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Abstract—Compared to the probability hypothesis density
(PHD) and cardinalized PHD (CPHD) filters, the trajectory PHD
(TPHD) and trajectory CPHD (TCPHD) filters are for sets of
trajectories, and thus are able to produce trajectory estimates
with better estimation performance. In this paper, we develop the
TPHD and TCPHD filters which can adaptively learn the history
of the unknown target detection probability, and therefore they
can perform more robustly in scenarios where targets are with
unknown and time-varying detection probabilities. These filters
are referred to as the unknown TPHD (U-TPHD) and unknown
TCPHD (U-TCPHD) filters. By minimizing the Kullback-Leibler
divergence (KLD), the U-TPHD and U-TCPHD filters can ob-
tain, respectively, the best Poisson and independent identically
distributed (IID) density approximations over the augmented sets
of trajectories. For computational efficiency, we also propose the
U-TPHD and U-TCPHD filters that only consider the unknown
detection profile at the current time. Specifically, the Beta-
Gaussian mixture method is adopted for the implementation
of proposed filters, which are referred to as the BG-U-TPHD
and BG-U-TCPHD filters. The L-scan approximations of these
filters with much lower computational burden are also presented.
Finally, various simulation results demonstrate that the BG-U-
TPHD and BG-U-TCPHD filters can achieve robust tracking
performance to adapt to unknown detection profile. Besides, it
also shows that usually a small value of the L-scan approximation
can achieve almost full efficiency of both filters but with a much
lower computational costs.

Index Terms—Trajectory PHD filter, trajectory CPHD filter,
sets of trajectories, unknown detection probability, Beta-Gaussian
mixture.

I. INTRODUCTION

HE purpose of multi-target tracking is to estimate the

time-varying number and states of targets through a set of
measurements in the presence of data association uncertainty,
detection uncertainty, false measurements, and noise [1]]—[5].
There are three main approaches to multi-target tracking:
the joint probabilistic data association (JPDA) filter [6], [7]],
the multiple hypotheses tracking (MHT) [1], [8] and the
random finite set (RFS) [9]. Among them, the RFS approaches
aim to model the appearance and disappearance of targets,
misdetections and false alarms within a unified Bayesian
framework [9]].

Several tractable and useful multi-object filters have been
developed based on RFS methods, including the probability
hypothesis density (PHD) filter [9]]-[11]], the cardinalized PHD
(CPHD) filter [9]], [12], [13]], the multi-Bernoulli (MB) filter
[9], [14], the Poisson multi-Bernoulli mixture (PMBM) filter
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[15], [16], the generalized labeled multi-Bernoulli (GLMB)
filter [17]], [[18]], and the labeled multi-Bernoulli (LMB) filter
[19]. Among them, the PHD and CPHD filters are the most
fundamental RFS filters and known for their low compu-
tational burden. The PHD filter considers a Poisson multi-
target filtering density, while the CPHD filter considers an
independent and identically distributed (IID) cluster multi-
target filtering density. If the prior or posterior density is not
Poisson or IID cluster, the PHD and CPHD filters can be
achieved using the best Poisson or IID cluster approximations
that minimizes the Kullback-Leibler divergence (KLD) [20].
While usually the Poisson prior in the PHD filter can be
directly achieved by the Poisson input when there is no
spawning and the RFS of new born targets is also Poisson.
Both filters can be implemented efficiently using numerical
solutions such as sequential Monte Carlo (SMC) [21]], [22], or
Gaussian mixture (GM) [11]], [13]]. In recent years, the PHD
and CPHD filters have also been successfully applied to the
distributed multi-sensor fusion [23]], [24], robotics [25]], [26]
and visual tracking [27]], [28].

All the aforementioned filters use a set of targets as the
state variable, and update the filtering density at each mea-
surement time. Since the filtering density only captures the
statistical information on the current multi-target state variable,
the history estimates cannot be updated with the subsequent
measurements. As a result, these filtering density based filters
usually have poorer performance compared to the smoothing
methods [29]. Besides, without the assistant of the target labels
(or tags), the unlabeled filters such as the PHD and CPHD
filters can not form target trajectories.

Recently, the trajectory PHD (TPHD) and trajectory cardi-
nalized PHD (TCPHD) filters are proposed by adopting a set
of trajectories as the state variable [30], [31]]. In this way, the
TPHD and TCPHD filters are able to establish trajectories
directly and deliver better estimation performance than the
standard PHD and CPHD filters. Specifically, based on the
KLD minimization, the TPHD and TCPHD filters propagate
the best approximated PHD of the Poisson and IID cluster
multi-trajectory densities respectively. The TPHD and TCPHD
filters do not marginalize the past target states in the prediction
step of PHD and are able to update the whole trajectory in the
update step using the current measurements. This is also the
reason why the TPHD and TCPHD filters can outperform the
standard PHD and CPHD filters. In [31]], the Gaussian mixture
(GM) implementations for the TPHD and TCPHD filters are
also proposed and referred to as GM-TPHD and GM-TCPHD.
Meanwhile, the L-scan approximation strategy is suggested to
achieve the fast implementation by only updating the multi-



trajectory density of the last L time. Following the same
routine, the trajectory MB (TMB) filter and the trajectory
PMBM (TPMBM) filter have also been devised recently [32],
[33]. In [29], by adopting a set of trajectories as the state
variable, a multi-scan version of the GLMB filter is proposed
to directly propagates the labeled multi-trajectory posterior
density. The multi-scan GLMB recursion does not marginalize
over the past label sets and the past trajectory states, and in
principle the multi-trajectory posterior contains the complete
statistical characterization of the interested variables based on
all the historical measurement sets. Consequently, the multi-
scan GLMB filter can provide excellent estimation perfor-
mance of target trajectories. On the other hand, techniques
such as component truncation and Gibbs sampler need to be
employed to enable an efficient implementation [17], [18],
[29].

In the multi-target tracking, the knowledge of two uncertain
sources, namely, the clutter rate and detection probability are
also of significant importance. However, in many practical
applications, the clutter rate and detection probability change
dynamically between time steps in unpredictable ways. In
general, it is difficult to infer these characteristics from training
data. Rather they should be inferred online from the actual
measurement-stream [34]. To deal with the issues of unknown
clutter rate, the robust PHD/CPHD filters based on a clutter
generator have been proposed [34]-[37]. These methods as-
sume that the multi-target state consists of both the finite set
of actual targets and clutter generators, and can obtain clutter
information by tracking the clutter generators [37]]. As for the
unknown detection probability, several improved filters have
been proposed to adaptively estimate the unknown detection
profile [37]-[42]. For example, the augmented state model is
proposed to adopt the unknown detection profile using the
Beta-Gaussian mixtures in the PHD and CPHD filters [37].
Later, the inverse Gamma-Gaussian mixture is employed to
propagate non-negative features, including signal amplitude
and SNR, which are non-Gaussian [42].

In this paper, we aim to develop the TPHD and TCPHD
filters which can perform robustly in scenarios with unknown
and time-varying target detection probability, and they are
referred to as the unknown TPHD (U-TPHD) and unknown
TCPHD (U-TCPHD) filters. Specifically, during the deriva-
tions of U-TPHD and U-TCPHD, the Beta-Gaussian mixture
approach [37]] is chosen to model the detection probability.
The robust version of both filters can be devised similarly
using the inverse Gamma-Gaussian mixtures [42] but are not
considered here. The main contributions of this paper are given
as follows:

1) Derivations of the recursive equations for the U-
TPHD/U-TCPHD filters: Generally, the TPHD and
TCPHD filters propagate forward the PHD of Poisson
and IID cluster multi-trajectory densities, respectively. In
principle, by augmenting the sequence of the unknown
detection probabilities into the set of trajectories, the
filters can not only adaptively learn the uneven detection
profile, but also obtain the augmented target trajectories.
However, the predicted or the updated densities need not
to be Poisson or IID cluster multi-trajectory densities.

Therefore, we propose to obtain the best Poisson/IID
cluster approximation of the multi-trajectory densities
over the augmented sets of trajectories by minimizing
the KLD. Besides, considering computation efficiency,
the analytic recursions are also presented of both the U-
TPHD and U-TCPHD filters, which consider the effect
of the unknown detection probability for only the latest
frame time.

2) The Beta-Gaussian mixture implementations for the U-
TPHD and U-TCPHD filters: In the algorithmic imple-
mentation, the unknown detection probability is mod-
eled by using the Beta-Gaussian (BG) mixtures, where
each component is a product of a Beta density (on
the augmented part) and a Gaussian density (on the
trajectory) [37]]. The resulting filters are named as the
BG-U-TPHD and BG-U-TCPHD filters for short. In
consideration of the algorithmic complexity, we pro-
pose the approximations of the BG-U-TPHD and BG-U-
TCPHD filters that only consider the unknown detection
profile at current time. The L-scan approximations of
these filters are proposed to achieve lower computational
costs. Simulation results demonstrate that both filters can
achieve excellent performance in the scenarios where
the targets are with unknown and time-varying detection
probabilities.

The remainder of the paper is organized as follows. Section
II presents the background materials on the TPHD and TCPHD
filters. In Section III, the detail derivations of the proposed U-
TPHD and U-TCPHD filters are given. Their Beta-Gaussian
mixture implementations and the corresponding L-scan ap-
proximations are developed in Section IV. The estimation step
including pruning and absorption procedures is also delineated
in this section. The performance assessment of the proposed
filters are given in Section V. Lastly, conclusions are drawn in
Section VI.

II. BACKGROUND

This section provides a brief review of the trajectory RFS,
the TPHD and TCPHD filters. Notations are first given in
Section II-A. In Section II-B, the Bayesian recursions for both
the TPHD and TCPHD filters are reviewed. The prediction
and update steps of the TPHD and TCPHD filters are given
in Section II-C. Further details are available in [31].

A. Notations

The variable X = (¢, z'*") with z € R is used to denote
a single trajectory, where ¢ represents its birth time, n, is the
dimension of target state z, and z'** = (x!,...,2%) denotes a
sequence including the target states at each time step of the
trajectory with length 7. At time k, the trajectory state space
is defined as

Tk = Weyer, {t} x R, (1)

where W denotes the disjoint union, X denotes a Cartesian
product, and [}, is a discrete variable state space that equals to



{(t,i): 1 <t<kand1<i<k—t+1}. A single trajectory
density is given as p(X) and its integral is expressed as [43]

/ﬁ(X)dXz > / p(t, 2" dzt. )
T ( Rine

t,3)€l

Similar to the target RFS, the trajectory RFS at time k is
defined as

X =A{X1, ..., Xy} € F(Tx), 3)

where F(T},) is the respective collections of all finite subsets
of Ty defined by (I). The PHD of posterior multi-trajectory
density at time k is denoted as D (X). Given a trajectory X,
the corresponding target state at time k is given as 75 (X).
Similarly, given the multi-trajectory state Xy, the multi-target
state is Tk(Xk) = UXGXka(X)-

The single-trajectory state is denoted using the uppercase
letter (e.g. X ), whose subscript only represents the number
(e.g. X;). The multi-trajectory state is represented by the bold
letter (e.g. X), whose subscript only represents the time (e.g.
X). The binomial coefficient and the permutation coefficient
notations are given as, respectively, C’f = ﬁij)! and Pf =
ﬁ The generalized Kronecker delta function is given by

1, fA=1B
. “)
0, otherwise.

da(B) A{

for continuous variables and d4[B] represents for discrete
variables. Besides, the inner product between two real valued
functions a and b is expressed as (a,b), which equals to
J a(x)b(z)dz, and we have (a,b) = >"°7 ja(n)b(n), when
a and b are both real sequences. For a finite set Z of real
numbers, its elementary symmetric function [44] of order ¢ is

given as
> 1I¢ )

0CZ,|o|=q €0

e (2) =
and the subtraction of sets is represented by the notation \.

B. Bayesian Filtering Recursion

The multi-trajectory state and set of measurements at the
time step k are the finite sets expressed as follows,

Xk Z{Xl,...,XNk} G.F(Tk), (6)
Z ={z1, .., 2} € F(Zi). (N

where the N* trajectories take values in the state space T},
the M* measurements take values in the measurement space
Zk £ R™=,

If the posterior multi-trajectory density pi_; at time k — 1
is given, the posterior density at time k can be computed by
using the Bayes recursion [31]

Prik—1 (Xk) = /f(Xk|Xk—1)pk—1 (Xg-1) 6Xg—1, (8)

U (25| X)) prji—1 (Xi)
pr (Xi) = ‘ : ©)
J 0 (Zk| Xk ) pije—1 (X)) 0Xe
where f(Xy|Xk—1) denotes the transition density of trajec-
tories and py|—1(X4) denotes the predicted multi-trajectory

density at time k. Given a set of measurements 7y, the density
of the measurements of trajectories is denoted as ¢y (Zj|Xx).
Since the measurements are only based on the current target
states, £ (Zr|X) can be also written as

Thus, for a single trajectory X = (¢, z1"~1) at time k — 1, its
measurement likelihood function is expressed as Ij(z|z?~1)
and its transition density to time k roots in the transition of
target states from time k£ — 1 to k, which is expressed as

f@tat=h).

C. The TPHD and TCPHD Filters

1) Poisson Trajectory RFS: The TPHD filter propagates
the Poisson multi-trajectory density [31f], with a KLD min-
imization after the update step. At time k, the posterior multi-
trajectory density p(-) of a Poisson RFS is given as

Nk-,
pel{X1, o Xy }) = e AL T ] 20 (X5).

Jj=1

Y

where Py (-) represents a single trajectory density and Ag > 0.
A Poisson PDF can be characterized by its intensity D (X) =
MiePr(X) [31]. Meanwhile, the clutter RFS is Poisson with
mean ). and density ¢(-).

Based on the following assumptions:

e The trajectories at time k are the union of the current new
trajectories that are born independently with the PHD
~(+) of Poisson densities, and the surviving trajectories
at time k — 1 with the surviving probability ps j (-). The
birth and the surviving RFSs are independent of each
other.

e The trajectory RFS at time k — 1 is Poisson. The clutter
RFS is also Poisson and independent of measurement
RFS.

If at time k— 1, the posterior PHD Dy_1 (¢, z'*~1) is given,

the prediction step of the TPHD filter for X = (¢,2%) is
expressed as

Dyjr1 (X) = (X) + Dg (X)), (12)

where

Vi (t,2"7) =y (¢, 2"7) 61 [i]6x[1], (13)
Dlg; (t,xl:i) = psik (xi—l) f (xi|$i—l) Dy, (t’xlzi—l) ]
(14)

It is required ¢t € {1,2,...,k — 1} to denote trajectories
born before time k in (I4). The latest time of a trajectory
X = (t,z'%) is t + 4 — 1, thus the predicted PHD D,i is
zero if t + 1 — 1 # k that indicates the trajectory is dead,
as only alive trajectories are considered in [31]. The notation
f(:|-) represents the transition density of the target in (I4).
The update step of the TPHD filter is given by

Dy, (X) =Dyp—1 (X) qp i (2")
+ Dyje—1 (X) pp (")
I (2]2?)

2eZy, AC(2) + <pD,k i (2]) ?D12|k71>

15)

X

b



where

k
DZ|k—1 (l’l) _ Z/‘Dk‘k_l(t’xl:k7t+1)dxl:lcft7 (16)
t=1

which denotes the PHD of the prior target density at time
k and is obtained by the marginalization for Poisson multi-
trajectory densities [31]. The detection probability is denoted
as pp.x(-) and the notation gp , equals to 1 — pp .

2) IID Cluster Trajectory RFS: The TCPHD filter considers
an IID cluster multi-trajectory density [31]. At time k, the
posterior multi-trajectory density py(-) of an IID cluster RFS
is given as

Nk
pe{X1, 0 Xne}) = pr(m)n! T pr(X)), a7
j=1

where pg(-) is the cardinality distribution and py(-) is the
single trajectory density. The PHD of posterior multi-trajectory
density is given as

Di(X) = pr(X) > npr(n).
n=0
Based on the following assumptions:

e The trajectories at time k are the union of the surviving
trajectories at time k£ — 1 and the current new trajectories
with cardinality distribution p j (-). The birth and the
surviving RFS are independent of each other.

e Both the trajectory RFS and the clutter RFS are IID
cluster. The cardinality distribution of trajectory and
clutter are respectively given as pj(-) and p. r(-). The
clutter RFS is independent of measurement RFS.

Based on the KLD minimization, the TCPHD filter propa-
gates both the PHD of the IID multi-trajectory densities and
the cardinality distribution [20]. Given the posterior cardinality
distribution ps_1(-) and posterior PHD Dj_;(t,x%"1) at
time k — 1, the prediction step of the TCPHD filter is obtained
by

(18)

Dyji—1 (X) =y (X) + Dy, (X)), 19)
Prik—1 () =Y pyie (0= 5) Y Cipr—a (£)
=0 =j
DY (1= pex, Df_,)
X <psvk'7 k)71> < psek’ k71> . (20)
(1,D[_1)
The update step of the TCPHD filter is expressed as
T [Dfcsize] (pre—s ()
pic(n) == : @
<Tk |:Dg|k_1§ Zk} 7pk:\k71>
Dy, (X) =Dyys—1 (X) qp i (2*)
<Tllc {Dg\k,l;Zk} al)k|k71>
(22)

<T2 [D,Qk,l;Zk} ,Pk|k—1>
+ Dyj—1 (X) ppis ()
Iy (z|x2) <Tllc {D;\kq; Zi\ {Z}} 7Pk\k71>
g zgz:k ¢(2) <T2 [Dz‘k,ﬁzk} ,Pk\k—1>

)

where
T [Dk‘k,l, Zk] (n) (23)
min(M¥* n—u)
= > (MM —j)lpes (MF - )
§=0
neju
x Pl <qD<ki’DDk;k 11>>n e; (5 (Dg‘k_l, Zk)) ;
= (D,;‘,H, Zk) (24)

= {/PD,k (wl) lké(z’f):z) glkfl (xl) de': z € Zk} .

The TPHD and TCPHD filters can be effectively imple-
mented by the Gaussian mixtures [31]], which are respectively
referred to as the GM-TPHD and GM-TCPHD filters. Besides,
the pruning and absorption procedures are also proposed to
prevent an unbounded increase of Gaussian components.

III. TRAJECTORY PHD AND CPHD FILTERS WITH
UNKNOWN DETECTION PROFILE

In this section, the prediction and update steps of the U-
TPHD and U-TCPHD filters are elaborated. For both fil-
ters, the sequence of the unknown detection probabilities is
augmented into the trajectory, which can not only learn the
uneven detection profile, but also obtain the augmented target
trajectories. In principle, by updating the sequence of the
detection probabilities, both filters can perform more robustly
in scenarios where targets are with unknown and time-varying
detection probabilities than considering a single frame time.

A. The Augmented State Space Model

Let Uy, represent the space of augmented trajectories and
D denote the space of the sequence of the unknown detection
probabilities, where D denotes the space in the interval of
[0,1]. Then, the augmented trajectory space model is defined
as

Up = Wt iyer, {t} x R x D (25)

Supposing that at time k, there are N* augmented trajectories
taking values in the state space Uy, then the augmented
trajectory RFS is given as

Xy ={X1,..., Xy} € F(Uy), (26)

which is a simple development of trajectory RFS. Each
element of X denotes an augmented trajectory state and is
expressed as

X =(X,A) e, Q7

which consists of the trajectory X = (t,z'") € T and the
sequence of detection probabilities A = a'* € D?. On the
other hand, at each time step of the augmented trajectory, we
can obtain the augmented target state £ = (x, a) information,
where a € D denotes the detection probability and x denotes



the target state. The density of a single augmented trajectory
is given as p(X) and its integral is

/( dX = Z/Rmr/ip(txl

(t,i)el

al:z) dal:zdfﬂl:z.

(28)

The density of sets of augmented trajectories is defined as
the augmented multi-trajectory density. Since the detection
only concerns about alive targets, the detection probability at
time k is presented by the state at the latest time step of the
augmented part A

pD,k(X) = aiv

where ¢ = k — t 4+ 1. The transition of augmented trajectory
is given as f(X|X), where X = (¢,z"% a'%) denotes the
augmented trajectory at time k — 1. In order to better explain
the relationship between the detection probability sequence
and trajectory, we consider the switch of detection probability
is independent of the trajectory state and the transition is the
first-order Markov process, then the equation is established as
follows

(1) -

(29)

(30)
i (xlzifl)

(tx ' 1Z|ta: ,au)

= (@l ) g () by
X Ggr: (0¥ )5, 11154 [],

where f(:|) and g¢(-|-) represents the transition density of
target and detection probability from time k£ — 1 to k.

Given the augmented trajectory X, the PHD of the aug-
mented multi-trajectory density at time k is denoted as Dy, (X))
and the surviving probability of the augmented trajectory is
given as

DS,k (X) = psk (X, A) = ps (¢') .

In this paper, the measurements are only concerned about
kinem~atic states of targets, so the measurement likelihood
Ik (z|X) can be simplified to

B. The U-TPHD Filter

In this section, the recursion of the U-TPHD filter is derived
in detail, which predicts and updates both the trajectories
and histories of the detection profile rather than target states
and detection profile only at the latest frame time [37]. In
order to solve the problem that updated posterior augmented
multi-trajectory densities are no longer Poisson, the U-TPHD
filter finds the best Poisson approximation through the KLD
minimization [20]. Based on this theory, the U-TPHD filter
propagates the PHD of a Poisson augmented multi-trajectory
density through recursions. The prediction and update steps
are given in Propositions [T] and

The recursion of the U-TPHD filter is following the routine
of:

Assumption 1: The trajectories are the superposition of alive
trajectories at the last time and new births at the current time,
which are independent of each other. The PHD of the born

€29

(32)

trajectory with the augmented part is given as 7(5( ) and the
birth model is assumed as known.

Assumption 2: The clutter RFS is Poisson with mean A.
and density ¢(-). The clutter RFS is independent of the
measurement RFS.

Assumption 3: Each trajectory generates measurements in-
dependently of each other.

Assumption 4: The prior and posterior augmented multi-
trajectory densities are Poisson.

Proposition 1. If at time k — 1, the posterior PHD

Dy_1(t,x"*= 1 a'*~ 1) is given, then the predicted PHD
Dyj—1(-) for X = (t,zV%, a?) is given as

D (X) — (X) + DS (X) : (33)
where
Vi (t, bt alzi) =y (t, zhit alii) 01[4)0k [t], (34)
chc (t, 2%, a) =pgx (2771) £ (2], a'Y) g (a']ai~)
x Dy (t, 2"t a7t (35)

In Proposition[I] it is required ¢ € {1,2, ...,k —1} to denote
trajectories born before time k. Besides, the equation t+i—1 =
k needs to be satisfied in (35), since only alive trajectories
are considered. The proof of Proposition [I] can be found in
Appendix A. The proof of the KLD minimization is omitted,
since the trajectory augmented with the detection probability
sequence is a simple extension of the classical trajectory state,
and the proof of the latter can be found in [31]].

Remark 1. The robust PHD filter [37] only considers the
target state and corresponding detection probability at the
current time. In contrast, in Proposition |1} the past states of
the trajectories and detection profile sequence are kept in the
U-TPHD filter. The condition also applies to the prediction
step in the U-TCPHD filter following.

Proposition 2. If at time k, the predicted PHD Dy,;,_y (X) is
given, then the posterior PHD Dy(X) is given by

(36)

Il:z’ al:z) at

Dk} (t’xlzi’ al:i)
:Dk:\k:—l (t71‘1:i7a1

DI
CC

2E€Z}

*) (1 —a") + Dy (t,
b (2|2*)
z)+ [[ at - U(z]2) Df, (27, a')daldz?’

where

k
Dy (2", a") :Z// Dy (£, 2111 glh=t41)
t=1

xdxl:k,—tdal:k—t, (37)

withi =k —¢t+ 1.

In Proposition [2] the PHD of the prior density of augmented
targets at time k is expressed as Df, w1 (", a’), which is
obtained by the marginalization for augmented multi-trajectory
densities. Since we focus on the association between the latest
state of augmented trajectory and the measurements at the



current time. The marginalization step is also applied to the U-
TCPHD filter following. The proof of Proposition [2]is detailed
in Appendix B.

Remark 2. Different from the TPHD filter [31|], which only
considers the PHD of trajectory, the updated PHD in the U-
TPHD filter contains information about both the trajectory
X = (t,2Y%) and detection profile sequence A = a'*. The
detection profile sequence A and the trajectory X are mutually
coupled, if we obtain a better estimation of the detection profile
sequence, the trajectory estimation will also be influenced.

Remark 3. The sequence of unknown detection probabilities
can be used as a malleable theoretical basement for other
feasible variations and implementations. Its single frame vari-
ation is only one of the possible approximations. Similarly,
other variations to realize the theory of sequence of augmented
parts can also be devised. For example, one can replace the
unknown detection probability variable by target motion model
variable [45], [46]] to gain the multi-model extension of the
method for maneuvering target tracking.

C. The U-TCPHD Filter

In this section, the recursion step of the U-TCPHD filter is
derived in detail. The U-TCPHD propagates the augmented
multi-trajectory density of an IID cluster RFS. In the pre-
diction and update steps, the U-TCPHD filter uses the KLD
minimization to obtain the best IID cluster approximation
[20]. Based on this theory, it propagates the PHD of an IID
cluster augmented multi-trajectory density and the cardinality
distribution. The following propositions show recursion steps
of the U-TCPHD filter.

Based on Assumptions 1-3, the recursion of the U-TCPHD
filter is also following the routine of:

Assumption 5: The clutter RFS is IID cluster and indepen-
dent of the measurement RFS, with the cardinality distribution
Pe,k- Besides, the cardinality distribution of new birth trajec-
tories is given as p. .

Assumption 6: Both the prior and posterior augmented
multi-trajectory densities are IID cluster through the KLD
minimization.

Proposition 3. If at time k — 1, the posterior PHD Dj,_1(X)
and posterior cardinality distribution py_1 are given, then the
predicted PHD Dyjj.— (X) and predicted cardinality distribu-
tion py_1 are given as

Dijos (X) — (X) + DS (X (38)
k-1 (n) = pyk(n—3)> Clpr_i (£) (39)
j=0 =

=3
; ) , . ‘ —j
<[ [[ @ = paata ) D e e e
[ff ps k(@ )DE_y (&, @i Y)dai~tdat~1]’

X
] DL (@@ V)da1dz—1]|

where

k—1
D,Z?l(xi_l,ai_l) :Z// Dkil(t’xlzi—aal:i—l)
t=1

><dxl:i72dal:i727 (40)

Proposition 4. If at time k, the predicted PHD Dy, (X)
and predicted cardinality distribution py,_1 are given, where
X = (t, 2%, a""), then the posterior PHD Dy, and posterior
cardinality distribution py, are given as

Dk (t’xlzi’alzi) :Dk:\szl (t,a:l:i,alzi) (1 _ ai)
<T}€ {Dak,ﬁzk} 7Pk\k71>
<T2 {Dak,ﬁzk} 7Pk\k—1>

PR Ik (2|z%)
4 Dk|k71 (t,ﬂfl'l,al'l) a’L A

(2)

<T}€ |:D£|k71; Z\ {Z}} apk|k71>
(00 | D 2] spir)
_Tg {Dl\k_ﬁzk} (n)prjk—1 (n)

(41)

X

X

pr (n) = <T% [Dglk_l;Zk} ’pk‘|k71> ;42
where
Tx {D;\k—pzk} (n)
min(| Zi|,n—u)
= > 12kl = D)'per (12l - )
7=0
X PP, e; (E (D;lk_l, Zk>) )
X [ff(l —a")Dfjy (2, ai)daidl’i]n_]_u
(I Dy et
= (Dglk‘—lv Zk) )

_ {// gt l’“c(fgi)pgk_l (2, a') da'da’ : 2 € Zk} .

In Proposition 3, the notation D},_; represents the PHD of the
posterior density of augmented targets at time k£ — 1, which can
be obtained by (37). In Proposition 4, the updated cardinality
pi(+) incorporates the clutter cardinality, the measurement set,
the prior PHD and predicted cardinality distribution. It should
be noted that at each recursion step, the cardinality distribution
for a set of augmented trajectories is the same as that for a
set of targets. Therefore, the update of cardinality distribution
of the U-TCPHD filter and the classic CPHD filter [13] enjoy
similar principles. The proof of Proposition 4 can be found in
Appendix C.

D. Possible Extension

Similarly, the U-TPHD filter can be also extended to con-
sider the unknown clutter rate [37]]. In this situation, the hybrid



augmented trajectory space model is given as Y = UwW(C x D),
where C and DD denote the state space of clutter ¢ and
its detection probability o, respectively. It is assumed that
trajectories and clutter generators are statistically independent.
The integral function of the density p(-) of a single hybrid
augmented trajectory X.€eYis given as

Jpx)es=3 [ [ pe
¥ (tiyer R D
+//ﬁ(c, 0) dedo.
CcJD

Let Dy (c,0) denote the PHD of the clutter generators, pg ;
denote survival probability and ~j(c,0) denote PHD of the
birth clutter from clutter generators at time k. Enjoying the
same principle and assumptions of [37], the recursion of the
new U-TPHD filter is given as

Dy (X) = (X) + 0§ (X)),
Dyji—1 (¢, 0) =k (¢, 0) + P§ 1 Di—1 (¢, 0)
Dy (X) =Dy (X) (1 - a)

+Dk‘k71< ) Z@ zcox’(48)

1:% dal:idxlzi
a)

(45)

(46)
(47)

2EZ)
Dy, (¢,0) =Dyi—1 (¢, 0) (1 — o)
e (2)
D _E ¢
+ Dyj—1 (¢, 0) Z @k[zcox]’ (49)
2EZy
where

(50)

2, ¢,0, ] //
+//al k(zl2") D}y (2, a")da' da,

The extension of U-TCPHD filter also propagates the cardinal-
ity distribution of the hybrid augmented trajectory. The specific
derivation of the U-TCPHD filter considering both unknown
clutter rate and detection probability is a similar development
to U-TPHD filter. In this paper, we focus on the derivation
of unknown detection probability, hence their implementation
methods considering clutter rate are omitted in this paper.
Further details about unknown clutter rate can be found in
[37]].

2)Dyji—1(c, 0)dcdo

IV. BETA-GAUSSIAN MIXTURE IMPLEMENTATION FOR
THE U-TPHD AND U-TCPHD FILTERS

In this section, a closed form implementation for the U-
TPHD and U-TCPHD filters immune to the unknown detection
profile is derived. In Section IV-A, the reason of simplifying
both filters to consider the detection profile only for a single
frame time is discussed. In Section IV-B, the Beta-Gaussian
mixture implementation [37]] is presented for the U-TPHD
and U-TCPHD filters, which are referred to as the BG-U-
TPHD and BG-U-TCPHD filters. In Section IV-C, the L-
scan approximations of the BG-U-TPHD and BG-U-TCPHD
filters are presented to reduce the computational burden. The
estimation step is given in Section IV-D.

A. Only Current Detection Profile

It can be seen from the Propositions 1-4 that the U-
TPHD and U-TCPHD filters update both the detection profile
sequence and trajectory in recursions. In this section, we
advocate for only considering the unknown detection profile
at the current time for simplicity.

Regarding the algorithmic efficiency, the computational cost
rises significantly with the increasing length of the trajectory
and the sequence of detection probabilities. For simplicity, we
only consider P discrete probability values to describe the de-
tection probability distribution, which are the uniform grids of
interval [0, 1]. Then, as indicated by , for a certain survival
trajectory X = (¢,x1*~1) at time k — 1, its historical detection
probability space contains P*~! components, and the number
of components will increase to P? at time k. In other words,
the computational burden of a single trajectory with length [
is O(P'), which is not acceptable in the implementation.

Therefore, in consideration of the algorithmic efficiency,
we propose to consider the effect of the unknown detection
probability of the current time for the implementations of the
U-TPHD and U-TCPHD filters. In [37]], the Beta-Gaussian
mixture provides an efficient method to directly describe the
unknown detection probability, and this method can be also
adopted for the U-TPHD and U-TCPHD filters. For similarity,
the unknown detection probability only at the current time is
considered in the implementation. Based on this condition,
the transition density f(+|-) of targets in (30) is assumed to be
independent of the detection probability. Thus the augmented
trajectory of . becomes to X = (t,x'% a’) and the
prediction of augmented trajectory PHD can be written
as

Dk|k—1 (ta xl:iv ai)
=~ (t,x“, a’) 61[i)6k[t] + ps,k (wl_l) f (ml|xl_1)
X /g (ai|ai_1) Dy _4 (t,xl:i_17ai_1) da=t. (51)
k Different from (33)) and (38)), the past states of the detection
probability sequence are not retained in the prediction step and
both filters only update the detection probability at the current

time. After marginalization, the PHD of the augmented target
in (37) can be computed as

k
Dijea (', a') = Z/Dk|k_1(t,:v1:k*t“,a")dxli’f*t,
t=1
(52)

with ¢ = k — ¢t + 1. The change of applies to (36), (39),
and (@2).

B. The BG-U-TPHD and BG-U-TCPHD Filters

In this section, the closed-form implementations are pre-
sented for the U-TPHD and U-TCPHD filters using the Beta-
Gaussian mixtures [37]. At time k, the Gaussian density of
the trajectory born at time ¢ of length ¢ is denoted as [31]]

Nt a¥ ek P, PRy = N (2 b, PRYS [0, ). (53)



where m*F € Ri"s and Pk € Ri"Xin= denote, respectively,
the mean and covariance. The term t* = k—i; +1 denotes the
trajectory born time with i = dim(m* /n,). For a matrix V,
the notation V., 54 represents the submatrix of V' for rows
from time steps n to m and columns from time steps s to .
The notation V.., is used to present the submatrix of V' for
rows from time steps n to m. Besides, the notations Vi, 5.4
and Vi) represent Vip.p, 5:¢) and Vl,,.,.}, respectively.
The PDF of a Beta distribution is given as

yu—l(l _ y)v—l
1 )
Jo vyt (1 —y)rtdy

where the denominator fol y*“~ (1 — y)?~dy denotes the Beta
function B(u,v) and u > 1,v > 1. Some properties of the
Beta distribution are summarized as follows [37]],

(1 —=y)B (y;u,v) Z#ﬂﬁ (y;u,v+1),

yB (y; u,v)

B (y;u,v) = (54)

(55)

U
:mﬂ(y;qul»’U)- (56)

The transition density for the detection probability in (51 is
given as

g (ai‘ai—l) -3 (a;ukm—l,vk\k—l) )

(57)

where
k=1

o' == (58)

e — (P ) e (s
[Uk\kqf ’
SRlE=1 _ IR (1= ke 1 (1 _ Iuk|k—1>
[Uk\kqf ’
(60)
k-1
ik Ik=1 u _ i1
B = wre (©61)
k—1,k—1
|:o,k\k—1} —|ks| u i v 6
(ub=1 4 vk=1)" (uk=1 + k=1 4+ 1)

with |kg| is a constant slightly bigger than 1.

1) The BG-U-TPHD Filter: there are some assumptions
given as follows.

Assumption 7: The target kinematics and observation mod-
els are given as the linear Gaussian model [31]]

() =N (0 Fai Q).
l (z\xl) =N (Z;Hxi,R) ,

where ' € R"=*"= denotes the state transition matrix, Q) €
R™=*"= {g the process noise covariance, H € R"=*"= is the
observation matrix and R € R"=*"= denotes the observation
noise covariance.

Assumption 8: To simplify this model, the surviving prob-
ability is taken as a constant.

Assumption 9: The PHD of birth density is given as

w(¥) = Z%ﬂ

(63)
(64)

'u’ ’YJ)N<X k, s

V537

k
P’w’)’

(65)

where J¥ * denotes the number of b1rth trajectories. For the
7-th blrth component at time k, w7 ; represents the weight.
The mean and covariance of the Gaussian densuy of the
trajectory born at time k are expressed as m* . € R" and

denote

¥.d
Pk € R"=*"=_ respectively. The terms u,Y ; and v

the correspondlng factors of the Beta distribution.
Proposition 5. If at time k — 1, the posterior PHD Dj,_1 is
given and Dy._1 is a Beta-Gaussian mixture of the form

Jk—l

Dy (X') = Z wfflﬁ (a;u?il,vffl)
j=1

x N (X; L b 13;“*1) (66)
where, at time k — 1, the j-th trajectory has length i?71 =

k— tffl. The mean and covariance of the Gaussian density
. ~k—1 " ln, pk—1 ik nIsz Tne
are given as m; € R® and Pj c R% ,

respectively. Thus, the prior PHD Dy ,_; is given as

Dk\kq( ) waﬁ

x/\/ (X;k, mk P )

’YJ’ ’YJ)

(67)
Jk—1
+ ps Z wf_lﬂ (a u];“; ! vg‘f 1)
XJ\/(X tk\k 17mk\k 1 Pk\k 1)’
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klk—1 T i
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mikt = [[mj ] 7[F.mjﬁ[k71]} ] . (68)
~ ﬁk71 Py
phIk=1 _ 1 , 69)
53 J AN -X (
Dk—1 T
Pl P[k1k1k 1]F7 (70)
Dk—1 T
P, —FPJ (-1, 1]F +Q. (71)

The prediction of each Beta-Gaussian component is ob-
tained by the prediction of the Beta part (denoting the detection
probability) multiplied by the prediction of the Gaussian part
(denoting the trajectory). Compared to the prediction step of
the GM-TPHD filter [31]], the prediction of trajectory in the
BG-U-TPHD filter still roots in the transition of the target
kinematic state, while the prediction of detection probability
is completely governed by Beta densities.The t’glk*l is the
birth time of the surviving trajectory.

Proposition 6. If at time k, the prior PHD Dy;_y is given
and Dy, is a Beta-Gaussian mixture of the form

Jklk—1
s (%) =3 ot 5
j=1



Then, given a measurement set Zy, the posterior PHD Dy, is
given as

Jklk—1

Z vk( k\k—l
w .

a; (73)
XN(X;tyk e k)

,vf‘k_l + 1)

D (X) =

J g
Jklk—1
k k|k—1 klk—1
—|—E g w (a,uj‘ —l—l,vj‘ )
z€Z, =1

><N<X ik, k(2 ),ﬁf),

) Vi )

where
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u; )V
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uj ’Uj
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Pk Pklk ! KHPJk{:tkl‘k L (80)
K; :pﬂf,;;ﬂ:k’k]HTsj L (81)

The BG-U-TPHD filter also adopts the Kalman filter in
the update step, but aims at the whole trajectory. It not only
updates the estimation of the target state at the current time, but
also smooths the estimation of the previous states. Different
from the GM-TPHD filter [31]], the updated detection proba-
bility can also be obtained by the number of measurements
associated with trajectories.

2) The BG-U-TCPHD Filter: based on Assumptions 5—
9, the BG-U-TCPHD filtering recursion is obtained by the
following propositions

Proposition 7. If at time k— 1, the posterior PHD Dy, _1 and
posterior cardinality distribution py_1 are given and Dy_1 is
a Beta-Gaussian mixture of the form

Jk:fl
Dics (%) = 32 w718 (a0 )
j=1
x N(X;t?*l,mfﬂﬁf*) .8

then at time k, the prior cardinality distribution py,_1 and
PHD Dy, are given as

(n) = Z Pk (10— J) Z Clpr—1 ()

Pklk—1
X D T(1 = psik) *J‘, (83)
D Zw 8 (a BN (X k,mk S, PE
klk—1 v,5P \&; WJ’ Uy,j V.30 s
Jk 1

_ klk—1  klk—
+ ps,k Z wf g (a uS‘] 1,US!J- 1) (84)

><J\/<X tk|k 1 mk|k 1 Pk|k 1>.

In Proposition 7, the derivation of the prior PHD is the
same as the BG-U-TPHD filter, which retains previous states
of trajectories, while the BG-U-TCPHD filter also contains the
prediction of cardinality distribution.

Proposition 8. If at time k, the prior PHD Dy ;,_y is given
and Dy, is a Beta-Gaussian mixture of the form

klk—1
U

P, 89)

receiving a set of measurements Zy, the cardinality distribu-
tion py and the posterior PHD Dy, at time k can be obtained
as follows,

Jhlk—1

klk—1 klk—1
E wj‘ B(a'u |
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Proposition 8 shows that the BG-U-TCPHD filter updates
not only the whole trajectory and detection probability, but
also the cardinality distribution. In order to limit unbounded
Beta-Gaussian components in the BG-U-TPHD and BG-U-
TCPHD filters, the pruning and absorption methods of mixture
components are proposed, and the detail steps are in Table I.

It should be noted that, the absorption is different from
merging in the robust BG-CPHD filter [37]. In this paper,
the absorption is that, for two closely spaced Beta-Gaussian
components, only the weight and Beta distribution factors of
the smaller one are added to the higher component. Because
the distance of two Beta-Gaussian components are measured
based on the target states at the current time, while their past
trajectory states can be extremely different.

C. L-scan Approximation

The L-scan approximation is proposed in [31] to reduce
the computational burden from the increasing trajectory state.
This approximation is also applied to the BG-U-TPHD and
BG-U-TCPHD filters, which only updates the augmented
multi-trajectory density of the last L time and keeps the rest
unaltered. The notation L is used to denote the value of the
L-scan approximation. When the length of trajectory ¢ < L,
the prediction and update steps are the same as Section I'V-B.
However, when ¢ > L, the prediction step changes to

Lklk—1 | [~Lk—1]" ok ul 95
m; = {mj,[u]} [ "ML } ’ ©5)
pL,k—1 HL,k—1 T
PLAlE-1 _ szLLkz 1] PZ’ELL] 96)
J 1 1 ’
FPLy FPLI P +Q

where the mean m™*~1 € RE" and the covariance pLk—1 c
REnexLne The update step is given by

z :Hmﬁ’[’z']’“l, (97)

o pLklk—1 5T
S;=HP/ " 'HT + R, (98)
Al (2) =M LK (2 - 7), (99)

TABLE I
THE ALGORITHM FOR PRUNING AND ABSORPTION

Give posterior PHD parameters {<I>;c }}Ii i

Tk
ko k Dk k :

{W] 15,5, m P ,uj ) V; } 7 , a pruning threshold T, a absorp-

tion threshold Ta dIld maximum allowable number of Gaussian terms

Jmaz- Set £=0and © = {i =1,.. o IR |wk > Ty}

Loop

=04 1.

ar maxw
j=arg W

which equal to
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<I>k CIDk with weight @
0= G\L
If © = (), break

if £ > Jmao then replace @? by the Jmaz Gaussian components
with largest weights.
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and Beta distribution factors uf, vf.

R Y ¢ HPL[fllel, (100)
pL.klk=1 17T a—
K; =P 1S (101)
Besides, the matrix A% = m [tkk y € R —LIna g

needed to store the trajectory 0uts1de the L-scan window,
even if they are not updated. The intact trajectory information
at the current time, consists of the contents in the matrix
A and the corresponding L-scan window, which is written
as m = [[Ak] [AL k] ]T. In other words, both filter will

propagate ML, A and PL instead of 7 and P by using the
L-scan approx1mat10n Meanwhile, in pruning and absorption
procedures, the 7% and P’“ in PHD parameter ®% are also
replaced. The rest algorlthms of pruning and absorptlon pro-
cedures do not change in Table I. The BG-U-TPHD and BG-U-
TCPHD filters are equivalent to the robust BG-PHD and BG-
CPHD filters [37] but keeping trajectory information. When
the L=1, the BG-U-TPHD and BG-U-TCPHD filters degrade
into the robust BG-PHD and BG-CPHD filters.

D. Estimation of Trajectories and Detection Profile

In this section, we will elaborate on the estimation of a
set of augmented trajectories at each time step in the BG-
U-TPHD and BG-U-TCPHD filters. It should be noted that
the estimation step is behind the pruning and absorption. For



the BG-U-TPHD filter, the estimation of the number of alive
trajectories at time k is given as

Jk
N* =round | w} (102)
j=1

Then the estimated set of augmented trajectories is given as

Ko~k Uy k k U
N . ~ Nk
(tr,d%, b, —L ) (e K, R, —— N )
IRRELS ) s ey \UNFEy ON Ky TTON K )
u’f—!—v’f u’ka—i—vjk\,k
(103)

For the BG-U-TCPHD filter, the estimation of the number
of alive trajectories at time k can be obtained as

N* = argmaxpy, (-) . (104)

The estimation of the detection profile and set of trajectories
for the BG-U-TCPHD filter is the same as the BG-U-TPHD
filter.

V. SIMULATION RESULTS

This section presents numerical studies for the BG-U-TPHD
and BG-U-TCPHD filters. In Section V-A, we compare the
BG-U-TPHD and BG-U-TCPHD filters with different L and
their abilities to approximate the GM-TPHD and GM-TCPHD
filters with known detection probability for the uniform detec-
tion profile [31]]. In Section V-B, we present the performance
of the BG-U-TPHD and BG-U-TCPHD filters with lower
detection probabilities, as well as their performance under the
condition of an uneven and time-varying detection profile. All
filters in this section are based on the L-scan approximation.

A. Scenario 1

Ten targets are simulated inside of a two-dimensional space
with the size of [—2000, 2000]m x [0, 2000]m for 100 seconds.
The target state matrix is given as © = [pg, py,Du,Dy)
including the position (with unit: m) and velocity information
(with unit: m/s). The observation matrix z = [z;,%,]"
includes the position information. The single target transition
model is given as

F— I2 IQ(St Q _ 0_2 %]’2 %JQ
0 I B AT

H:[12 02} R =02l

where I5 represents the 2 X 2 unit matrix, O represents the
2 X 2 zero matrix, 0’3 = 1lms~2, 0? = 2ms~2, and 0t = 1s
denotes the sampling period. The surviving probability is given
as a constant pg = 0.99. The detection probability is unknown
and given as pp = 0.98. The number of clutter per scan is
Poisson distributed of A, = 20, uniformly distributed in region
S = [-2000, 2000] m x [0, 2000] m. The initial models for ten
targets are given in Table [II] and the death time here refers to
the last time a target exists.

Besides, the expansion coefficient of the Beta distri-
bution is given as |kg| = 1.05. The birth process is
Poisson with parameters J, = 4, w, = 0.01, ﬁy =

TABLE II
THE INITIAL TARGET STATES
Kinematic State Birth Time/s | Death Time/s
Target 1 [1005, 1489, 8, —10] " 1 100
Target 2 [—256,1011,20,3] 10 100
Target 3 [—1507,257,11,10] " 10 100
Target 4 [—1500, 250, 43, 0] " 10 66
Target 5 [246,735,15,5] " 20 80
Target 6 | [—243,993, —6,—12]7 40 100
Target 7 [1000, 1500, 1, —10] " 40 100
Target 8 [250, 750, —45, 10] 40 30
Target 9 [1000, 1500, —50, 0] T 60 100
Target 10 (250, 750, —40, 25] " 60 100
2000 2000
T{p=[60,100]s
1500 1500
,140)s
T8=[40,80]s
£ 1000 ‘? £ 1000
500 Ta=[19 500
[40,10015 T1(1.100)s
o N T4=[10,66]s o
-2000 -1000 0 1000 2000 -2000 -1000 0 1000 2000
x/m x/m
2000 2000
1500 1500
£ 1000 £ 1000
500 500
rgOOO -1000 0 1000 2000 ,gooo -1000 0 1000 2000
x/m x/m

Fig. 1. The trajectory of BG-U-TCPHD (left) at 75s (top), at 90s (bottom),
and the trajectory of BG-U-TPHD (right) at 75s (top), at 90s (bottom) with
Beta distribution factors u = 8,v = 2.

diag([50,50,50,50]). For each j € {1,2,3,4},mk, =
[—1500,250,0,0]",m% , = [-250,1000,0,0]",mk ; =
[250, 750, 0,0] T, mk 4 = [1000, 1500, 0, 0] . In general cases,
we are more interested in targets with detection probabilities
greater than 0.5. Therefore, the Beta distribution factors of
birth trajectory are given as u = 8 and v = 2, which means
the initial value of detection probability is 0.8. The value of

the L-scan approximation is set as L = 5.

Besides, the weight threshold of pruning is given as I', =
1075, the threshold of absorption is given as I', = 4 and the
maximum of components is limited to J,,,, = 100. For the
BG-U-TCPHD filter, the cardinality distribution is capped at
Npaz = 100.

By running 1500 Monte Carlo realizations, the performance
of the BG-U-TPHD and BG-U-TCPHD filters are obtained as
follows. In order to do so, the error d?(X;,X}) at time k
between the estimated alive set of trajectories X; and the
truth X, are measured by the metric for sets of trajectories
with parameters p = 2,¢ = 10,y = 1, which is known as
the trajectory metric (TM) error [47]]. It is also considered to
normalize the error by the corresponding time window £, thus,
the root mean square (RMS) TM error d(k) at the time k is
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Fig. 2. The BG-U-TPHD filter (top) and the BG-U-TCPHD filter (bottom)
with Beta distribution factors ©w = 8,v = 2, the solid lines represent the
number estimation, and the dashed lines represent estimation after calculating
the standard deviation.
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Fig. 3. The RMS trajectory metric error for the BG-U-TPHD and BG-U-
TCPHD filters with © = 8, v = 2, as well as the GM-TPHD and GM-TCPHD
filters with known detection probability.

obtained by

N,
1 mc

d(k) = \| 77— > (X5, Xy [k, (105)
me =1

where X7 , denotes the estimation of sets of alive trajectories
at time k in the i — th Monte Carlo run. The TM error also
includes the error for the localization of detected targets, false
targets, missed targets and track switches.

It can be seen from Figs. [[H3] that, both the BG-U-TPHD
and BG-U-TCPHD filters can obtain excellent trajectory es-
timation which is close to the GM-TPHD and GM-TCPHD
filters with the known detection profile [31]], while the BG-
U-TCPHD filter performs much better than the BG-U-TPHD
filter. The reason is that the BG-U-TCPHD filter also prop-
agates the cardinality distribution but the BG-U-TPHD filter
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Fig. 4. The decomposition of the RMS trajectory metric error for the BG-
U-TPHD and BG-U-TCPHD filters with v = 8,v = 2, including the error
for the localization of detected targets, false targets, missed targets and track
switches.

TABLE III
THE RUN TIME(s) OF THE BG-U-TPHD AND BG-U-TPHD FILTERS

L 1 2 5 10 15 30 60
BG-U-TPHD 356 360 375 475 781 149 66.8
BG-U-TCPHD 4.12 413 425 515 8.12 155 68.1

does not. The decomposition of the RMS trajectory metric
error for proposed filters is shown in Fig. ] It shows that
both filters possess similar error for the localization and false
targets, and they nearly have no track switch error. However,
the error for missed targets in the BG-U-TCPHD filters is
much lower than that in the BG-U-TPHD filter.

The value of the L-scan approximation is of great impor-
tance in both filters, so the influence of different values of the
L-scan will be compared in detail. It can be seen from Fig.
E] that, with different values of the L-scan approximation, the
BG-U-TCPHD filter always performs better than the BG-U-
TPHD filter. Besides, it should be noted that, for both filters,
the RMS TM error decreases when the L increases, and the
amount reduced gradually becomes less and less. When the L
is bigger than 5, the performance nearly has no improvement.
Meanwhile, the computational burden due to the increasing
value of the L-scan approximation should also be concerned.
The averaged times to run one Monte Carlo iteration with a
2.8 GHz Intel i7 laptop are listed in Table

From Table when the L is less than 5, the decrease of
the L cannot effectively improve the calculation speed, while
the computational burden sharply increases if the L is bigger
than 10. In terms of both computational burden and accuracy,
the L is usually a much smaller quantity than the length of the
trajectory. Therefore, in the Scenario 1, the L = 5 is a suitable
choice for both filters. Please note that, in Fig. EI, when L =1,
the BG-U-TPHD and BG-U-TCPHD filters are equivalent to
the BG-PHD and BG-CPHD filters [37] in performance.
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Fig. 5. The RMS TM error for the BG-U-TPHD and BG-U-TPHD filters with
Beta distribution factors v = 8,v = 2 under the models of L = 1,5,10.
The partial enlarged figure of the BG-U-TCPHD filter is shown in the lower
left and the BG-U-TPHD filter is shown in the lower right

B. Scenario 2

In this section, we will focus on the performance of the
BG-U-TPHD and BG-U-TCPHD filters with different Beta
distribution factors, lower detection probability and uneven
detection profile. First, the influence of different Beta distri-
bution factors is elaborated and the uniform detection profile
is adopted as pp = 0.98 being the same as the Scenario 1.
When v = 1 and v = 1, the Beta distribution is equal to
the uniform distribution. It can been seen from Fig. [f] that,
both filters can respond faster to the change of cardinality and
produce a smaller error when the initialization for detection
probability is closer to the truth, while the BG-U-TPHD filter
performs divergence when the initialization is far from the
truth. In contrast, the BG-U-TCPHD filter is more robust.

Note that, compared to the robust BG-CPHD and BG-PHD
filters in [37]], the initialization of the Beta distribution factors
is more important for the BG-U-TPHD and BG-U-TCPHD
filters, especially for the former. Because the trajectory state of
Beta-Gaussian component with the smaller weight is directly
abandoned, as indicated by Table [} The trajectory estimation
accuracy will degrade in the case of inaccurate estimation
of detection probability. While the merging procedure in the

12
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Fig. 6. The RMS trajectory metric error for the BG-U-TPHD and BG-U-
TPHD filters with different Beta distribution factors (L=5).

TABLE IV
AVERAGE TM ERRORS FOR THE BG-U-TPHD AND BG-U-TCPHD
FILTERS WITH DIFFERENT DETECTION PROBABILITIES

BG-U-TPHD BG-U-TCPHD
(u,v) (1,1) 2,1) (8,2) (L,1) (@2,1) (82
pp = 0.98 6.41 3.23 245 220 215 208
pp =0.85 | 11.51 9.80 6.15 424 404 380
pp =073 | 1653 13.17 13.13 | 520 5.06 5.04

TABLE V
THE INITIAL TARGET STATES

State Birth Time/s | Death Time/s

Target 1 | [1005,1489,8, —10] " 1 100

Target 2 [—256,1011, 20, 3] " 20 80

Target 3 | [—1507,257,11,10]" 30 100

robust BG-CPHD and BG-PHD filters [37] can reduce this
influence to some extent.

For targets with lower detection probabilities, from Table
the decrease of detection probability seriously worsens the
performance of the BG-U-TPHD filter, but has a smaller effect
on the BG-U-TCPHD filter. For the uneven detection profile
case, the Scenario 1 is simplified to three targets with different
detection probabilities, which are given by the equation

098, j=1Fk<55
092, j=1,k>55
PDk = J ‘ (106)
0.85, j=2
0.75, j=3

where j € {1,2,3} denotes different targets and k denotes
the time. The initial target states are listed in Table [V] and rest
parameters are the same as Scenario 1. It can be seen from
Fig. |7| that there is an initial settling in period, but after this
miss distance, the estimation of detection profile converges
to the truth and performs fluctuation with the changes of the
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Fig. 7. The average estimation of the uneven detection profile for the BG-
U-TPHD and BG-U-TCPHD filters. The detection profile of different targets
are distinguished with different color. The purple circles over 80s are caused
by the hysteresis of the BG-U-TCPHD filter for death trajectories.

number of targets. It turns out that the proposed BG-U-TPHD
and BG-U-TCPHD filters provide the satisfactory performance
at adaptively learning uneven detection profile, while the BG-
U-TCPHD filter performs better.

VI. CONCLUSION

In this paper, we derived the recursive equations of the U-
TPHD and U-TCPHD filters by using the KLLD minimization.
Both filters can perform robustly in scenarios with unknown
and time-varying target detection probability. Meanwhile, for
the computation efficiency, the analytic recursions are also
presented of the U-TPHD and U-TCPHD filters, which con-
sider the effect of the unknown detection probability for only
the latest frame time. The Beta-Gaussian mixture method is
also adopted for the implementation of the proposed filters,
which are referred to as the BG-U-TPHD and BG-U-TCPHD
filters. Besides, the L-scan approximations of these filters with
much lower computational burden are also presented. Finally,
simulation results demonstrate that the BG-U-TPHD and BG-
U-TCPHD ffilters can achieve robust tracking performance to
adapt to unknown detection profile. Besides, it also shows that
usually a small value of the L-scan approximation can achieve
almost full efficiency of both filters but with a much lower
computational costs.

APPENDIX A
PROOF OF PREDICTION

This section aims to clarify the relationship between
the transition density of the augmented trajectory X =
(t, 2% a'*) and the transition density of targets = and detec-
tion probability a of a single frame time. Taking the U-TPHD
filter for example, the augmented trajectory state at time k£ —1
is given as X = (t,z'*,a'") and the predicted augmented

trajectory state at time k is given as X = (t, 2%, a'*). Thus,
the prediction of the U-TPHD filter is obtained by
Diji—1 (X) (107)

— (%) autianle + [ pss (X) F(%1X) Do (X) aX.

with only considering the first-order Markov process and alive
trajectories:

Dmk_l (%) (108)
1 z 1 z) 51[ }5k[ } +pS,k (xifl) f (l,i’ai‘xifl’aifl)

// 8t (21971800 (a2 1) 84 [t]83 i),

X Dj_1 (t 2t al )dscl:l:dgl:2
i () + s (1) £ e )
« Di_1 (t)l‘l:i—17a1:i—1) )

where f(X|X) and f(z%,a’|z"~,a’~!) denote the transition
density of augmented trajectory and that of augmented targets,
respectively, and ¢t € {1,2,..,k — 1} and t + ¢ — 1 = k.
As indicated by the equation (30), we consider the switch
of detection probability is independent of the trajectory state,

thus, the predicted PHD Dy ;—1(X) can be simplified as,
which is the same as equation (33)

Dij—1(X) =7(X) + ps (z771) f (22" a7 Y)
% g (a'lai™Y) Doy (£, 2251, al 1)

where g(+|-) denotes the transition density of detection proba-
bility. The prediction of the U-TCPHD filter enjoys the same
principle but also considers the cardinality distribution, which
is a simple extension of [31]. So it is omitted here.

APPENDIX B
PROOF OF PROPOSITION 2

In this appendix, the proof of Proposition 2] is elaborated.
The proof of KLD minimization is omitted, because the
trajectory augmented with a detection probability sequence is
a simple extension of the classical trajectory state, and the
proof of the latter can be found in [31]]. Thus, the aim is to
compute the updated PHD of augmented trajectory density by
Bayes rule. First, the density of measurements of augmented
targets at time k is given as

G(Z{Z1, . Tn})
HA é(z5) ﬁ (1—ay)
<Y I e

—, (109)
iy aJ>0 (1 —aj)\ec(z0,)

where I';,, denotes all kinds of possible associations between
n targets and a set of measurements ¢. The notation o; > 0
indicates the target j is detected and associated with mea-
surements ;. a denotes a*~**1, which represents the detec-
tion profile at time k. Given the augmented trajectory RFS
X, = {Xi, ..., X,,} at time k, the posterior PHD of the density
of the augmented trajectories can be obtained by Bayes rule

Di(X)
:ﬁ/ﬁk Zk|{X}UXk) Dk|k—1 ({X}Uik)‘sxk

1

U (Z,C nl/gk Zi{X, X1, Xy, })



X Dk|k—1 ({X X1, Xn})éfflm where

Dyjre—1( - - n
_W /5 Zk|{33 Z‘la . xn}) /ek (Zkl{Xha ) H Prk|k— 1 6X1n
| Zk|=M mm(I\/[,n)
,)\ |
HDklk (&5)0Z1:m, (110) H Z (M = i)l per(M i) nt |
j=1 =0 (n o Z)
where n—u
. [ff Dfy1 (2, a)dadx}
Di(z,a) :Z// Dy (t, zV %=t a¥* =t 2 a)daVFtda bR [ff Dklk L dadz}
t=1
which is the PHD of the posterior density of augmented targets 1:[1 U Ja-l(zz)D 7]9—\19—1 (z,a))dadx
at time k and integrating the sequence of both detection proba- X Z = ;
bilities and target states. The measurement set Z, is considered Sk CZy,|Sk|=i IT &(z5)
as a single frame time and comes from the clutter and targets. j=
Therefore the denominator of Bayes rule is obtained as [20]. _ H &( )Tg [ Dlzlk ¥ Zk] (n). (115)
O (Zk:) = aDp_y (w,a)dadz (111) 2€Zx
% H {)\ &2 //a I(2|z) Dklk Lz, a)dadz] ' Based on the theory of [20], we can obtain
z2EZy %)

Based on [20], at time k, the target x can be detected, Z (n+ 1)pgjp—1(n + 1)/6’C (ZkHXl""’X"}) (116)

with probability a and miss detection with probability 1 — a. = 0
Therefore, we can obtain % H Prih— (X)8 X1 .
O (Zk{E, 31,0, B0 )
=(1—a) - 07 (Zil{d1, ... @n}) =/ Dj oy (2, a)dzdalppp—1, Vil Dip_v; Zel) [ e(2).
- - €Zs,
ta 0 b (2l2) G (Z\H{E o 3a)) . (112) e
2EZ The denominator of Bayes rule is
The posterior PHD of the density of the augmented trajec- 0
tories is U (Zy) = H 5(2)<Pk|k—1, Tk[D1:|k—1§ Zx])- (117)
B 5 2€Z},
Dy (X) =Dy (X) (1-a) (113)
~ Therefore, the posterior PHD of the augmented multi-
+ Dij—1 (X ) a trajectory density is given as
% Z (z]z) ~ -
5 Neclz) + [[a-Ik(2[2) Dy, (z,a)dadz” D (%) =Puss (X) 1= ) (118)
<T}€ {Dz‘k_ﬁzk} ,Pk\k—1>
APPENDIX C X o [D
PROOF OF PROPOSITION 4 < k{ k|k— 1’2} Pe|le— 1>
In this appendix, the proof of Proposition 4 is described + Dgj—1 (X ) a
in detail. Similar to Appendix A, the posterior PHD can be . .
obtained by the Bayes rule lk z|:c < [Dkuc—l’ Zi\ {Z}} apk|k71>
« 3 : .
~ Z
Di(X) 2€Zy, <Tk [ Klk—13 Zk] Pk|k—1>
_ Z 1 / 0 ( ZH{XUXI, - Xn}) Besides, the posterior cardinality distribution is also given
n—0 y Bayes rule
ka|k71 <{X5X17~--7Xn})6)21:n 1 B _
=—— | U(Z|{ X1, ..., X0
= n kL&, X1y, X > > S
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" R A O
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