization algorithm by
using violin plot. From Fig. 6, we examine that SP-1 receives
the highest number of subchannels when compares to SP-2
and SP-3. The reason is that SP-1 possesses highest number
of users. Despite the fact that SP-2 has a higher number of
users, the number of subchannels received by SP-2 from all
UAVs is smaller than SP-3. This is due to the fact that the
minimum rate requirement for SP-3 users is higher than the
rate requirement for SP-2 users.
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(c) Power allocation to each user of SP-3.

Fig. 8: Power allocation to users of SPs.

Moreover, Fig. 7 demonstrates that the transmit power of
the UAVs allocated to each SP under our proposed algorithm.
From the figure, we observe that the median of the transmit
power of the UAVs gained by SP-1 is 43.6 dBm, SP-2 is
33.86 dBm, and SP-3 is 27.12 dBm. Furthermore, from Fig. 7,

0 1 2 3 4 5 6 7
 Value of  

0

200

400

600

800

1000

1200

 U
til

ity
 

Fig. 9: Utility versus value of θ.
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Fig. 10: Utility versus value of β.

we can examine that the highest and lowest transmit power
received by SP-1 is 51.94-35.03 dBm, SP-2 is 39.95-29.57
dBm, and SP-3 is 33.85-19.53 dBm. Therefore, SP-1 achieves
higher portion of the transmit power of the UAVs. It is because
SP-1 has more users and the minimum rate requirement of
users in SP-1 is higher than rate requirement of users in SP-
2 and SP-3. Then, Fig. 8 represents the power allocation to
each user of each SP. From Fig. 8a, we can observe that
amongst the users of SP-1, user-12 and user-17 receive the
largest and smallest portion of the transmit power of their
associated UAVs, respectively. It is because the achievable
channel gain of the user-12 and user-17 are the weakest and
strongest amongst users of SP-1. Moreover, it is also possible
that the minimum rate requirement of user-12 and user-17
are the highest and the lowest. We can easily see that above
mentioned reasons in problem P22. Similarly, Fig. 8b and
Fig. 8c demonstrate the power allocation to each user of SP-2
and SP-3 where we observe that user-2 in SP-2 and user-3 in
SP receive the largest portion of the UAVs’ transmit power.

Fig. 9 demonstrates the effect of the unit price per sub-
channel set by MNOs on the the total network utility. we
observe from Fig. 9 that as the value of θ decreases, so
does the total network utility. The reason for this is that as
MNOs increase the unit per subchannel, SPs need to pay
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Fig. 12: Utility versus number of subchannels.

more to MNOs, resulting in an increase in SPs’ costs. As
a consequence, the utility of all SPs diminishes (i.e., the total
network utility decreases). Moreover, we also present the effect
of the unit price per transmit power on the total unit utility
in Fig. 10. From the figure, we observe that the value of the
total network utility decreases when we increase the value of
β. Finally, Fig. 11 depicts the impact of the value of δ on the
total network utility. The total network utility increases as SPs
increase the payment δ (unit price per Mbps) for their mobile
users, as seen in Fig. 11. It goes without saying that as users
pay more to SPs, the revenue of SPs URev

m ,∀m ∈M rises. As
a result, the utility of the SPs will increase. In other words,
the total network utility increases.

Finally, in Fig. 12, we show the total network utility for
various numbers of available subchannels in the network. We
can see from Fig. 12 that the network utility rises as the
total number of subchannels rises. Furthermore, our proposed
algorithm outperforms GKM, KM, and ES methods, as shown
in the figure.

VI. CONCLUSION

In this paper, we have proposed cell-free UAVs-assisted
wireless networks in which SPs share the wireless resources

of the MNOs. Then, we have formulated the joint users
association and resource sharing problem of the proposed
model with the objective of maximizing the total network
utility of SPs. Since the formulated problem is a mixed-
integer, nonlinear, and non-convex problem, to be tractable, the
formulated problem was decomposed into two subproblems:
users association and resource sharing problem. Then, we
deployed a two-sided matching algorithm in order to solve
the users association problem. Moreover, we also applied
the whale optimization algorithm and Lagrangian relaxation
method to solve the resource sharing problem. Finally, we
have presented extensive numerical results to validate the ef-
ficacy of our proposed solution approach that outperforms the
other benchmark schemes and existing algorithms. For future
direction, we will integrate reconfigurable intelligent surfaces
(IRSs) technology in the UAVs-assisted wireless network in
order to improve the system throughput.
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