
This is a postprint version of the following published document:

Xiao, Y. H., Ramirez, D., Schreier, P. J., Qian, C. & 
Huang, L. (2022, septiembre). One-Bit Target 
Detection in Collocated MIMO Radar and Performance 
Degradation Analysis. IEEE Transactions on Vehicular 
Technology, 71(9), 9363-9374. 

DOI: 10.1109/tvt.2022.3178285 

 © 2022 IEEE. Personal use of this material is permitted. Permission 
from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for 
advertising or promotional purposes, creating new collective works, 
for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works. 

https://doi.org/10.1109/tvt.2022.3178285


1

One-Bit Target Detection in Collocated MIMO
Radar and Performance Degradation Analysis

Yu-Hang Xiao, Member, IEEE, David Ramı́rez, Senior Member, IEEE, Peter J. Schreier, Senior Member, IEEE,
Cheng Qian, Member, IEEE, and Lei Huang, Senior Member, IEEE

Abstract—Target detection is an important problem in
multiple-input multiple-output (MIMO) radar. Many existing
target detection algorithms were proposed without taking into
consideration the quantization error caused by analog-to-digital
converters (ADCs). This paper addresses the problem of target
detection for MIMO radar with one-bit ADCs and derives a Rao’s
test-based detector. The proposed method has several appealing
features: 1) it is a closed-form detector; 2) it allows us to handle
sign measurements straightforwardly; 3) there are closed-form
approximations of the detector’s distributions, which allow us to
theoretically evaluate its performance. Moreover, the closed-form
distributions allow us to study the performance degradation due
to the one-bit ADCs, yielding an approximate 2 dB loss in the
low-signal-to-noise-ratio (SNR) regime compared to∞-bit ADCs.
Simulation results are included to showcase the advantage of the
proposed detector and validate the accuracy of the theoretical
results.

Index Terms—Multiple-input multiple-output (MIMO) radar,
one-bit analog-to-digital converter (ADC), Rao’s test, target
detection.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) radar, which uses
multiple antennas at both transmitter and receiver, can provide
significant performance gains by exploiting waveform diver-
sity. With the increase of array sizes and the emergence of
resource-limited applications, one-bit sampling has become a
promising technique, as it provides, on one hand, cost and
energy efficiency, and, on the other, higher sampling rates.

During the past two decades, one-bit processing has been
studied for many problems, ranging from direction-of-arrival
(DOA) estimation [1]–[3], MIMO communications [4]–[7],
frequency estimation [8] to target tracking [9]. These works
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have shown that, with a rational design of signal processing
algorithms, the performance degradation is usually relatively
small. However, most of the existing algorithms in radar target
detection were derived without considering the quantization
effect [10]–[12]. The performance degradation caused by im-
perfect analog-to-digital converters (ADCs) has also not been
well studied in the literature.

The use of sign (or one-bit) measurements hinders the
application of standard detection techniques, such as the
generalized likelihood ratio test (GLRT), as in these cases, the
likelihood function is a product of Q functions, and it does
therefore not admit a closed-form. Concretely, there does not
exist analytical solution of the maximum likelihood estimates
(MLE) of the unknown parameters, i.e., target reflectivity.
Even though numerical optimization methods can be used to
find the solution [13], they lead to detectors without closed for-
m, which translates into a complicated performance analysis.
An alternative to numerical methods was developed in [14],
which considered a simplified model. Concretely, it assumes
that the target reflectivity is known a priori. Nevertheless,
this assumption is unrealistic from a practical standpoint since
the reflectivity is fast-changing and generally needs to be
estimated. In this paper, to avoid the computation of the MLE,
we resort to Rao’s test, which only requires the computation
of the Fisher information matrix (FIM) and allows us to obtain
a closed-form statistic. This also frees us from requiring prior
information on the target reflectivity, as it has been implicitly
estimated by a second-order Taylor’s approximation of the
MLE [15].

A very important problem is to analyze the performance
degradation of the proposed Rao’s test with one-bit ADCs
compared to the ∞−bit case. It is worth mentioning that the
performance loss analysis has been visited several times in
the estimation literature. Despite the different backgrounds,
it is quite commonly suggested that for symmetric one-bit
ADCs, the performance loss is π/2 (2 dB) in the low-signal-to-
noise-ratio (SNR) regime, while growing larger when the SNR
increases [6], [8], [9], [16], [17]. However, this problem has
attracted much less attention in the detection field. To the best
of our knowledge, only [13] proved a 2 dB loss for all SNRs
based on Wilks’ theorem [15], which contradicts the general
result in estimation papers. This is because Wilks’ theorem is
not generally applicable for one-bit quantized data, as will be
shown later.

In this paper, we carry out the performance loss analysis
by comparing the theoretical probabilities of false alarm and
detection of the derived Rao’s test with 1-bit ADCs and the
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GLRT with ∞−bit ADCs. Since, both, Rao’s test and GLRT
are asymptotically optimal [15], [18], their performances can
be seen as the best-case scenario one can get with one-bit and
∞−bit ADCs. This motivates us to analyze the distribution
of the detectors under the null and alternative hypotheses. We
show that the proposed Rao’s test is exponentially distributed
in the null case. For the non-null distribution, we first provide
a near-exact result based on Imhof’s generalized non-central
χ2 distribution [19], which is followed by a non-central χ2

approximation that is valid only in the low-SNR regime. For
the ∞−bit case, the GLRT has an identical null distribution
as its one-bit counterpart, whereas, in the non-null case, it is
non-central χ2 distributed for all SNRs, with the non-centrality
parameter increased by a scale of π/2. This proves that the
2 dB performance degradation is achievable only in the low-
SNR regime, which agrees better with the results in estimation
papers.

The contributions of this paper are summarized as:
1) The Rao’s test is formulated for one-bit detection in

collocated MIMO radar. Compared to the GLRT, it has
the advantage of being in closed-form, i.e., no iterative
algorithms are required. In addition, it does not need
prior information on the target reflectivity, as opposed
to [14].

2) We obtain near-exact null and non-null distributions of
the devised detector. For the performance comparison,
a low-SNR approximation of the non-null distribution
is also provided, which shows that Wilks’ theorem only
works in the low-SNR regime, but not in general for
one-bit quantized samples.

3) The performance of the detector is compared with the
∞−bit counterpart, which shows that the performance
loss of using one-bit ADCs is as low as 2 dB in the
low-SNR regime. Alternatively, this performance gap
could also be compensated by increasing the number
of samples by a factor of π/2.

The remainder of this paper is organized as follows. The
signal model for one-bit detection in collocated MIMO radar
is presented in Section II. In Section III, a detector based on
Rao’s test is derived, with its null and non-null distributions
analyzed in Section IV. The performance degradation of using
one-bit ADCs with respect to ideal (∞-bit) ADCs is studied in
Section V. Section VI provides simulation results to validate
the theoretical calculations. Finally, the main conclusions are
summarized in Section VII.

Notation

Throughout this paper, we use boldface uppercase letters
for matrices, boldface lowercase letters for column vectors,
and light face lowercase letters for scalar quantities. The
notation A ∈ Rp×q (Cp×q) indicates that A is a p × q real
(complex) matrix. The (i, j)−th entry of A is denoted by Aij ,
whereas ai corresponds to the i−th entry of the vector a. The
Frobenius norm and trace of A are ||A||F and tr(A), and
vec(A) is the vectorization of the matrix A. The superscripts
(·)−1, (·)T , and (·)H represent matrix inverse, transpose, and
Hermitian transpose operations. The operators E[a] and V[a]

denote, respectively, the expected value and variance of a,
C[a, b] is the covariance between a and b, and ∼ means
“distributed as”. The χ2

f and χ2
f (δ

2) denote, respectively, the
central and non-central Chi-squared distributions, where f
is the number of degrees-of-freedom (DOF) and δ2 is the
noncentrality parameter. Finally, the operators Re(·) and Im(·)
extract the real and imaginary parts of their arguments, ı is the
imaginary unit, and sign(·) takes the sign of its argument.

II. SIGNAL MODEL

Consider a collocated MIMO radar system where there are
p transmit and m receive antennas, which are collocated. The
transmitter emits a probing beam towards the desired angle φ.
Assuming the presence of a far field target, the received signal
at the input of the ADCs can be written as

X = βar(φ)a
T
t (φ)S + N, (1)

where X ∈ Cm×n, with n being the number of available
snapshots, and N ∈ Cm×n is additive white Gaussian noise
[20]–[24]. Here, β is the unknown target reflectivity, i.e., a
complex amplitude proportional to the radar cross section (RC-
S), at(φ) ∈ Cp×1 and ar(φ) ∈ Cm×1 stand for the transmit
and receive steering vectors,1 respectively, and S ∈ Cp×n is
the known transmitted waveform with tr(SSH) = n. After
one-bit quantization, the baseband signal becomes

Y = Q(X) = sign(Re(X)) + ısign(Im(X)), (2)

where Q(·) denotes the quantization operator.
Our task is to identify the presence or absence of the

target based on the quantized observations Y. Let H1 be the
hypothesis where there is target in the received data, while
H0 be the hypothesis where there is no target. Then, without
quantization, the standard target detection problem can be
described as the binary hypothesis test

H0 : X = N,
H1 : X = βar(φ)a

T
t (φ)S + N,

(3)

whereas with one-bit ADCs, the target detection problem
becomes

H0 : Y = Q (N) ,
H1 : Y = Q

(
βar(φ)a

T
t (φ)S + N

)
.

(4)

These two detection problems have been addressed in the
past. The works in [10]–[12] have studied the target detection
problem for MIMO radar without quantization in (3). Then,
[14] considered the MIMO target detection problem from sign
measurements, which can be viewed as a one-bit quantized
version of that in [10]–[12]. However, the reflectivity parame-
ter, β, was assumed to be known, which is usually unrealistic
in practical MIMO radar systems. In this paper, we take β as
an unknown deterministic value, namely, no prior distribution
on β is required. Mathematically, the above model can be seen
as a complex-valued version of the decentralized detection in
wireless sensors network in [13], where the authors proposed
a GLRT for real-valued measurements based on an iterative

1The steering vectors are known taking into account that φ and the array
geometries are known.
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algorithm to seek the MLE of β. However, detectors without
closed-form are less useful for performance analysis since only
Wilks’ theorem can be applied. In Sections IV and V, we will
show that Wilks’ theorem only works for the low-SNR regime
in one-bit detection. Therefore, to avoid the MLE computation,
in this work we derive a closed-form detector based on Rao’s
test, which allows us to perform a more detailed performance
assement.

III. DERIVATION OF RAO’S TEST

The common approach to solve the above hypothesis testing
problems with unknown parameters is to derive the GLRT.
However, for one-bit measurements, the likelihood function
is a product of Q functions, which does not admit a closed-
form expression, making the finding of the MLE of β also
nontrivial. This results in iterative detection algorithms, as
in [13], and poses challenges for the subsequent performance
analysis. Moreover, it can be seen in (4) that, after one-bit
quantization, all amplitudes are lost, which means that the
distribution of the sign measurements is independent of the
noise power under H0, resulting a simple null hypothesis.

The aforementioned challenges motivate us to derive a de-
tector based on Rao’s test, as it does not require the MLE of the
unknown parameters when H0 is simple. Before proceeding,
and for notational simplicity, let us define Z = ar(φ)a

T
t (φ)S,

z = vec(Z), y = vec(Y), and

zi = ui + ıvi, yi = ri + ısi. (5)

with i = 1, . . . , N , where N = mn. Then, we have

βzi = aui − bvi + ı(avi + bui), (6)

where β = a+ ıb. Analogously to the real-valued case in [13],
we can write the log-likelihood function under H1 as:

L(y;θ) =
N∑
i=1

log

(
Q

[−ri(aui − bvi)
σn/
√
2

])

+
N∑
i=1

log

(
Q

[−si(avi + bui)

σn/
√
2

])
, (7)

where

Q(x) =

∫ ∞
x

1√
2π

exp

(−x2
2

)
dx, (8)

σ2
n is the noise variance and θ = [a, b, σ2

n]
T . Note that

the log-likelihood under H0 could be easily obtained as
L(y; [0T , σ2

n]
T ). Due to the problem invariances, and as seen

in (7), the likelihood of the data depends only on the ratio
β/σ2

n, instead of on β and σ2
n, individually. Therefore, without

loss of generality, we can simply set σ2
n = 2 and focus on β.

That is, the real and imaginary parts of the noise both follow
the standard Gaussian distribution, which yields θr = [a, b]T .

Now, the only unknown parameter is β and it therefore
follows that Rao’s test statistic is given by [15]

TR =

(
∂L(y;θr)
∂θr

∣∣∣∣
θr=θr,0

)T
F−1(θr,0)

(
∂L(y;θr)
∂θr

∣∣∣∣
θr=θr,0

)
(9)

where θr,0 = [0, 0]T and F(θr) is the Fisher information
matrix (FIM):

F(θr) = −E
[
∂2L(y;θr)
∂θr∂θ

T
r

]
. (10)

The derivation in this case differs from the Rao’s tests in [15]
in two aspects: 1) the data is one-bit quantized, which requires
the usage of the new likelihood function in (7); and 2) the
data is complex-valued, resulting in a two-dimensional Fisher
information matrix. The result is presented in the following
theorem.

Theorem 1: The statistic of Rao’s test is given by

TR =
|tr(YZH)|2

M
, (11)

where M = pmn and the test is therefore

TR
H1

≷
H0

γ, (12)

where γ is a properly selected threshold.
Proof: See Appendix A.

IV. DISTRIBUTIONS OF THE PROPOSED TEST

In this section, we obtain approximate distributions of the
proposed detector, TR, under the null and alternative hypothe-
ses. By computing the first and second order moments of the
real and imaginary parts of the random variable tr(YZH), a
joint Gaussian approximation is established. Then, the distri-
bution of TR is computed via a generalized non-central χ2

distribution. Since the computation of the first two moments
under H0 can be obtained from those under H1, we will first
address the non-null distribution.

A. Distribution under H1

Let us start by rewriting the test statistic as

TR = w2
1 + w2

2 (13)

where

w1 =
Re(zHy)√

M
, w2 =

Im(zHy)√
M

. (14)

We can now establish a bivariate Gaussian approximation for
the joint distribution of w1 and w2. The result is stated in the
following theorem.

Theorem 2: The distribution of w = [w1, w2]
T can be

asymptotically (n→∞) approximated by the a bivariate real
Gaussian distribution with mean

uw(β) =
1√
M

∑N
i=1(ciui + divi)∑N
i=1(diui − civi)

 , (15)

and covariance matrix

Σw(β) =

[
σ2
1 σ12

σ21 σ2
2

]
, (16)
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where

σ2
1 = 1− 1

M

N∑
i=1

(
c2iu

2
i + d2i v

2
i

)
, (17)

σ2
2 = 1− 1

M

N∑
i=1

(
c2i v

2
i + d2iu

2
i

)
, (18)

σ12 = σ21 =
1

M

N∑
i=1

(
c2i − d2i

)
uivi, (19)

with

ci = 1− 2Q(aui − bvi), di = 1− 2Q(avi + bui). (20)

Proof: See Appendix B.
Theorem 2 shows that the detector TR can be expressed as

a squared sum of two correlated Gaussian random variables.
To proceed, we need to use a linear transformation to convert
them into two independent Gaussian random variables with
different variances. First, let us define2

l = Σ
− 1

2
w (w − uw). (21)

Then, we have

TR = (l + Σ−
1
2 uw)

TΣw(l + Σ
− 1

2
w uw). (22)

Using the eigenvalue decomposition of Σw, given by Σw =
PTΛP, where Λ = diag(λ1, λ2), the test statistic can be
rewritten as

TR = (Pl + PΣ
− 1

2
w uw)

TΛ(Pl + PΣ
− 1

2
w uw)

= λ1(ν1 + µ1)
2 + λ2(ν2 + µ2)

2, (23)

with

µ = PΣ
− 1

2
w uw, ν = Pl ∼ N (0, I2). (24)

Thus, TR is distributed as the weighted sum of two indepedent
non-central χ2 random variables with different centrality pa-
rameters, that is, a generalized non-central χ2 distribution. By
integrating this probability density function (PDF) we could
compute the probability of detection of the proposed Rao’s test
in Theorem 1, but there are no general expression for this PDF.
Fortunately, the complementary distribution function of such
a random variable, i.e., the required integral for computing
the probability of detection, is given by Imhof [19], which is
summarized in the following lemma.

Lemma 1: Let R =
∑l
r=1 krχ

2
hr
(δ2r) be a weighted sum

of non-central χ2 random variables with different centrality
parameters and degrees of freedom. Then, its complementary
distribution function is given by

Pr{R > x} = 1

2
+

1

π

∫ ∞
0

sinψ(u)

uρ(u)
du, (25)

where

ψ(u) =
1

2

l∑
r=1

[
hr tan

−1 (kru) +
δ2rkru

1 + k2ru
2

]
− 1

2
xu, (26)

2For notational simplicity, hereafter we drop the explicit dependency on β
of uw(β) and Σw(β).

and

ρ(u) =
l∏

r=1

(
1 + k2ru

2
) 1

4hr × exp

{
1

2

l∑
r=1

(δrkru)
2

1 + k2ru
2

}
. (27)

Then, we can use Lemma 1 with l = 2, ki = λi, δ2i =
µ2
i , and hi = 1 to compute the probability of detection via

numerical integration [25].

B. Distribution under H0

Under H0, we have

uw = 0, Σw = I2, (28)

which implies that w1 and w2 are i.i.d. Gaussian random
variables, yielding

TR ∼ χ2
2. (29)

Hence, TR is exponentially distributed with parameter 1/2, the
probability of false alarm becomes

Pfa(γ) = Pr{TR > γ} = exp(−γ/2), (30)

and the detection threshold can be obtained as

γ = −2 log(Pfa). (31)

V. ANALYSIS OF THE PERFORMANCE DEGRADATION

In this section, we study the detection performance degra-
dation of using one-bit ADCs with respect to ∞-bit ADCs.
Since, both, Rao’s test and the GLRT are asymptotically
optimal detectors [18], their performances can be taken as the
best achievable results in either one-bit or ∞-bit scenarios.
Therefore, we can compute the performance degradation by
comparing the performance of the Rao’s test for one-bit case
and the GLRT for ∞-bit case. This aforementioned analysis
could be achieved by using a series of analytical tools such
as moment-based method [26] or the asymptotic expansion
method [27], [28], which could analyze the performance of
detectors in a very accurate manner. However, to make a trade-
off between the simplicity and accuracy of the expressions,
here, we choose Wilks’ theorem, which provides a simple
expression for the performance metrics and allows us to gain
insights.

A. ∞-bit Case

Let us first study the performance of the GLRT, TGLRT,
with ∞-bit ADCs. In this case, there is no quantization error,
so the received signal is X. Then, we must solve the detection
problem in (3) whose GLRT can be obtained in a similar
manner to [12] and is presented next.

Theorem 3: The GLRT for the test in (3) is

TGLRT =

[
1− |tr(XZH)|2

M tr(XXH)

]N H0

≷
H1

γ, (32)

where γ is a properly selected threshold.
Proof: See [12].

It is easy to show that (32) is a monotone transformation of

T ′GLRT =
|tr(XZH)|2
tr(XXH)

, (33)
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which is equivalent to TR when X is replaced by the one-bit
quantized data Y and also noting that tr(YYH) = 2N . This
shows that the same detector can be applied to both one-bit
and ∞−bit quantized data.

Once we have the GLRT, we can use Wilks’ theorem [15],
which is presented next, to obtain its asymptotic distributions.

Lemma 2: Consider the binary hypothesis testing problem

H0 : θ = θr0 ,θs,

H1 : θ 6= θr0 ,θs,

where θs ∈ Rg×1 is the nuisance parameter vector and θr0 ∈
Rf×1. Then, the GLRT is asymptotically distributed as

−2 log(TGLRT) ∼
{
χ2
f , under H0,

χ2
f (δ

2), under H1,
(34)

where

δ2 = (θr1 − θr0)
T
[
F−1(θ1)

]−1
θr,θr

(θr1 − θr0), (35)

with θ1 = [θTr1 ,θ
T
s ]
T being the true parameters in H1.

It is easy to see that the nuisance parameter is the noise
variance, i.e., θs = σ2

n. Hence, since θ = [a, b, σ2
n]
T , it is

obvious that the DOF is f = 2. Moreover, the non-centrality
parameter of the non-null distribution is

δ2 =M |β|2, (36)

which is derived in Appendix C.

B. One-bit Case

Since Rao’s test has the asymptotic performance of the
GLRT, intuitively, one could also apply Wilks’ theorem for TR,
which would result in a similar non-central χ2 approximation.
Thus, the performance degradation could be easily attained
by a comparison between the non-centrality parameters [13].
However, unlike the ∞−bit case, Wilks’ theorem does not
generally hold for one-bit quantized data due to the strong
non-linearity of the ADCs. More specifically, as shown in (19),
w1 and w2 in TR are correlated, which makes the non-central
χ2 approximation invalid, requiring the more sophisticated
generalized non-central χ2 distribution. Nevertheless, we can
still provide a non-central χ2 approximation to the non-null
distribution in the low-SNR regime. The result is summarized
in the following theorem.

Theorem 4: When the magnitude of β is of order
O(M−1/2), the distribution under H1 of TR can be approxi-
mated as

TR ∼ χ2
2(δ

2
1), (37)

where

δ21 =
2M

π
|β|2. (38)

Proof: See Appendix D.
Comparing (38) with (36), and taking into account that

the null distributions of TGLRT and TR are identical, the
performance degradation in the low-SNR regime is about
10 log10(π/2) ≈ 2 dB.

Remark 1: In many parameter estimation problems, e.g.,
[6], [8], [9], [16], [17], the authors have studied the perfor-
mance degradation by comparing the best achievable perfor-
mance of an estimator with the Cramér-Rao bound, showing
that the minimum achievable loss was also 2 dB in the
low-SNR regime. This matches our result in the detection
problem. Nevertheless, one remarkable difference is that in
the estimation case, the Fisher information is proportional to
the performance bound and differ by the ratio of 2/π in the
low-SNR regime only. In our problem, the FIMs have a fixed
gap of 2/π, but the detection performances are not, in general,
proportional to the Fisher information matrix. The underlying
reason for this phenomenon will be an interesting future work.

VI. NUMERICAL RESULTS

In this section, we carry out numerical simulations to
validate our theoretical findings. We first evaluate the accuracy
of the derived theoretical probabilities of false alarm and detec-
tion, which includes one-bit and ∞−bit scenarios, in the low-
SNR and high-SNR cases. Then, we illustrate the detection
performance and verify the 2 dB performance degradation.
All results are obtained from 106 Monte Carlo trials.

We consider a collocated MIMO radar system with uniform
linear arrays with half-wavelength inter-element spacing. Sim-
ilar to [29], [30], we choose the orthogonal linear frequency
modulation (LFM) signal as the transmitted waveform, which
is shifted towards the angle θ:

Sk,l =
exp

{
ı
n [2π(l − 1) + π(l − 1)2 + (k − 1) sin(θ)]

}
√
p

,

(39)

where k = 1, . . . , p and l = 1, . . . , n. Unless otherwise stated,
the DOA θ is fixed at −π/3. The noise is defined as white
Gaussian noise with zero mean and variance σ2

n = 2, and β
is generated from a complex Gaussian distribution with zero
mean and unit variance, which is scaled to achieve the desired
SNR, defined as:

SNR = 10 log10

( |β|2
σ2
n

)
. (40)

To quantify the approximation error between the theoretical
and empirical cumulative distribution functions (CDFs), we
shall also use the Cramér-von Mises goodness-of-fit test,
which is defined as [31]

ε =
1

K

K∑
i=1

∣∣∣F (ci)− F̂ (ci)∣∣∣2 , (41)

where F (ci) is the empirical CDF and F̂ (ci) is the proposed
approximation.

A. Null Distribution

First, we study the null distribution of the proposed Rao’s
test for one-bit ADCs and the GLRT for ∞-bit ADCs. Con-
cretely, we used these distributions to compute the probabili-
ties of false alarm, Pfa. Fig. 1(a) depicts Pfa for m = p = 4
as a function of the threshold for the approximation in (30),
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Fig. 1. Probability of false alarm versus threshold for m = p = 4 and
n = 8, 32, and 128.

which is valid for large N or, equivalently, n. This figure
also shows the empirical probabilities obtained using Monte
Carlo simulations with n = 8, 32, and 128, which allows us
to see the accuracy of the proposed approximation for values
of n as small as 32. Additionally, we have also computed
the approximation errors, ε, between the approximated and
empirical CDFs, which are given by ε = 1.75 × 10−5 for
n = 8, ε = 9.9 × 10−8 for n = 32, and ε = 7.38 × 10−8

for n = 128. This confirms the asymptotic nature of the pro-
posed approximation, which is due to the asymptotic Gaussian
approximation.

In Fig. 1(b), for the same scenario as before, we examine the
accuracy of the null distribution of TGLRT. The approximated
and empirical distributions also agree very well with each
other, with approximation errors as small as ε = 3.40× 10−5

for n = 8, ε = 2.52× 10−6 for n = 32, and ε = 3.06× 10−7

for n = 128.

B. Non-null Distribution

This section studies the accuracy of the approximations of
the probability of detection, including (25) and (37) for Rao’s
test and (34) for the GLRT. We first examine the accuracy of
the distributions for one-bit data, namely (25) for the general
case and (37) for the low-SNR regime. The results are shown
in Fig. 2, where the experiment parameters are m = p = 4,
n = 32, 128, and 256, and SNR = −23 dB for Fig. 2(a) and
SNR = −13 dB for Fig. 2(b). The approximation errors are
also summarized in Table I, which shows that the analytic
result in (25) works very well for both cases, while (37)
is accurate in the low-SNR regime. This is because (37) is
obtained on the premise of a low SNR, and hence loses validity
as the SNR increases. However, it is very simple and can be
used to compare performance with the ∞−bit detector.

In Fig. 3, we check the accuracy of the non-null distribution
in (34), which corresponds to the GLRT with ∞-bit ADCs.
Due to the fact that (34) is derived without making any
assumptions about SNR, it is likely to perform well in both
high and low SNR environments. As a result, we study both
regimes with m = p = 4 and n = 64. Concretely, we
have considered SNR = −13dB, SNR = −16dB, and
SNR = −23dB, which yield the errors ε = 8.53 × 10−7,
ε = 3.89 × 10−5, and ε = 4.16 × 10−4, respectively. These
results confirm that the derived non-null distributions are able
to accurately predict the detection performance and enables
us to compare the performance of one-bit and ∞-bit ADCs
theoretically, as done in Section V.

C. Performance Degradation

In this section, we study the probability of detection, for a
fixed probability of false alarm, of the proposed detector TR
and verify the prediction of 2 dB performance degradation.
It is worth mentioning that [14] has also considered the one-
bit MIMO radar detection problem, but adopted a simplified
model whereby the reflection parameter β is known. The
likelihood ratio test (LRT) in [14] is:

TLR =

N∑
i=1

log (Q [−ri(aui − bvi)])

+
N∑
i=1

log (Q [−si(avi + bui)]) + 2N log(2), (42)

However, it should be noted that in real-world applications
β can hardly be known. Therefore, the above LRT is only
used as a (genie-aided) benchmark, but cannot be applied in
realistic conditions.

Fig. 4 depicts the probability of detection versus the SNR
for Pfa = 10−3, m = p = 4 and n = 32, 256, and 2048. This
figure shows that the performance of the detector in the one-
bit case is 2 dB away from the case of ∞−bit quantized data,
which matches very well with the theoretical prediction. Note
that this approximation also holds for moderate SNRs, despite
it was derived for low SNRs. In addition, the distances between
TR and TLR are roughly 2 dB when SNR is low but narrows
to 1 dB as Pd approaches 1. This is because for large SNRs,
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TABLEI
ERRORSOFDIFFERENTAPPROXIMATIONSMETHODSATDIFFERENTSNRS.

SNR=−23dB,m=p=4 SNR=−13dB,m=p=4

Approximation n=32 n=128 n=256 n=32 n=128 n=256

Eq.(25) 1.89×10 6 1.89×10 7 3.03×10 7 3.91×10 6 1.53×10 6 1.15×10 6

Eq.(37) 1.89×10 5 9.19×10 5 2.23×10 4 4.24×10 3 2.86×10 2 2.86×10 2

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

P
d

Simulated
Theoretical

χ2approximation

n=32

n=128

n=256

(a)SNR=−17

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

P
d

Simulated
Theoretical

χ2approximation

n=32

n=128

n=256

dB

(b)SNR=−7dB

Fig.2. ProbabilityofdetectionofRao’stest(one-bitdata)versusthreshold
form=p=4andn=32,128,and256.

theestimateofβismoreaccurateandthepriorinformation
hasthereforelessimpactonthedetectionperformance.
Comparing(38)with(36),itiseasytoseethatthe2dB
performancedegradationcanalsobecompensatedbyaπ/2
multiplicationofthenumberofsamples.InFig.5,weplot
theprobabilityofdetectionversusnumberofsamplesn,in
logarithmicscale,foranexperimentwithm =p=4and
severalSNRvalues.Tobetterillustratetheperformancegap,
acopyofthecurveoftheGLRTwith∞-bitADCsisshifted
bylog(π/2)≈0.45
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Fig.3. ProbabilityofdetectionoftheGLRT(∞-bitdata)versusthreshold
form=p=4,n=256andSNR=−13,−16,and−23
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Fig.4. ProbabilityofdetectionversustheSNRforPfa=10
3,m=p=4

andn=32,256,and2048.

thatperformancelosscanalsobecompensatedbyπ/2≈1.57
timesamountofsamples.

InFig.6,werepeattheexperimentdescribedinFig.5
exceptthatwefixn=64andincreasethesizeofthearray.
Wechosetoset m=p,whichisastandardconfigurationin
collocatedMIMOradar.Itisobservedthatthegapbetween
thecurvesoftheone-bitand∞-bitdetectorsnarrowsto
log(π/2)/2≈0.23.Thisisbecausethedetectionperformance
isproportionaltoM =pmn=p2n,thusincreasingthearray
sizeistwiceaseffectiveasincreasingthenumberofsnapshots.
Theresultindicatesthat,giventhesameSNRandsample
support,aone-bitsystemwith π/2≈1.25timesarraysize
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canachievecomparableperformancetoan∞-bitsystem.

D.ComplexityAnalysis

Theproposedone-bitdetectorhasarelativelylowcomputa-
tionalcost.Asdemonstratedby(12),thedetectionalgorithm
requiresjust4N+3multiplicationand4N−1additions.In
comparison,thedetectorin[14]mustevaluatetheQfunction,
whichrequiressignificantlymorecomputationalresources.
TableIIcomparesthetimerequiredtoevaluatethederived
Rao’stestandtheLRTin[14].Itcanbeobservedthe
computationofthedetectorisincrediblyrapidandrequires
significantlylesstimethantheLRT.Thisisanadditional
benefitofourdetector.

VII.CONCLUSION

Inthispaper,wederivedanoveldetectorbasedonRao’stest
fortargetdetectioninMIMOradarwithone-bitADCs.The
proposedmethodhasaclosed-formexpressionanddoesnot
requirecomplicatednumericaloptimizationofthereflectivity.

TABLEII
ELAPSEDTIMECOMPARISON(SECOND)

(p,m,n) (16,16,128) (16,16,1024) (64,64,1024)

Rao’stest 8.92×10 6 3.20×10 5 3.44×10 4

LRT 9.66×10 5 4.42×10 4 2.22×10 3

Weprovidedacomprehensiveanalysisofthetheoretical
performanceoftheproposeddetectorbyderivingclosed-form
approximationsforthenullandnon-nulldistributions,which
allowustocomputetheprobabilitiesoffalsealarmandde-
tection.Furthermore,westudiedtheperformancedegradation
ofusingone-bitADCsbycomparingitwiththeperformance
oftheGLRTwith∞-bitADCs,provingalossof2dBin
thelowSNRregime,whichenlargesforincreasingSNRs.We
havefurthershownthatthedegradationcanbecompensated
bycollecting57%moresamplesorincreasingthearraysize
by25%.Simulationresultsvalidatedtheeffectivenessofthe
proposeddetectorandtherelatedtheoreticalanalysis.

Inthefuture,thisworkwillbeextendedtoincludecolored
noisetoimprovetherobustnessofthedetectionalgorithm.
Performanceanalysesforthemismatchedscenarios,suchas
imperfectDOAinformation,arealsoofconsiderableinterest.

APPENDIXA
PROOFOFTHEOREM1

Weshallstartbycomputingthederivativeofthelog-
likelihoodwithrespecttotheunknownparameters,whichare
givenby

∂L(y;θr)

∂a
=

N

i=1

riuiϕ[ri(aui−bvi)]

Q[−ri(aui−bvi)]

+
N

i=1

siviϕ[si(avi+bui)]

Q[−si(avi+bui)]
,(43)

and

∂L(y;θr)

∂b
=−

N

i=1

riviϕ[ri(aui−bvi)]

Q[−ri(aui−bvi)]

+
N

i=1

siuiϕ[si(avi+bui)]

Q[si(avi+bui)]
,(44)

whereϕ(·)isthestandardGaussianprobabilitydensityfunc-
tion.

Substitutinga=0andb=0into(43)and(44),wehave

∂L(y;θr)

∂θr θr=θr,0

=
2

π

N
i=1(riui+sivi)
N
i=1(siui−rivi)

=
2

π

Re(zHy)
Im(zHy)

. (45)

Inaddition,usingthederivativesin(43)and(44),wecan
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compute the FIM in (10), element by element, as follows

F1,1(θr,0) =
2

π
E

( N∑
i=1

riui +
N∑
i=1

sivi

)2


=
2

π
E

[
N∑
i=1

s2i v
2
i +

N∑
i=1

r2i u
2
i

]
=

2

π
tr(ZZH).

(46)

Similarly, we have

F2,2(θr,0) =
2

π
tr(ZZH), (47)

and

F1,2(θr,0) =
2

π
E

[(
N∑
i=1

sivi +
N∑
i=1

riui

)

×
(

N∑
i=1

siui −
N∑
i=1

rivi

)]

=
2

π
E

[
N∑
i=1

s2i viui −
N∑
i=1

r2i viui

]
= 0, (48)

which yields

F(θr,0) =
2

π
tr(ZZH)I2, (49)

where I2 is the 2× 2 identity matrix.
Substituting (45) and (49) into (9), the statistic becomes

TR =
|tr(YZH)|2

tr(ZZH)
, (50)

and the proof follows by noting that

tr(ZZH) = tr
(
ar(φ)a

T
t (φ)SSHa∗t (φ)a

H
r (φ)

)
= ‖at(φ)‖2‖ar(φ)‖2tr(SSH) =M, (51)

where we have used ‖at(φ)‖2 = p, ‖ar(φ)‖2 = m and
tr(SSH) = n.

APPENDIX B
PROOF OF THEOREM 2

For this proof, we need the following lemma, which is a
multivariate version of the central limit theorem [32].

Lemma 3: Let s =
∑N
i=1 qi, where q1, . . . ,qN ∈ Rd are

mutually independent random vectors with zero mean. Then,
as N →∞, s is asymptotically Gaussian distributed with zero
mean and covariance matrix C if

lim
N→∞

N∑
i=1

E
[∥∥∥C−1/2qi∥∥∥3] = 0. (52)

First, we shall compute the first and second order statistics
and then study whether (52) holds. For notational simplicity,
let us define

t1 =
√
Mw1 =

N∑
i=1

riui +
N∑
i=1

sivi, (53)

t2 =
√
Mw2 =

N∑
i=1

siui −
N∑
i=1

rivi. (54)

The first order moments of t1 and t2 are given by

E[t1] =
N∑
i=1

ciui +
N∑
i=1

divi, (55)

E[t2] =
N∑
i=1

diui −
N∑
i=1

civi. (56)

where

ci = E(ri) = 1− 2Q(aui − bvi), (57)
di = E(si) = 1− 2Q(avi + bui). (58)

For the second order moments, we can first compute the
following expectations:

E[rirj ] =

{
cicj , i 6= j,

1, i = j,
(59)

E[sisj ] =

{
didj , i 6= j,

1, i = j,
(60)

E[risj ] = cidj . (61)

Then, we have

E[t1t2] = −
N∑
i=1

ciui

N∑
i=1

civi +
N∑
i=1

ciui

N∑
i=1

diui

−
N∑
i=1

divi

N∑
i=1

civi +
N∑
i=1

divi

N∑
i=1

diui

−
N∑
i=1

(1− c2i )uivi +
N∑
i=1

(1− d2i )uivi

= E[t1]E[t2] +
N∑
i=1

(c2i − d2i )uivi, (62)

and

E[t21] = E2[t1] + tr(ZZH)−
N∑
i=1

(
c2iu

2
i + d2i v

2
i

)
, (63)

E[t22] = E2[t2] + tr(ZZH)−
N∑
i=1

(
c2i v

2
i + u2i d

2
i

)
. (64)

Combining all results above and using the fact that tr(ZZH) =
M , we obtain the first and second order statistics of w in (15)
and (16).

To conclude the derivation, we prove that (52) holds. Define
qi as

qi =
1√
M

[
uir
′
i + vis

′
i

uis
′
i − vir′i

]
, i = 1, . . . , N, (65)

where

r′i = ri − ci, s′i = si − di. (66)

Then, s =
∑N
i=1 qi in Lemma 3 corresponds to w in (14) and

C = Σw(β). It is shown in [33] that
N∑
i=1

E
∥∥∥C−1/2qi∥∥∥3 ≤ ∥∥∥C−1/2∥∥∥3

F

N∑
i=1

(
E ‖qi‖4

)3/4
, (67)
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and since
∥∥C−1/2∥∥3F is bounded, a sufficient condition for (52)

is

lim
n→∞

N∑
i=1

(
E ‖qi‖4

)3/4
= 0. (68)

To proceed, we further expand ‖qi‖4 as

‖qi‖4 =

[
(u2i + v2i )(r

′2
i + s′2i )

M

]2
. (69)

Recalling that ri, si ∈ {±1}, we have the following upper
bounds:

E
[
r′4i
]
≤ 4

3
, E

[
s′4i
]
≤ 4

3
, E

[
r′2i s

′2
i

]
≤ 1, (70)

which yield

N∑
i=1

(
E ‖qi‖4

)3/4
≤
(
14

3

) 3
4
N∑
i=1

1

N3/2

[
u2i + v2i

p

]3/2
. (71)

Since the right-hand-side of (71) is a sum of N terms that are
of order N−

3
2 , it approaches 0 as N →∞, which completes

the proof.

APPENDIX C
DERIVATION OF (36)

In the ∞−bit case, the parameter space is θ = [a, b, σ2
n]
T ,

where σ2
n is a nuisance parameter and the relevant parameters

are collected in θr = [a, b]T .
By dropping the constant terms in the log-likelihood func-

tion, it becomes

L(X;θr, σ
2
n) = −N ln(σ2

n)−
||X− βZ||2F

σ2
n

. (72)

The FIM can be computed as:

F = −E
[
∂2L
∂θ∂θT

]

= E


2M
σ2
n

0 2h−2Ma
σ4
n

0 2M
σ2
n

− 2g+2Mb
σ4
n

2h−2Ma
σ4
n

− 2g+2Mb
σ4
n

2||X−βZ||2F
σ6
n

− N
σ4
n

 , (73)

where

h = Re[tr(XHZ)], g = Im[tr(XHZ)]. (74)

Now, taking into account that

E[||X− βZ||2F] = Nσ2
n, E[h] =Ma, E[g] = −Mb, (75)

the FIM becomes

F =


2M
σ2
n

0 0

0 2M
σ2
n

0

0 0 N
σ4
n

 . (76)

Therefore, we have[
F−1(θ1)

]−1
θr,θr

=
2M

σ2
n

I2, (77)

and the non-centrality parameter in (36) can be computed as

δ2 = (θr1 − θr0)
T
[
F−1(θ1)

]−1
θr,θr

(θr1 − θr0)

=M
2|β|2
σ2
n

, (78)

where
[
F−1(θ1)

]
θr,θr

is the block of the inverse FIM cor-
responding to the parameters in θr. Recalling that we have
set σ2

n = 2 in Section III, we obtain δ2 = M |β|2, which
concludes the derivation of (36).

APPENDIX D
PROOF OF THEOREM 4

Since we have assumed that β is of order O(M− 1
2 ), we

can apply a Taylor’s approximation to the Q function around
0, allowing us to write

ci = 1− 2Q(aui − bvi) =
√

2

π
(aui − bvi) +O(M−1),

(79)

di = 1− 2Q(avi + bui) =

√
2

π
(avi + bui) +O(M−1).

(80)

Then, σ2
i and σ12 become

σ2
1 = 1− 2

Mπ

N∑
i=1

[
a2(u4i + v4i ) + 2ab(uiv

3
i − u3i vi)

+2b2u2i v
2
i

]
+O(M−2), (81)

σ2
2 = 1− 2

Mπ

N∑
i=1

[
b2(u4i + v4i ) + 2ab(u3i vi − uiv3i )

+2a2u2i v
2
i

]
+O(M−2), (82)

and

σ12 =
2

Mπ

N∑
i=1

[
(a2 − b2)(u2i − v2i )− 4abuivi

]
uivi

+O(M−2). (83)

Recalling again that a and b are of order O(M− 1
2 ), the

covariance matrix of w = [w1, w2]
T becomes

Σw = I2 +O(M−1). (84)

Then, the weighted sum in (23) has identical weights given
by the eigenvalues of Σw(β), which are λi = 1 + O(M−1).
Additionally, the means of w1 and w2 can be approximated
as:

E[w1] =

√
2

Mπ
a

N∑
i=1

(u2i + v2i ) +O(M−
1
2 )

=

√
2M

π
a+O(M− 1

2 ), (85)
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and

E[w2] =

√
2

Mπ
b
N∑
i=1

(u2i + v2i ) +O(M−
1
2 )

=

√
2M

π
b+O(M− 1

2 ). (86)

Therefore, TR = w2
1 + w2

2 is the sum of squares of two
uncorrelated Gaussian random variables with means a

√
2M/π

and b
√
2M/π and unit variance, which results in TR that

follows a non-central χ2 distribution with DOF 2 and non-
centrality parameter

δ21 =
2M

π
|β|2. (87)

This completes the proof of Theorem 4.
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