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RMGen: A Tri-Layer Vehicular Trajectory Data
Generation Model Exploring Urban Region Division

and Mobility Pattern
Xiangjie Kong, Senior Member, IEEE, Qiao Chen, Mingliang Hou, Azizur Rahim, Kai Ma, and Feng Xia, Senior

Member, IEEE

Abstract—As an important branch of the Internet of Things
(IoT), the Internet of Vehicles (IoV) has attracted extensive
attention in the research field. To deeply study the IoV and build
a vehicle spatiotemporal interaction network, it is necessary to
use the trajectory data of private cars. However, due to privacy
and security protection policies and other reasons, the data set of
private cars cannot be obtained, which hinders the research on
the social attributes of vehicles in the IoV. Most of the previous
work generated the same type of data, and how to generate
private car data sets from various existing data sets is a huge
challenge. In this paper, we propose a tri-layer framework to
solve this problem. First, we propose a novel region division
scheme that considers detailed inter-region relations connected by
traffic flux. Second, a new spatial-temporal interaction model is
developed to estimate the traffic flow between two regions. Third,
we devise an evaluation pipeline to validate generation results
from microscopic and macroscopic perspectives. Qualitative and
quantitative results demonstrate that the data generated in
heavy density scenarios can provide strong data support for
downstream IoV and mobility research tasks.

Index Terms—Trajectory data, dataset generation, region di-
vision, spatial-temporal interaction, mobility pattern.

I. INTRODUCTION

With more vehicles getting connected to the web of things,
traditional vehicle autonomous network transitions to the In-
ternet of Vehicles (IoV) [1]. IoV takes the moving vehicle as
the information perception object and uses a new generation
of information and communication technology to realize the
network connection between vehicles and vehicles, vehicles
and people, vehicles and roads, and vehicles and service
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platforms [2]. IoV is a core component of future intelligent
transportation systems and will provide new research direc-
tions for smart cities, intelligent transportation, and social
networks [3] [4] [5].

The vehicular mobility datasets which include the private
car data and floating car data as a cornerstone of IoV, make
various kinds of research conceptions possible. Making it
possible to respond to traffic conditions timely and rapidly.
For example, when an emergency occurs, drones can be used
to communicate with ground vehicles to ensure smooth rescue
by rescue teams [6]. Making it possible to travel orderly
and safely. For example, based on IoV-related technologies,
collecting information related to vehicles and driving environ-
ments, making traffic flow predictions can help plan public
travel routes [7] [8]. Making it possible to evaluate new
communication protocols for vehicular networks. For example,
the construction of traffic scenarios using real information
from various data sources to generate traffic demand enables
the evaluation and testing of new network protocols [9] [10].
However, due to privacy protection policies and security
restrictions, the GPS data of private cars cannot be obtained,
which hinders the development of related work.

Although private car trajectory data is difficult to obtain,
taxi data can be easily obtained from the Internet. Online
taxi-hailing applications such as Didi and Uber have had a
huge impact on human travel, attracting a large number of
commuters to choose taxi-hailing. Taxi travel from a specific
destination to a specific destination reflects people’s movement
patterns. Imagine this situation. When the taxi is empty, it
will wander aimlessly in a busy area, waiting for passengers,
or just park in some densely populated areas. In this case,
taxi travel is meaningless. When a taxi is carrying passengers,
its driving route is similar to that of an ordinary private car.
For example, on weekends, people driving to attractions or
shopping centers will have the same starting point and ending
point as tourists taking taxis. The taxi data set contains the
moving trajectories of empty cars or passengers. Because taxis
use a similar movement mode as private cars when carrying
passengers, this article is only interested in the trajectory of
taxis when carrying passengers.

This paper proposes a tri-layer private vehicular trajectory
data generation model based on urban region division and car
mobility pattern (RMGen). This model consists of the prepa-
ration layer, generation layer, and verification layer, generating
private cars’ trajectory data based on the taxi GPS data and
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urban vehicular network information. We do the trajectory data
preprocessing and region division in the preparation layer.
In the generation layer, we construct the spatial-temporal
interaction model based on the mobility pattern and generate
private car trajectory data by SUMO. In the verification layer,
we validate the accuracy of the generated data from the
macroscopic and microscopic perspectives.

The contributions of this paper are summarized as follows:
• We study a novel trajectory data generation problem for

private cars. One type of dataset is utilized to generate
another type of dataset by considering their social con-
nections.

• A tri-layer trajectory dataset generation framework is pre-
sented which consists of three components: a novel urban
functional area division part by considering detailed inter-
region correlations connected by traffic flow, a universal
mobility model based on analyzing of urban vehicle mo-
bility pattern, an evaluation part to validate the generation
from macroscopic and macroscopic perspectives.

• We demonstrate the effectiveness of the proposed tri-layer
framework. Qualitative and quantitative experimental re-
sults show the generated trajectory dataset of private cars
can support downstream research tasks.

The rest of this paper is organized as follows. Related work
is summarized in Section II. We describe the framework of
the RMGen model in Section III. Section IV presents the
preparation layer of our vehicular trajectory dataset generation
model in detail. In Section V, we point out the generation layer
of our model. Section VI illustrates the verification layer and
the experimental result based on our generation datasets. In
Section VII, we conclude our work and point out the future
direction.

II. RELATED WORK

In this section, we give a brief review of the related work,
including the urban region division method, various models
of human mobility, the technology we used in the simulation,
and some trajectory data generation works which are useful
for our study.

A. Urban Region Division

With the gradual emergence of urban functional areas. How
to divide these urban functional areas is the basic premise of
policy formulation, resource allocation, and social recommen-
dation research.

Some studies show that human mobility can describe the
functions of regions. Qi et al. [11] find that get-on/off amount
in a region can depict the social activity dynamics in that area.
In their study, regions are rigid squares that may not represent
an intact region in the city, and they consider regions with
pure social function in this paper. In contrast, regions are more
complicated in reality. In [12], authors present a novel method
for delineating urban functional areas based on building-level
social media data. A dynamic time warping (DTW) distance-
based k-medoids method is subsequently applied to group
buildings with similar social media activities into functional
areas. But human mobility is not taken into consideration.

Wang et al. [13] propose a framework for automated urban
function zoning, which is based on VGI geo-tagged photos
and OpenStreetMap (OSM) data. However, the above method
cannot describe composite functional areas. Yuan et al. [14]
propose discovering regions of different functions (DRoF)
using both human mobility among regions and points of
interest (POI) located in a region. The framework inferred the
functions of each region using a topic-based inference model
witch regards a region as a document, a function as a topic,
categories of POIs as metadata, and human mobility patterns as
words; it reduces the data sparseness problem before clustering
regions.

However, in the present study, the division of functional
areas is not detailed enough. Due to the large area divided,
the inter-regional traffic flow rules are not reasonable when
studying these areas. To obtain more exact regional division
results, we propose the ARS regional division method.

B. Vehicle Mobility Models
Mobility modeling is a challenging issue in IoV [15]. For

instance, analysis of human mobility patterns based on multi-
source large-scale datasets plays a vital role in understand-
ing the formation of social-economic phenomena in smart
cities [16] [17]. It is essential to consider the possible social
features for mobility modeling, such as population density,
vehicular connectivity, and traffic volume.

The gravity model is the typical traditional model originat-
ing from physics, which describes mobility fluxes. Despite its
extensive use to predict mobility patterns at different spatial
scales [18] [19], the gravity model relies on specific parameters
fitted from systematic collections of traffic data. The formula
is as follows:

Tij = α
mimj

rβij
, (1)

where Tij is the travels departed from location i to location j,
mi and mj are the populations of origin and destination and
rij is the distance between i and j.

Another kind of trip distribution model is the radiation
model [20]. Nevertheless, some evidence demonstrates that the
radiation model maybe not apply to predict human mobility
at the city scale. Some studies suggest the diversity of human
mobility at different spatial scales. Therefore, the models
that succeed in predicting mobility patterns at large spatial
scales, such as countries, are inappropriate at the city scale
because of the underestimation of human mobility [21]. The
population-weight opportunities (PWO) model without any
adjustable parameters provides a new approach to predict
social mobility patterns at the city scale. The PWO model
enlarges the possible chosen area of individuals into the city
regarding the relatively high mobility at the city scale.

Either the gravity model or the PWO model, the areas they
apply to are small and regular shapes, such as regular areas of
the same size divided by latitude and longitude or land area.
Most of the regions are irregular. Thus, based on the PWO
model, we propose the RPWO model to solve the problem of
modeling the vehicle mobility behavior between uneven shape
areas.
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C. Trajectory Data Generation

For a long time, the study on vehicle trajectory generation
has never been stopped. In 1985, Simon et al. [22] used on-off
data to obtain the origin-destination matrix of bus routes, to
provide better and more efficient services for people to travel.
Friedrich et al. [23] used mobile phone data to generate origin-
destination matrices for traffic state prediction or planning.
Caiati et al. [24] used an open-source dataset to generate
an origin-destination matrix to estimate and verify the daily
travel demand of a city. Harri et al. [25] are the first to put
forward the guidelines of the vehicle trajectory generation
model and provide an overview and comparison of different
mobility models proposed for VANETs. Pigné et al. [26]
generate movement trajectories of vehicles in Luxembourg
using microscopic simulation tools based on the traffic flows
obtained from induction, which is only about the main roads
in the city or highways out of the city rather than the whole
city. Pappalardo et al. [27] propose the DITRAS framework
to simulate the patterns of human mobility. The proposed
framework first generates a mobility diary and then translates
it into a mobility trajectory. They also consider the possibility
of individuals breaking the routine. Recently, Kang et al. [28]
propose a data-driven trajectory generation method that can
capture the context and statistical mobility features.

To study the reliability of network simulation, Bedogni et
al. in [29] developed reliable and publicly available mobile
tracking by road information. The authors apply SUMO that
allows for the import of OSM data in a clean and automated
manner. They then generate a raw dataset of road traffic
in Bologna, Italy. Uppoor et al. [30] incorporates report
information and demographic information to synthesize ve-
hicle trajectory for the city of Köln. The traffic demand in
both studies were constructed as OD matrices, which include
individual trips. However, their research is to generate a similar
dataset, and we utilize taxis to generate the trajectory of private
cars.

Ketabi et al. [31] design a scenario generation framework
which can be adjusted for different ideas and models so
that to know the real world human mobility. The framework
includes data-driven components for performance of various
calculations, such as traffic density, flow, road occupancy.
Compared to previous work, based on the data of taxis,
Kong et al. [32] propose a method to generate private car
traffic trajectory data by using taxi trajectory data in 2018. The
problem with this method is that the gravity model’s important
parameters are too dependent on different urban attributes, and
the model is inaccurate.

Through the work of the dataset generation of others, we
can find that the generation of private car trajectory data is
basically in a new stage. The lack of original data makes
it challenging to generate datasets. Meanwhile, there is no
uniform standard for the verification of trajectory data. To
overcome the challenges mentioned above, this paper proposes
a three-layer dataset generation model with detailed implemen-
tation plans from data generation to data verification.

D. Simulation of Urban Mobility

Traffic simulation is an important method to solve complex
traffic problems. Traffic simulation can analyze and predict the
location and cause of traffic jams, compare and evaluate urban
planning, traffic engineering, and traffic management related
programs, and avoid before the problem becomes a reality.

Simulation of Urban Mobility (SUMO) is an open-source
tool to simulate traffic conditions, used to simulate vehicular
mobility in the city [33]. Viewed from the simulation content,
SUMO is a space-continuous, discrete-time microscopic sim-
ulation package, including road network import and demand
modeling components [32]. SUMO is so powerful that it can
help to study urban traffic conditions more deeply. One of
the most common applications in it is the OD2TRIPS, which
converts O/D matrices to single-vehicle trips. As the traffic
simulation sumo requires the representation of road networks
and traffic demand to simulate in a specific format, both
have to be imported or generated using different sources [33].
Instead of focusing on the traffic flows like macroscopic traffic
simulators, SUMO pays attention to the behavior of a single
vehicle in the traffic flow as typical of microscopic simulators.
For the VoI, analysis of a single vehicles trajectories is vital.
Therefore, we choose OD2TRIPS to get all trajectories of
every single vehicle.

Compared with previous work, the method proposed in this
paper is a three-layer private vehicle trajectory data generation
model based on urban area division and vehicle movement
patterns. Taking the points of interest and road network data
into consideration, the area is divided reasonably and the
Adjacent Road Segmentation (ARS) method is proposed. The
proposed RPWO model is used to generate inter-regional
vehicle movement behavior by combining traffic development
annual reports and taxi datasets. Using the simulation tool
SUMO, simulate the behavior of each vehicle and complete
the task of trajectory generation. The generated trajectory data
are verified from both macroscopic and microscopic aspects.

III. FRAMEWORK

In this section, we describe the RMGen model framework
in detail. The structure of this model is shown in Fig. 1.

The core of our RMGen dataset generation model is to
generate and predict private car traffic volume between re-
gions. We can use simulation tools, such as SUMO, to create
vehicle trajectory data for a certain period based on traffic
volume. To calculate the amount of traffic, we need to start
from two aspects. On the one hand, the urban functional area
division makes it easy for us to study the city’s movement
laws. This part of the work is described in Section IV. On
the other hand, after the functional area is divided, we can
predict the traffic volume between each functional area by
using the existing vehicle data and geographic information by
constructing the regional population-weight opportunities (RP-
WO) model. Finally, using inter-regional traffic as a parameter,
we can generate detailed trajectory data for the vehicle using
the SUMO simulation tool expounded in Section V.

Specific to our RMGen model, the first layer of the RMGen
model is the preparation layer. In this layer, we first do the
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Fig. 1. The structure of RMGen model.

data pre-processing to get the available taxi trajectory data and
remove the error data. We propose a new method of regional
division named Adjacent Road Segmentation (ARS) method
to divide Beijing into several areas to simplify the travels of
vehicles to the trips between different regions. After that, we
process the urban road network. Through the preparation layer,
we lay the foundation for the following work.

The generation layer mainly involves the generation of pri-
vate car trajectory datasets. Combined with the functional area
obtained by the region division, we calculate the traffic volume
between the regions. Then, based on the RPWO model, we
get the traffic volume origin-destination (OD) matrix. After
that, we use the SUMO tools to generate the travel start point
file for the single-vehicle through the O/D matrix using the
OD2TRIPS function. The Duarouter function is then used to
generate the details of the travel path for each vehicle. Finally,
using the Tutorials/Trace File Generation function, we get the
travel trajectory data with an interval of one second.

At the verification level, we present a validation model
based on macroscopic and microscopic levels to validate the
authenticity and accuracy of the generated data set. From a
macroscopic perspective, we refer to the Beijing Traffic Devel-
opment Annual Report 1 published by the Beijing government
in 2012, and compare the generated datasets with the actual
traffic conditions in Beijing shown in the report to validate the
accuracy of the generated data. At the microscopic level, we
mainly consider whether the dataset itself is contrary to reality.
On the one hand, we conduct acceleration and jerk analysis.
On the other hand, we do the consistency analysis, randomly
extract vehicle pairs to analyze the relative distance between
two vehicles.

IV. PREPARATION LAYER

A. Dataset Pre-processing

We obtain the taxi trajectory data from Beijing, China, in
November 2012, which contains more than 10 billion GPS
records by about 27,000 taxis. GPS updates the location
information of taxi devices at a frequency of 11 seconds. The

1 Beijing Traffic Development Annual Report, http://tjj.beijing.gov.cn

(a) (b)

Fig. 2. The map and road network of Beijing. (a) The fifth Ring Road of
Beijing. (b) The processed Beijing road network.

origin data files are stored in the text documents named after
the storage time. Taxis have two mobility patterns, carrying
passengers or not. Thus we delete the useless trajectory data
when taxis have no passengers. Then we process the data to
acquire every vehicle trip. We extract the same vehicle ID into
one file and sort them by trip time. Thus we get the single taxis
to travel trajectory.

It is worth mentioning that we focus our analysis on the
vehicle mobility pattern within the fifth Ring Road in Beijing
( [116.1970◦E,116.5425◦E] and [39.7775◦N , 40.0335◦N ] ),
which is shown in Fig. 2(a). Therefore, we remove the useless
vehicle trajectory data where the latitude and longitude are not
within the five-ring road range.

B. Region Division

In this section, we start from the purpose of travel and
describe people’s travel behavior according to the categories
of origin point and destination point. That is, travel behavior
is regarded as a behavior based on a certain purpose (such as
going home, going to school, going to work, etc.) from one
functional area (school) to another functional area (residential
area). Therefore, it is first necessary to determine the different
functional areas in the city, and then perform functional
characterization, and finally to divide the different functional
areas of the city. The region division process is shown in
Fig. 3.
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Fig. 3. The detailed process of region division includes topic identification,
function definition and road network establishment.
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TABLE I
ANALOGY FROM REGION-FUNCTIONS TO DOCUMENT-TOPICS

Region function contains elements Corresponding elements of the document theme
Migration cube Vocabulary

Collection of research areas Document collection
Region Documentation

The function of the area The subject of the document
Move sample Word

POI feature vector Document metadata

1) Urban Toptic Identification: In 2013, Blei et al. [34]
proposed a topic model for studying text processing, the Latent
Dirichlet Allocation (LDA) model, which can determine the
probability of multiple topics in each article in a corpus. This
has many similarities with the recognition of urban functions.
See TABLE I for the analogy.

Regarding the researched city as a collection of documents,
each area in the city can be regarded as the documents in
the collection, and the different functions of each area can
be regarded as the different themes of the documents. At the
same time, the movement trajectory data is constructed as a
migration cube, including the departure cube and the arrival
cube, which are analogous to the vocabulary in the document.
On this basis, the movement samples between regions (spatial-
temporal trajectory) can be regarded as words in the document,
and the POI feature vector can be regarded as the metadata
of the document. In this paper, the Dirichlet Multinomial
Regression (DMR) model [35] based on the improvement of
LDA is used. Its advantage is that it can combine the POI
features with the mobile mode and the experimental results
are more in line with the real situation.

Fig. 4. Analogy between mobility patterns and words based on transition
cuboids.

For the migration cube, this paper uses Fig. 4 to compare
it with a vocabulary in a document. As shown on the left
side of Fig. 4, a migration cube is defined as a cube with a
size of R × R × T . Among them, R is the total number of
areas involved in the study, and T is the number of fixed time

intervals. Since actual travel is continuous in time and space,
to facilitate research, a day is divided into a fixed number of
time intervals at the time level; at the space level, the start and
end points of the travel are divided according to regions.

Thereby, the spatio-temporal data of travel can be dis-
cretized. In the research, the movement pattern of an object
is defined as a group of elements containing the start and end
location and time. There are two types of movement patterns,
namely the departure movement pattern ML = (rO, rD, tL)
and the arrival movement pattern MA = (rO, rD, tA), where
rO is the departure location, rD is the arrival location, tL
is the departure time, and tA is the arrival time. Since there
are two types of movement modes, there are also two types of
corresponding migration cubes, namely the departure cube CL
and the arrival cube CA. An element (i, j, k) in the departure
cube CL represents the number of trips from the area ri to
the area rj in the time period tk. The formula is as follows:

CL(i, j, k) = || {ML = (x, y, z) | x = ri, y = rj , z = tk} ||
(2)

Similarly, the reaching cube CA can be described as:

CA(i, j, k) = || {MA = (x, y, z) | x = ri, y = rj , z = tk} ||
(3)

As shown on the right side of Fig. 4, the area ri is
regarded as a document, and each cell in the matrix represents
a specific movement pattern, and the number in the cell
represents the number of occurrences of the pattern. Just as
the metadata information of a document includes the author,
address, keywords, etc., POI is used in the area to represent its
metadata information. The POI is recorded by a tuple (in the
POI database), and the tuple consists of the POI category and
name. And geographic location (latitude, longitude). For each
region r, the number of different types of POI in the region
can be obtained by statistics. The formula for calculating the
frequency density vi,r of the i-th POI in the region r is:

vi,r =
Numi

Sr
(4)

where Numi represents the number of the i-th type of POI
in the area r, and Sr represents the area of the area r. In
addition, for region r, its POI feature vector can be written as
xr = (v1,r, v2,r, . . . , vF,r, 1), represents the metadata of the
region r, F is the number of POI types in r, and the last
vector 1 is the default feature.

In this section, using the DMR topic model in unsupervised
learning, by combining the feature vector of POIs and mov-
ing samples, the function of the region is comprehensively
explored from two aspects. By applying the DMR model,
given the movement pattern and POI characteristics, the topic
assignment of each area and the movement pattern distribution
of each topic are obtained.

After the parameter estimation using the DMR based top-
ic model, for the region r, the topic distribution is a K-
dimensional vector θr = (θr,1, θr,2, ..., θr,K), where θr,K
represents the proportion of topic K in the region r.
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2) Urban Function Recognition: Due to LDA being an
unsupervised learning model, it is not used for classification
itself, and it needs to be embedded with a suitable clustering
algorithm to identify city functions. Therefore, we chose the
classic clustering algorithm K-Means [36] with fast running
speed, simple calculation and low complexity for optimization,
and proposed a clustering algorithm based on connected com-
ponents. Algorithm 1 presents the pseudocode of the proposed
cluster method.

First, we regard all topic distribution vectors in the dataset as
nodes, define the reciprocal similarity as the distance between
nodes, and s is the similarity threshold. Calculate the distance
between the node pairs u, v of the topic distribution vector, if
the distance is less than s, an edge is generated between u, v
(Lines 1-5). We record the processed connected components
as C and store them in the definition set T , that is, T =
{C1, C2, , Cn} (Lines 6). Then, for each connected component
in the set T , calculate the distance between all its node pairs
(Lines 7-9), and find the two nodes m,n with the farthest
distance. If the distance between nodes m and n is greater than
2s, the connected component is split with m,n as the cluster
center and K-means algorithm is used to generate new clusters
C ′ and C” and add it to the set T (Lines 10-12). Otherwise the
loop ends(Lines 13). For the research area within the fifth Ring
Road of Beijing, we finally cluster nine different functional
regions.

Algorithm 1: Pseudocode of connected component based
urban region clustering algorithm

Input: the topic distribution vector θr and similarity
threshold s

Output: clusters of the topic distribution vector
1 assume all vectors as nodes:

for all node pairs u, v do
2 if Distance < s then
3 Connect(u, v)
4 end
5 end
6 get the set of connected component T ,
T = {C1, C2, , Cn}
for all C in T do

7 for all node pairs u, v do
8 calculate Distance(u, v)
9 end

10 find two nodes m,n in C with the farthest distance
if Distance(m,n) > 2s then

11 execute K −means(m,n) and generate C ′, C ′′

delete C from T
add C ′, C ′′ to T

12 end
13 end

To quantify the functional area’s popularity and range, we
estimate the functionality intensity of each functional region,
which is reflected by the human mobility pattern. We quantify
the functionality intensity in the functional areas by the Kernel
Density Estimation (KDE) model [37]. We assume that there

are n regions (x1, x2, ..., xn), and use the KDE model to
calculate the functionality intensity of the region s by the
kernel density estimator:

λ(s) =

n∑
i=1

1

nr2
K(

di,s
r

)

=

n∑
i=1

1

nr2
· 1√

2π
exp(−

d2i,s
2r2

),

(5)

where di,s represents the distance of the region xi to s, r
represents the bandwidth, K(·) represents the kernel function,
and the value decreases when di,s increases. In our study, we
use Gaussian function as the kernel function and formulate the
value of r based on the Mean Integrated Square Error (MISE)
criterion.

After estimating the functionality intensity, we mark the
divided areas to reflect the city’s actual function. We consider
regional annotations in four ways. Firstly, the frequency of
POIs in the functional area is sorted according to the average
frequency density of the POIs feature vector of each region.
The frequency sizes of all functional regions, including POIs
are sorted. Secondly, we calculated the most frequent mobility
patterns in each functional area. Thirdly, we use functionality
intensity to explore the most representative POIs in each func-
tional kernel and then make regional annotations. Fourthly, we
carry out manual marking according to actual conditions, such
as government agencies.

Finally, we preliminarily divide Beijing within 5th Ring
Road into nine function areas and number them: Diplomat-
ic/Embassy Area, Emerging commercial/ Entertainment Area,
Science/Education/Technology Area, Nature Area, Historical
Interests/Parks, Developed Commercial/ Entertainment Area,
Developed Residential Area, Old Neighborhoods Area and
Emerging Residential Area.

3) Urban Regional Division: In the previous section, the
marker area we obtain can represent the city’s functional area.
By studying the amount of travel between functional areas, it
is possible to characterize the city’s travel patterns and lay the
foundation for generating the travel trajectory of microscopic
vehicles. In the previous work, we roughly divide Beijing into
nine functional areas. However, we still need to make a more
detailed division of the functional area.

In order to facilitate our next step, we propose a new method
of regional division named the Adjacent Road Segmentation
(ARS) method. We rasterize the functional areas and split it
into a number of grid cells on the map projection according to
the range of 0.001 latitudes and longitude. The relative length
and width of each grid is defined as one and has a fixed
ID, shown in Fig. 5(a). If a grid contains multiple different
regions, the mesh is placed in the functional area with the
most significant area.

For Beijing, we propose a method for dividing the functional
area accurately based on important urban roads. According to
the road traffic information from the Beijing Traffic Develop-
ment Annual Report of 2012, we select 18 urban roads with
an average daily traffic flow of more than 100,000 as of the
major roads, which is displayed in TABLE II and numbered
by Arabic numerals 1-18. We mark each important road in the
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TABLE II
THE PROPORTION OF TAXIS AND PRIVATE CARS ON MAIN STREETS.

Street Name Private Car Ratio Taxis Ratio
East fifth ring road 59.52% 4.78%

South fifth ring road 37.24% 0.58%
West fifth ring road 68.50% 3.26%
North fifth ring road 59.97% 4.52%
East forth ring road 65.74% 12.44%

South forth ring road 71.41% 7.69%
West forth ring road 72.44% 10.84%
North forth ring road 60.50% 18.45%
East third ring road 55.38% 20.78%

South third ring road 57.88% 15.72%
West third ring road 62.19% 16.62%
North third ring road 59.03% 20.10%
East Second ring road 65.92% 19.60%

South Second ring road 52.53% 10.88%
West Second ring road 63.68% 20.02%
North Second ring road 69.63% 18.99%

Changan Avenue 65.53% 17.15%
Liangguang Avenue 45.50% 14.86%

rasterized Beijing map and treat it as a line segment. At the
same time, we regard each grid as a node approximatively.
Subsequently, we calculate the Euclidean distance from each
node (grid) to the line segment (road) and record the nearest
road ID for each grid.

After the distance calculation is completed, each grid node
has two attribute values: the function area ID Ka and the
nearest road ID Kr. We cluster grids in the rasterized map and
treat nodes with the same Ka and kr values as a community.
Finally, we get 153 subdivisions of functional areas. The
visualized display of the divided regions on the map is shown
in Fig. 5(b).

C. Network Description

The urban map data can be downloaded free from the
OpenStreetMap (OSM) or other open-source websites. OS-
M data can be uploaded by any user, so most of us can
maintain and modify map data, which has both advantages
and disadvantages. In our study, we download the OSM file
of Beijing, including the information of roads, undergrounds,
various construction facilities, which reflects the geographical
information of the city.

(a) (b)

Fig. 5. The urban regional division by ARS method. (a) Division by longitude
and latitude. (b) The functional regions of Beijing.

However, because of the open-source nature, there may
be some errors between the downloaded data and the actual
situation. To build an accurate simulated road network, we cor-
rect the road topology. We modify the error roads using Java
OpenStreetMap (JOSM) technology, which is a free editing
tool for open street map geographic information. Moreover,
we focus on stimulating private cars travelling in Beijing,
so we deleted railways, sidewalks, and so on. The network
after processing is shown in Fig. 2(b). Finally, we map the
functional area generated in the previous section to the road
network and mark which area each road belongs to.

V. GENERATION LAYER

In this section, we introduce the methods to get the traffic
volume of every functional region and propose a new model to
calculate the traffic volumes between two traffic regions and
predict the O/D matrix of the traffic volumes of private cars
based on the RPOW model. After that, we use SUMO tools
and Python programs to convert the matrix into single paths
of private cars.

A. Demand Description

1) Region Traffic Volume: Vehicle traffic volume refers to
the number of vehicles passing through a specific road section
within a specified period. Traffic volume can reflect the overall
traffic flow of a road and has significant research value. In our
evaluation, we mainly study the traffic volume of each region
which plays an important part in our prediction of private
cars traces. In Section III-B, we divide Beijing into different
regions. Now we calculate the amount of traffic in each area
for one day. The regional traffic is the cumulative traffic of all
road segments. The amount of traffic on the road is determined
by both private cars and taxis, but the data we obtain is only
the trajectory data of taxis. Therefore, we need to calculate
the traffic volume of private cars through the traffic volume
of taxis. The ratio of private cars to taxis on each road is
different, and if we get this ratio, we can calculate the traffic
volume of private cars easily. From the information provided
by the Beijing Traffic Development Annual Report, we know
the proportions of the number of taxis and private cars on
the main traffic roads. Because the areas we divide are based
on these major traffic roads, we can assume that all roads in
the same area have the same taxi and private car ratio. We
calculate the traffic volume of each functional area by the
following formulas:

SAi = αi

Ni∑
j=1

SGj , (6)

SGj =

nj∑
j=1

SRk, (7)

where SAi means the total number of private cars in the
functional region i, which is divided into Ni girds. And αi
represents the corresponding ratio of private cars and taxis in
the region i. SGj represents the total number of taxis in grid
j which contains n roads. SRk means the number of taxis
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on road k. And through formulas (6) and (7), we obtain the
traffic volume of private cars in each functional region.

2) Spatio-temporal Interaction Modeling: After obtaining
the traffic volume in various areas of Beijing city, we continue
to study the human mobility patterns under the city scale.
Despite the long history of building human mobility models,
researchers still lack highly accurate methods to predict urban
mobility patterns, especially if the types of data are not diverse.

In the related work, we introduce the Gravity model. Gravity
models are widely used in the study of travel distribution and
are recognized as models for predicting urban travel patterns.
Although this model has a very similar form to Newtons
gravity law, it is unconstrained, which will lead to problems
in predicting traffic volume. To ensure the constraints, we em-
ploy the origin-constrained gravity model to predict mobility
patterns in cities, described as:

Tij = SAi
mjf(i, j)∑R
k 6=imkf(i, k)

, (8)

where the distance function f(i, j) can be of any forms, and
in our study, we define f(i, j) as the relative attraction of
destination j to travelers at origin i.

The PWO model is proposed by Yan et al. [21] to capture
the potential drivers of human mobility patterns at the city
scale, which does not depend on any adjustable parameters.

In [21], the authors abstract the travel origin and destination
into two nodes, and simply partition all cities into 1× 1km2

square zones. Different from their study, we consider the
regional factors and study the patterns of human mobility
between regions instead of nodes, which we obtain through the
ARS method. We named this new method as RPWO model.

The model is derived from a stochastic decision-making
process of an individuals destination selection. People will
weigh the benefit of each locations opportunities before choos-
ing the travel destination. The more opportunities a location
has, the higher the interest it offers, and the higher the chance
of it being chosen[38]. Its population can reflect the number
of a locations opportunities. As the population distribution
is available, it is reasonable to assume that the number of
opportunities at a location is proportional to its population.

In our RPWO model, we simply assume that the attraction
of a destination is inversely proportional to the population Qji
in the circle centred at the destination with radius Rij (the
distance between the centre of gravity of original region i and
destination region j), and to make the result more in line with
the real situation, minus a finite-size correction 1/M . For a
region, the centre of gravity G(x, y), the calculating methods
are as follows.

x =
1

L

L∑
l=1

xl, y =
1

L

L∑
l=1

yl, (9)

where L means the number of squares (0.001 latitude and
0.001 longitude) in the region. xl and yl represent the relative
longitude and relative latitude of the squares node in the region
respectively.

TABLE III
THE FORMAT OF THE GENERATED TRACE DATASET.

Attribute Notes Example
ID The vehicle ID 3901

Depart The time when the trip beginning 59900.64
FromTaz The orgin region 103

ToTaz The destination region 95

Route edges The ID list of the road through
which the trip passes in sequence ”201526561#2,238470275,...,247814291#0”

Then we can calculate the the relative attraction of destina-
tion to origin:

Qji =

N∑
r=1

βrPr =

N∑
r=1

S̃r
Sr
Pr, (10)

f(i, j) = oj(
1

Qji
− 1

M
), (11)

where Qji means the population in the circle centred at the
destination with radius Rij . N is the total number of the region
contained in the circle. βr means the ratio of the region r
contained in the circle, which is obtained by dividing the area
contained within the circle (S̃r) by the total area (Sr). Pr
is the population of region r. f(i, j) represents the relative
attraction of destination j to travelers at origin i. oj is the
total opportunities of destination j, and M is the total number
of people in the city.

We assume that the probability of mobility from region i to
j is directly proportional to the attraction of j. And referring to
[38], the number of opportunities oj is directly proportional
to the population mj . Putting formula (11) to (8), we can
calculate the travel volume from region i to region j:

Tij = SAi
mj(1/Qji − 1/M)∑R
k 6=imk(1/Qki − 1/M)

, (12)

where SAi is the number of trips departing from i, which
can be obtained by (6) and (7). R means the total number of
regions in the city.

B. Trajectory Simulation

We calculate the traffic volume of all regions by the RPWO
model and put them into a matrix named traffic volume O/D
matrix, where the value in row i and column j means the traffic
volume from i to j. After obtaining the urban traffic volume
O/D matrix, we can perform dataset simulation generation
work combined with the modified road network files. To
achieve this goal, we use SUMO tools.

Firstly, we classify the roads of the city according to the
areas that have been divided. The road network files contain
the latitude and longitude of the connection points of every
road. We use the latitude and longitude to calculate which
area a road belongs to, and write the road ID contained in
each area in the road network files.

Then, we use the OD2TRIPS plugin in the SUMO tools,
import the O/D matrix, and split it into individual vehicle
itineraries. According to the city’s specific conditions and data,
we input the O/D matrix, the road network file, and the road
list included in the area, set the generation period, the travel
ratio of each period, and generate vehicle type parameters. The
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TABLE IV
THE FORMAT OF THE GENERATED TRACE DATASET.

Attribute Name Notes Example
time Current time(s) 25200
id The vehicle id 1604674
x Longitude of the vehicle 116.2821
y Latitude of the vehicle 39.82672

angle The angle at which vehicle
is traveling 300.5352

speed Current vehicle speed(m/s) 13.30696

lane The road ID where vehicle is
currently located 139824665#1 0

XML file of series vehicle travel information can be generated,
where each trip information includes a vehicle ID, a departure
time, a departure place ID, and a destination ID.

With the help of OD2TRIPS, the origin and destination
information for each vehicle trip is generated. However, it
is not a complete trip representation. Thus, we use the D-
UAROUTER plugin in the SUMO tool to make vehicular
trajectories using shortest path computation. The generated
trajectories consist of vehicular information such as road
segment, speed, and travel time. We input the road network
files and the trip information generated by OD2TRIPS, set the
simulation period, shortest path calculation method, and finally
create the vehicle trip trajectory information, including the
vehicle ID, travel time, and the travel route. Vehicle trajectory
information can help us to analyze urban road traffic, regional
travel modes, and so on. The format of the trajectory data
we get is shown in TABLE III, and the size of this trajectory
generated dataset of one day is about 3 GB.

In addition to vehicle trajectory information, microscopic
information is also important for our next study. We use
the Trace File Generation plugin in the SUMO tools to
generate information including the relative position, latitude
and longitude of the vehicle, driving angle, road ID and
instantaneous speed of the vehicle per second for a specified
time interval. We enter the same information as required in the
DUAROUTER function, write the corresponding configuration
file at the same time, set the time interval to 15 minutes, and
generate vehicular trace files for different time periods. The
size of the generated dataset of one day is about 200 GB, and
we can see the format of the generated trace datasets from
TABLE IV.

C. Complexity Analysis

The time complexity analysis of our proposed framework
considers the main four components. For LDA, its time
complexity is O(rK) (r is the number of regions and K is
the number of topics). For Algorithm 1, its time complexity
is O( r

2+r+m2×n
2 ) (r is the number of regions, m is the total

number of nodes in each connected component, n is the total
number of connected components). The time complexity for
ARS is O(NR) (N is the number of grids, R is the number
of major urbanroads). For the RPWO model, since every
parameter in the model can be obtained directly, the parameters
can be ignored. To sum up, the overall time complexity of our
model is O(rK + r2+r+m2×n

2 +NR).

VI. VERIFICATION LAYER

After generating the private car trajectory data, we design
the verification model to validate the data’s accuracy and
authenticity. In our verification layer, the data can be validated
in the macroscopic and microscopic views, respectively.

A. Macroscopic Model

In the macroscopic model, we do the analysis and contrast
test with the real traffic condition described in the Beijing
Traffic Development Annual Report. In order to show the
performance of our model, we also take the existing gravity
model and PWO model as the core of the dataset generation
and conduct comparative experiments.

1) Traffic Flow: According to the report, from the overall
situation of road traffic in Beijing, the expressway and the
main road are the main channels for carrying out traffic
operations. Therefore, we analyze the actual traffic flow data
and the generated traffic flow data of the main roads in
Beijing. Fig. 6 is a comparison of the traffic flow of major
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Fig. 6. Traffic Flow of Major Roads in Beijing.

roads in Beijing. The real data is the main road traffic flow
data obtained by the Beijing Traffic Development Research
Center in 2012. From the results, both the actual data and
the generated data show that the all-day flows of the West
Fourth Ring Road and the East Fourth Ring Road are at the
forefront. The flow rates of the West Fifth Ring Road and
the South Second Ring Road are lower, indicating that the
traffic burdens are lighter. From the overall comparison results,
except for the South Fifth Ring Road and the East Fifth Ring
Road, the data generated by us is more consistent with the real
data. By contrast, the gravity model method is very inaccurate
in describing the condition of South Second Ring Road, East
Second Ring Road, and North Second Ring Road. In contrast,
the PWO model’s method is weak in the South Fifth Ring
Road, East Fifth Ring Road, East Fourth Ring Road, and South
Second Ring Road.

2) Travel Range: For human mobility analysis, travel time
distribution and distance distribution are two crucial param-
eters. By studying the amount of travel in different periods,
researchers can propose better travel optimization programs
to alleviate road conditions and improve travel efficiency.
Besides, studying the distribution of human travel distance also
plays an important role in road planning and travel prediction.
Therefore, we use the generated trajectory data to analyze the
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distributions of travel time and distance. The accuracy of the
simulation data is evaluated by comparison with real data.

RMGen Model

(a) 0:00-12:00 (b) 12:00-24:00

Fig. 7. Travel time distribution.

Fig. 7 is a distribution of travel volume of residents’ travel
time. The data that participated in the comparison includes
the official statistics of the data generated by several methods.
The result proves that the trajectory data we generated has the
same travel characteristics as the real data. In addition, as can
be seen from Fig. 7, 7:00-9:00 and 17:00-19:00 are two peak
travel periods. The amount of travel in these two time periods
accounts for about 50% of the total daily travel volume. The
data generated by our RMGen model is more consistent with
the real situation.
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Fig. 8. Travel distance distribution.

In terms of the distribution of residents’ travel distance,
Fig. 8 is the result of our analysis. We compare the generated
data with the official travel distance distribution data. All these
generated data are consistent with the real situation. From the
distribution of travel distance, the number of trips is inversely
proportional to the overall distance. As the distance increase,
the number of trips decreases. For driving, humans prefer to
have short distance trips of 0-5 kilometers, which accounts for
more than 40%. Considering the specific circumstances, when
the travel distance is too long, people will choose the train,
subway and other modes of travel instead of driving, due to
the consideration of fuel consumption, time spent, and so on.

3) Traffic Condition: From the macroscopic traffic flow
situation, the overall travel distances and travel times of the
vehicle are regular. Referring to [29], we use the navigation
service of Baidu Map APIs to validate our generated datasets.
Today, with the growing use of mobile devices, most of us
have experience using map service applications. When using
these software, we input the origin and destination positions
and select the appropriate travel mode, such as walking, bus,

and private car, to get the estimated route lengths and travel
times.

Generated Data
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Tr
av

el
 T

im
e 

(s
)

Route Length (m)

 

 

(a) 0 - 5 km

Generated Data
Baidu Map APIs

Tr
av

el
 T

im
e 

(s
)

Route Length (m)

 

 

(b) 5 - 10 km

Fig. 9. Traffic condition comparison of travel time and distance.(a) Route
lengths are less than 5km. (b) Route lengths are between 5km and 10km.

In the following study, we use the navigation services of
Baidu Map APIs to compare with our generated datasets. From
Fig. 8, we can see that more than 70% of the vehicles travel
within distances of less than 10 km. Therefore, we put the
focus of the study on the travel of vehicles within 10 km.
Fig. 9 shows a scatter plot of the travel times and route lengths
estimated from the Baidu Maps APIs and generated by us.
Fig. 9(a) represents the travel situation of vehicles within 5 km,
and Fig. 9(b) represents the travel of vehicles ranging from 5
to 10 km. We note that in both ranges of route lengths, the
generated travel times are overlapped with the values provided
by the navigation service. This also reflects that the generated
vehicle speed distribution is more in line with the speed
distribution of real vehicles. In addition, compared with the
distance ranging from 5 to 10 km, the generated data of travel
time is more in line with the real situation during the short
distances travel within 5 km, which proves that our proposed
model is more suitable for generating travel trajectories with
shorter distances.

Fig.10 shows the visual comparison of the vehicle trajectory
geographic information between the generated data and the
real situation. Fig.10(a) is the real morning rush hour (7:00-
8:00) vehicle trajectory geographic information map, from
the government’s traffic report, the red part represents the
road with a high traffic density. For comparison, we use the
generated trajectory data to extract vehicle position informa-
tion from 7:00 to 8:00, depicting the distribution of vehicle
trajectories during the period, as shown in Fig.10(b). The
color from green to red represents the traffic density from
small to large. Comparing Fig.10(b) with Fig.10(a), we can
see that at the rush hour, our generated data is similar to
the geographical distribution of vehicle trajectories of real
data. In addition, we add vehicle trajectory analysis during
off-rush hours (14:00-15:00), as shown in Fig.10(c). During
the off-rush hours, the number of vehicle travel trajectories is
significantly reduced, and the city’s overall road traffic density
is reduced considerably.

B. Microscopic Model

In this section, we adopt the method of analyzing and eval-
uating the accuracy of the generated data from the perspective
of acceleration and relative distance, which is presented by
Punzo et al. [39].
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TABLE V
JERK ERROR STATISTICS OF REAL AND GENERATED TRAJECTORIES.

Indicator Original
(7:00-7:15)

Original
(7:15-7:30)

Original
(14:00-14:15)

Generation
(7:00-7:15)

Generation
(7:15-7:30)

Generation
(14:00-14:15)

%Of jerk values > abs (3(m/s3)) 3.276272 2.994038 5.472061 5.270598 3.719935 4.974231
Maximum jerk(m/s3) 7.275132 25.000003 8.173139 11.591182 11.598726 10.991288
Minimum jerk(m/s3) -10.648148 -27.500009 -20.500009 -11.590758 -11.590758 -13.127592

(a) Morning rush hour in reality (b) Morning rush hour of generated data (c) Off-rush hour in generated data

Fig. 10. The visual comparison of the vehicle trajectory geographic information.

In this part, we choose the morning rush hour (especially
from 7:00 to 7:30) and off-rush hours (14:00-14:15) of the
workday as an analysis period. In addition, we use six sets of
observations as a contrast, with the time interval of 15 minutes
for each data collection. This data is the traffic trajectories of
7:00-7:15, 7:15-7:30, and 14:00-14:15 on weekdays extract-
ed from the original downloaded dataset and the generated
dataset.

1) Jerk Analysis: Vehicle acceleration is an important part
of vehicle dynamics and traffic flow evaluation. So it is
necessary to validate the accuracy of the acceleration of our
generated trajectory data. There is an obvious way to validate
acceleration data, which is to check its distribution across the
entire dataset. Fig. 11 shows the acceleration frequency of the
originally downloaded datasets and generated datasets. From
Fig. 11, we can see that whether real data or generated data,
the frequency distributions of vehicle acceleration are usually
normally distributed.

Apart from the distribution of the acceleration values, the
jerking factor also gives an important indication of data
quality. The jerking factor j[m/s3], means the variations of
acceleration in time, which is the derivative of the acceleration.
In our study, we consider the jerking values in reality around
±3m/s3 as an acceptable value for applications of traffic flow
microscopic simulation [40].

Therefore, we propose these indicators to do the jerk
analysis:

• The percentage of trajectory data with j higher than the
threshold of ±3m/s3;

• Maximum and minimum j in the generated datasets.

The jerk error statistics results of the analysis are reported
in TABLE V. As we can see, the percentages of jerk values
higher than ±3m/s3 are 3.28% (Original (7:00-7:15)), 2.99%
(Original (7:15-7:30)) and 5.47% (Original (14:00-14:15)),
while the generated data has similar result (5.27%, 3.72%
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(b) Generated data (7:00-7:15)
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Fig. 11. Acceleration frequency of real datasets and generated datasets.
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TABLE VI
PLATOON CONSISTENCY (SPACING INDICATORS) ERROR STATISTICS OF REAL AND GENERATED TRAJECTORIES.

Indicator Original
(7:00-7:15)

Original
(7:15-7:30)

Original
(14:00-14:15)

Generation
(7:00-7:15)

Generation
(7:15-7:30)

Generation
(14:00-14:15)

Total no. of vehicle pairs 4248 4416 3283 4931 4021 3671
No.vehicle pairs with spacing < 5m 24 18 16 94 50 33
%Vehicle pairs with spacing < 5m 0.56 0.41 0.55 1.91 1.24 0.90

Mean observation period of vehicle pairs(s) 19.62 24 20.33 27.38 27.69 28.80
The longest observation period for a vehicle pair(s) 49.87 49.85 49.77 50.11 49.98 50.02

and 4.97%). Horizontal comparison, the general data set error
is less than 10%, indicating that the data set is relatively
reasonable. What is more, maximum and minimum jerk values
reach relative irrationality values in all the chosen data.

2) Consistency Analysis: During the driving process, ve-
hicles must keep reasonable distances with other vehicles;
otherwise, traffic accidents are likely to occur. When we
consider this point, we can validate the rationality of the
generated dataset from a distance between the vehicles.

When we focus on two following vehicles, previous consid-
eration shows that the spacing between vehicle pairs can be
used to quantify the error of the estimated trajectory [40]. In
fact, the vehicle spacing in a vehicle pair at a certain moment
can be measured directly from the position of two vehicles at
this moment.

To simplify the calculation processing, we assume that the
vehicles always travel along straight lines on the road. Then the
distance between the vehicles can be calculated directly from
the projected coordinates corresponding to the geographical
coordinates of the vehicles:

∆sobsnp (k) =

√
(xobsn,k − xobsp,k)2 + (yobsn,k − yobsp,k )2, (13)

where ∆sobsnp (k) represents the vehicle spacing between vehi-
cles n and p at time k. The points P obsn,k = (xobsn,k, y

obs
n,k) and

P obsp,k = (xobsp,k , y
obs
p,k ) are the actual vehicle positions of n and

p.
In general, when ∆sobsnp (k), at least for one instant, decreas-

es below a threshold of 5m, there will be a collision between
the two cars, which leads to a traffic accident. If there are a
number of abnormal values in the datasets, the dataset is most
likely problematic.

For the consistency analysis, the following statistics are
meaningful:
• The total number of vehicle pairs. This is the total number

of vehicle pairs in each chosen datasets;
• The mean and longest observation period of vehicle pairs

in the datasets;
• The number and the ratio of vehicle pairs with the spacing

less than 5m.
The consistency statistics results of the analysis are reported
in TABLE VI. According to the conclusion, we can learn
that the total number of vehicle pairs approximately ranges
from 3000 to 5000 vehicles. In all selected datasets, the origin
datasets we download have 24 and 18 anomalous vehicle pairs
between 7:00-7:15 and 7:15-7:30 in rush hour, accounting for
0.56% and 0.41% of the total vehicle pairs. While in the off-
rush hour (14:00-14:15), there are 16 unusual vehicle pairs.

As for the datasets we generated, there are 94, 50, and 33
abnormal vehicle pairs in the 7:00-7:15, 7:15-7:30 and 14:00-
14:15 period, accounting for 1.91%, 1.24% and 0.90% of the
total vehicle pairs. It can be seen that the abnormal data in
the generated datasets are maintained in a small range, which
proves that the generated data is more reasonable. Besides, in
the generated datasets, the average vehicle spacing is about
27m. What is more, Fig. 12 reflects the occurrence frequency
of the spacing length between vehicle pairs. These six sets
of observation data have very similar distributions, which
means that the generated datasets have similar vehicle mobility
patterns with real data.
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Fig. 12. Inter-vehicle spacing occurrence frequency.

VII. CONCLUSION

The lack of a private car trajectory dataset hinders the
research in-vehicle communication and other related fields. To
solve this problem, we propose a tri-layer model to generate
vehicular trajectory datasets, called RMGen. We discussed
the trajectory dataset generation process based on taxi GPS
data and urban vehicular social network information and then
validate the authenticity and accuracy of the generated data.
We randomly generated a trajectory dataset of 13,299,921
private cars on a particular day within the fifth ring road
of Beijing. There is no uniform standard for verification of
generation trajectory dataset. So we present a novel method,
which compares our dataset with the real traffic situations from
macroscopic and macroscopic perspectives. The results under
our validation model show that our method has high accuracy



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2022 13

and universality. Our model provides a broad prospect for the
studies which get tough for the lack of relevant data.

Our method performs better in heavy density scenarios than
in low density scenarios, which is a limitation of our work. In
the future, we will consider multiple factors that may affect
travel patterns, such as weather and travel costs, to build
a more broadly applicable mobility model. In addition, our
proposed ARS method also has specific requirements on the
degree of regularity of urban roads in the region division.
Results may suffer when urban roads become less regular. In
future work, we will further optimize our method to make it
more general.
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