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Information-Theoretic Limits of Integrated Sensing
and Communication with Correlated Sensing and

Channel States for Vehicular Networks
Yao Liu, Min Li, An Liu, Jianmin Lu, and Tony Xiao Han

Abstract—In connected vehicular networks, it is vital to have
vehicular nodes that are capable of sensing about surrounding
environments and exchanging messages with each other for au-
tomating and coordinating purpose. Towards this end, integrated
sensing and communication (ISAC), combining both sensing
and communication systems to jointly utilize their resources
and to pursue mutual benefits, emerges as a new cost-effective
solution. In ISAC, the hardware and spectrum co-sharing leads
to a fundamental tradeoff between sensing and communication
performance, which is not well understood except for very simple
cases with the same sensing and channel states, and perfect
channel state information at the receiver (CSIR). In this paper, a
general point-to-point ISAC model is proposed to account for the
scenarios that the sensing state is different from but correlated
with the channel state, and the CSIR is not necessarily perfect.
For the model considered, the optimal tradeoff is characterized by
a capacity-distortion function that quantifies the best communi-
cation rate for a given sensing distortion constraint requirement.
An iterative algorithm is proposed to compute such tradeoff, and
a few non-trivial examples are constructed to demonstrate the
benefits of ISAC as compared to the separation-based approach.

Index Terms—Integrated sensing and communication, con-
nected vehicular networks, correlated sensing and channel states,
capacity-distortion tradeoff.

I. INTRODUCTION

Connected vehicular network is expected to play an in-
creasingly important role in future digital cities to support
various applications such as autonomous driving and traffic
management. As shown in Fig. 1, in addition to the dedicated
communications that enable vehicular nodes to exchange
messages with base stations and other vehicular nodes, high-
accuracy sensing is also required for vehicular nodes to sense
the environment and the states of surrounding vehicles (e.g.,
their speeds and locations) to perform collision-prevention
and real-time traffic management. Integrated sensing and
communication (ISAC) through co-sharing the same hardware
and spectrum for both sensing and communication systems, is
envisioned as an important new cost-efficient technology in
such connected vehicular networks [1], [2].

Substantial studies have been conducted to explore ISAC in
different scenarios and system architectures, such as the state-
of-art in the levels of coexistence, collaboration, and co-design
[3], the framework for large-scale mobile networks [4], and the
representative methodologies in vehicular networks [5]. There
are also many studies focused on the key techniques of ISAC in
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Fig. 1. The applications of sensing and communication in vehicular networks.

vehicular networks, such as waveform design [6], beamforming
design [7], and spatial signal processing [8]. While these
studies demonstrate the advantages of joint design of sensing
and communication, it is unclear whether these schemes have
reached the optimal performance for the resources given. This
motivates one to investigate the fundamental performance limits
of ISAC and to quantify the optimal tradeoff between sensing
accuracy and communication rate for a given ISAC scenario.

With the assumption of Gaussian parameters and estimation
error, a notion of estimation information rate is introduced
in [9] to quantify the sensing accuracy, and the performance
tradeoff bound is characterized in terms of estimation rate
versus classic communication rate. With this approach, the
performance limits for both single-antenna and multi-antenna
scenarios are investigated in [10], [11], respectively. Instead of
deriving equivalent estimation information rate for sensing, in
[12], the authors propose to convert communication information
rate to a mean-square error (MSE) metric and examine the
tradeoff between the communication equivalent-MSE and the
estimation MSE both in the same unit. However, this approach
only works in a simple linear Gaussian modeling.

To gain insights for more general ISAC systems, a notion
of capacity-distortion function built on rate-distortion theory is
introduced in [13]. The sensing accuracy of parameters is quan-
tified by general distortion functions while the communication
performance is still quantified by classic communication rate.
With the assumption of the same sensing and channel states and
perfect channel state information (CSI) at the receiver (CSIR),
the authors derive the optimal capacity-distortion function for
point-to-point channels. More recent studies [14], [15] move
on to study the ISAC over multiple access channels (MACs)
and broadcast channels (BCs), respectively.
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The aforementioned works provide important preliminary
results on fundamental limit of ISAC systems. However, the
strong assumption on sensing state and CSIR makes the model
too restricted to capture the practical constraints for ISAC in
vehicular networks. When performing collision-prevention, a
car may wish to estimate the speed or position of the preceding
car while communicating. Another circumstance is that the
sensing targets may be part of the scatters in the surrounding
environment of the car [3]. Therefore, the sensing state is
usually different from but correlated with the communication
channel state. In addition, the CSIR can hardly be perfect due to
the channel estimation error. Given these practical constraints
in vehicular networks, the modeling and the corresponding
analysis of performance limits for more generalized ISAC
systems are vital and imminent.

In this paper, we propose a more general point-to-point ISAC
model, extending that of [13], to account for the scenarios
that the sensing state at the transmitter is different from
but correlated with the channel state, and the CSIR is not
necessarily perfect. For the model studied, the fundamental
limit of ISAC is characterized by a capacity-distortion function.
The computation of the capacity-distortion tradeoff is further
formulated as a constrained optimization problem, and an
iterative algorithm based on Blahut-Arimoto algorithm [16] is
proposed to solve it efficiently. A few non-trivial instances are
provided to demonstrate the benefits of ISAC compared to the
separation-based approach via time-sharing.

II. SYSTEM MODEL

Consider a general point-to-point mono-static sensing ISAC
model as shown in Fig. 2. The transmitter wishes to convey a
message W ∈ [1 : 2nR] , {1, 2, · · · , 2nR} to a decoder over
a state-dependent discrete memoryless channel (DMC) while
simultaneously estimating the sensing state sequence SnT via
an output feedback. This feedback models the communication
echo signals reflected back to the transmitter side, as in [13]–
[15]. Mathematically, the state-dependent DMC considered is
represented by tuple (X ,S, p(yz|xs),Y,Z) that consists of
input alphabet X , state alphabet S , channel output alphabet Y ,
feedback alphabet Z , and a collection of conditional probability
mass functions (PMFs) p(yz|xs) for every pair of (x, s).
The channel state sequence Sn is assumed i.i.d. according
to PSn (sn) =

∏n
i=1 PS(si). The CSIR is denoted by SnR,

which is i.i.d. according to PSn
R
(snR) =

∏n
i=1 PSR

(sR,i) and
the associated SR is assumed to be correlated with channel
state S but not necessarily the same. Such an assumption can
encapsulate more general cases for CSIR: 1) SR,i = Si, the
receiver has the perfect CSI; 2) SR,i = φ, the receiver has
no CSI; 3) SR,i = g(Si), the receiver has partial CSI. In this
model, we also assume that sensing state sequence SnT is i.i.d.
according to PSn

T
(snT ) =

∏n
i=1 PST

(sT,i) and the associated
ST is different from but correlated with the channel state S.

For such a generalized model of ISAC, a (2nR, n) code for
the state-dependent channel consists of

1) a message set W = [1 : 2nR];
2) an encoder that assigns a symbol xi = fi(w, z

i−1) to
each message w ∈ W and each delayed feedback zi−1 ∈
Zi−1 at time index i;

3) a decoder that produces a message estimate ŵ =
h(yn, snR) ∈ W upon receiving yn and observing snR;

Decoder

delaydelaydelay

W EncoderEncoder

EstimatorEstimator

iX

1iZ −

( , , )T Rp s s s

iS

iY

,R iS

Ŵ
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Fig. 2. A general point-to-point ISAC channel with correlated sensing state
and channel state, and imperfect CSIR.

4) a state estimator that assigns an estimated sensing
sequence ŝnT ∈ ŜnT to each output feedback sequence
zn ∈ Zn and the codeword xn ∈ Xn.

Similar to the studies [13], [14], the sensing performance is
measured by the expected distortion of the state estimated, i.e.,

E[d(SnT , ŜnT )] =
1

n

n∑
i=1

E[d(ST,i, ŜT,i)],

where d : ST × ŜT → [0,∞) is a distortion function. A rate-
distortion pair (R,D) is said to be achievable if there exist a
sequence of (2nR, n) codes with arbitrarily small probability
for decoding error, i.e., limn→∞ Pr(Ŵ 6= W ) = 0, and the
sensing distortion constraint lim supn→∞ E[d(SnT , ŜnT )] ≤ D
is satisfied. The capacity-distortion tradeoff C(D) is defined as
the supremum of rate R such that pair (R,D) is achievable for
any given D. Our goal is to characterize the capacity-distortion
function for the general model considered and examine its
communication and sensing performance tradeoff via examples.

III. OPTIMAL CAPACITY-DISTORTION TRADEOFF

In this section, we characterize the optimal capacity-
distortion tradeoff C(D) for the generalized ISAC channel
model. The main result is first provided and some properties
of function C(D) and the state estimator are then presented.
The proof is then elaborated with focus on the converse part.

Theorem 1: The optimal capacity-distortion tradeoff of the
point-to-point ISAC channel considered is given by

C(D) = max
QX

I(X;Y |SR),

where QX = {PX : E[d(ST , ŜT )] ≤ D} is the set of input
distributions satisfying the sensing distortion constraint, and
the joint distribution of variables SSTSRXY ZŜT is given by
PX(x)PSSTSR

(ssT sR)PY Z|XS(yz|xs)PŜT |XZ(ŝT |xz). (1)
Remark 1: Based on the result in Theorem 1, there are
1) Theorem 1 contains the result in [13] as a special case

when ST = SR = S, i.e., the sensing state is the same
as the channel state, and the receiver has perfect CSI.

2) The capacity-distortion function C(D) in Theorem 1
specialized to C(D =∞) = maxPX

I(X;Y |SR) when
no sensing task is required at the transmitter.

Before proving Theorem 1, the properties of C(D) and the
optimal state estimator are provided as follows.

Lemma 1: The capacity-distortion function C(D) is nonde-
creasing concave for D ≥ Dmin , minE[d(ST , ŜT )] where
the minimum is over all PX and PŜT |XZ .
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Lemma 2: For any given input x and feedback z, the optimal
state estimator can be chosen as a deterministic function
ŝT (x, z) = arg min

s′T∈ST

∑
sT∈ST

PST |XZ(sT |x, z)d(sT , s
′
T ).

The detailed proof for Theorem 1 are elaborated as follows.

A. Converse
From Fano’s inequality, we have
nR ≤ I(W ;Y n|SnR) + nεn

=

n∑
i=1

I(W ;Yi|Y i−1, SnR) + nεn

=

n∑
i=1

H(Yi|Y i−1, SnR)−H(Yi|Y i−1, SnR,W ) + nεn

(a)

≤
n∑
i=1

H(Yi|SR,i)−H(Yi|Y i−1, SnR,W ) + nεn

(b)

≤
n∑
i=1

H(Yi|SR,i)−H(Yi|Y i−1, SnR,W,Xi) + nεn

(c)
=

n∑
i=1

H(Yi|SR,i)−H(Yi|SR,i, Xi) + nεn

=

n∑
i=1

I(Xi;Yi|SR,i) + nεn,

where both (a) and (b) follow because conditioning reduces en-
tropy; (c) follows because (W,Y i−1, {SR,l}l 6=i)−(SR,i, Xi)−
Yi forms a Markov chain. Consequently, we have that

R ≤ 1

n

n∑
i=1

I(Xi;Yi|SR,i) + εn

(a)

≤ 1

n

n∑
i=1

C(E[d(ST,i, ŜT,i)]) + εn

(b)

≤ C

(
1

n

n∑
i=1

E[d(ST,i, ŜT,i)]
)
+ εn

(c)

≤ C(D) + εn,

where (a) follows from the definition of C(D); both (b) and
(c) follow from the concavity and nondecreasing property of
C(D) shown in Lemma 1, respectively.

B. Achievability
The achievability proof uses random codebook and joint

typically decoding, similar to that of [13]. The key difference
is the decoder takes into account the available CSI for decoding
in addition to the received signal. The detailed proof is provided
in Appendix A.

IV. NUMERICAL ALGORITHM FOR EVALUATING THE
OPTIMAL CAPACITY-DISTORTION TRADEOFF

The optimal capacity-distortion tradeoff for the model consid-
ered is represented in form of an optimization problem subject
to a sensing distortion constraint E[d(ST , ŜT )] ≤ D. Solving
this optimization problem and determining the boundary of
the capacity-distortion tradeoff region is non-trivial in general
except for very few special cases. In the following, we propose

TABLE I
ITERATION ALGORITHM FOR PROBLEM (3)

Initialization: µ, the penalty parameter; σ1, σ2, convergence parameter;
P

(0)
X (x) = 1

|X| ,∀x ∈ X , the initial input distribution;
λ(0), the initial dual variable; k = 1, l = 1, index of iteration;

While 1 do
1) Update Q(k)

X|Y SR
(x|ysR) based on P (k−1)

X (x) and (4). Set l = 1.
2) While 1, do

2.1) Update P (l)
X (x) based on Q(k)

X|Y SR
(x|ysR), λ(l−1), (5), and (6).

2.2) Update dual variables λ(l):

λ(l) =

[
λ(l−1) + αl

(∑
x P

(l)
X (x)b(x)−B

)]+
2.3) If |λ(l) − λ(l−1)| ≤ σ2, update P (k)

X (x) = P
(l)
X (x),∀x ∈ X , break;

otherwise, l = l + 1.
3) If ||P (k)

X − P (k−1)
X ||22 ≤ σ1, break; otherwise, k = k + 1.

Output: P (k)
X (x), x ∈ X .

a general numerical algorithm to find solutions for the tradeoff
optimization, the utility of which will be further demonstrated
via some examples in the next section.

A. Problem Formulation
The optimal tradeoff is an optimization problem that

maximizes the mutual information over a constrained input
distribution PX as in (1). For a practical system, the channel
input is usually further subject to additional cost constraint
such as power constraint. Accounting for this, we introduce an
additional generic cost function b(Xn) = 1

n

∑n
i=1 b(Xi) such

that lim supn→∞ E[b(Xn)] ≤ B into the optimization.
Then, the capacity-distortion tradeoff optimization is

maximize I(PX ;PY |XSR
|PSR

) (2a)

subject to
∑
x

PX(x)b(x) ≤ B, (2b)∑
x

PX(x)c(x) ≤ D, (2c)∑
x

PX(x) = 1, (2d)

where the average distortion is represented by introducing an
auxiliary term c(x) defined as

c(x) =
∑
z

PZ|X(z|x)
∑
sT

PST |XZ(sT |xz)d(sT , ŝT (x, z)),

and the mutual information function for SR 6= φ is

I(PX ;PY |XSR
|PSR

) =
∑
sR

PSR
(sR)

∑
x

∑
y

PX(x)PY |XSR
(y|xsR) log

PX|Y SR
(x|ysR)

PX(x)
.

Remark 2: When SR = φ, there is

I(PX ;PY |X) =
∑
x

∑
y

PX(x)PY |X(y|x) log
PX|Y (x|y)
PX(x)

,

where PX|Y denotes the conditional PMF of X given Y .
Problem (2) is a convex optimization problem as the mutual

information function is convex and the constraints are all linear.
Although the existing interior-point-method based solver such
as MATLAB-CVX can be applied to find solution, it suffers
high complexity for the cases with large alphabet of input X
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and state S. To this end, an alternating method motivated by
Blahut-Arimoto algorithm [16] is proposed.

B. Alternating solving method
Due to the page limits, in this subsection, we are focused

on the general non-degenerated case SR 6= φ. The results
can be easily extended to the case SR = φ. Problem (2)
contains two cost constraints. One is related to the input
cost constraint, and the other is related to the distortion
constraint. To solve (2) efficiently, we first introduce auxiliary
variables QX|Y SR

(x|ysR) = PX|Y SR
(x|ysR) and consider

incorporating the distortion constraint as a penalty term in the
objective function

max
PX

max
QX|Y SR

J (PX , QX|Y SR
)− µ

∑
x

PX(x)c(x) (3)

subject to constraints (2b) and (2d), where

J (PX ,QX|Y SR
) =

∑
sR

PSR
(sR)

∑
x

∑
y

PX(x)PY |XSR
(y|xsR) log

QX|Y SR
(x|ysR)

PX(x)
,

and µ ≥ 0 is a fixed parameter. By varing µ, we obtain the
capacity-distortion tradeoff for fixed cost constraint of input.

Proposition 1: (3) can be solved iteratively in closed-form.
1) For fixed PX , the optimal value of QX|Y SR

for (3) is
given in-closed form as

Q∗X|Y SR
(x|ysR) =

PX(x)PY |XSR
(y|xsR)∑

x′ PX(x′)PY |XSR
(y|x′sR)

.

(4)
2) For fixed QX|Y SR

, the optimal value of PX is given as

PX(x)∗ =
2g(x)∑
x′ 2g(x)

, (5)

where
g(x) =

∑
sR

∑
y

PSR
(sR)PY |XSR

(y|xsR)

logQX|Y SR
(x|ysR)− λ∗b(x)− µc(x),

(6)

and λ∗ is the optimal dual variable for constraint (2b).
The detailed algorithm is shown in Table I. As mentioned,

such an algorithm yields an input distribution PX corresponding
to a pair of capacity and distortion values (Cµ, Dµ). By varing
µ, we obtain the capacity-distortion tradeoff for the given
channel model under the input cost constraint.

V. EXAMPLES

In this section, two non-trivial examples are constructed to
illustrate the benefits of ISAC with respect to the separation-
based approach over generalized memoryless point-to-point
channels. Here the separation-based approach refers to a scheme
where orthogonal resources are divided into either pure state
sensing via echo feedback or pure data communciation.

A. Capacity-Distortion Tradeoff over Binary Channel
Consider a binary channel Y = SX mod 2, where both

input X and output Y are binary distributed, while the channel
state S ∈ {0, 1, 2, 3} with PMF PS(0) = 0.1, PS(1) = 0.2,
PS(2) = 0.3, and PS(3) = 0.4. The sensing signal Z is

assumed to coincide with Y , i.e., Z = Y , similar to that of
[13]. The sensing state ST is assumed as a function of channel
state where ST = 0 if S = 0, 1, 2 while ST = 1 if S = 3.
The Hamming distortion measure d(sT , ŝT ) = sT ⊕ ŝT is
considered. Two different instances of CSIR are considered:

1) SR = φ, the receiver has no CSI.
2) SR = S, the receiver has perfect CSI.

Next, we characterize PX(0) , p that maximize C(D).
Proposition 2: The capacity-distortion tradeoff of the binary

channel Y = SX mod 2 is given by
1) when SR = φ, C(p) = H2(0.6−0.6p)−(1−p)H2(0.4),

D(p) = 0.2(1 + p);
2) when SR = S, C(p) = 0.6H2(p), D(p) = 0.2(1 + p).

where H2(p) denotes the binary entropy function.
Proof:

1) when SR = φ, the capacity is given as
C(p) = H(Y )−H(Y |X),

where the output Y is Bernoulli distributed such that
PY (1) = 0.6(1− p), and

H(Y |X) = (1− p)H2(0.4), (7)
where the equality in (7) follows because PY |X(0|0) = 1
and PY |X(0|1) = 0.4.

2) when SR = S, the capacity is given by
C(p) = H(Y |S) = 0.6H2(p),

where the last equality follows because PY |S(0|0) = 1,
PY |S(0|2) = 1, PY |S(0|1) = p, and PY |S(0|3) = p.

The expected distortion functions for the considered two cases
are the same. We first determine the state estimator ŝT (x, z)
by Lemma 2 as follows:

ŝT (x, 0) = 0,∀x, ŝT (x, 1) = 1,∀x. (8)
Then, the expected distortion over all input X and feedback
Z based on the state estimator in (8) is given by

E[d(ST ,ŜT )] = 0.2(1 + p),

which completes the proof.
In particular, we consider two extreme points for each case.
1) SR = φ: If p = 0, i.e., the encoder always sends X = 1,

the minimum distortion Dmin = 0.2 is achieved, and the
corresponding capacity C(Dmin) = 0. If p = 0.5905,
the maximum capacity Cmax = 0.4068 is achieved, and
the corresponding distortion is D = 0.3181.

2) SR = S: If p = 0, i.e., the encoder always sends X = 1,
the minimum distortion Dmin = 0.2 is achieved, and
the corresponding capacity C(Dmin) = 0. If p = 0.5,
the maximum capacity Cmax = 0.6 is achieved, and the
corresponding distortion is D = 0.3.

The results are shown in Fig 4, where TSA denotes the
separation-based approach achieved via a time-sharing between
capacity-distortion pair (C,D) = (0, 0.2) and (0.4068, 0.4)
for SR = φ and between (0, 0.2) and (0.6, 0.4) for SR =
S, respectively. It is noted that this upper extreme distortion
D = 0.4 can be trivially achieved by considering a fixed
estimator ŝT = 0 which thus imposes no extra constraint on
the communication input and incurs zero loss of capacity.

B. Capacity-Distortion Tradeoff over Real Gaussian Channel
In the second example, we consider that the sensing target

is part of the scatters in the surrounding environment of the
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Echo

Fig. 3. Illustration of ISAC over real Gaussian channel in vehicular networks.

car, which is shown in Fig. 3. The communication channel is
a real Gaussian channel model with Rayleigh fading, i.e.,

Yi = SiXi +Ni,

where the input Xi is subject to the power constraint
1
n

∑
i E[|Xi|2] ≤ P , and the channel contains two path, i.e.,

Si = S1,i+S2,i. State components S1,i, S2,i and noise Ni are
i.i.d. Gaussian distributed with zero mean and unit variance.
A noisy sensing echo signal

Zi = αS1,iXi +Nfb,i

is considered, where α is the reflection coefficient, and {Nfb,i}
are i.i.d. Gaussian distributed with zero mean and unit variance.
The sensing state ST is ST,i = αS1,i + Vi, where Vi denotes
the noise of sensing that is i.i.d. Gaussian distributed with
zero mean and unit variance. The quadratic distortion measure
d(sT , ŝT ) = (sT − ŝT )2 is considered. Two cases of CSIR
SR = φ and SR = S are considered.

For this continuous channel, calculating the capacity-
distortion tradeoff means that finding the optimal distribution
of input X , which is hard to be obtained. Thus, discretization
method is applied to obtain a numerical approximation for the
capacity-distortion tradeoff. We consider a fixed input power
constraint P = 10 dB, a fixed reflection coefficient α = 0.5,
and the input X is quantized to a Pulse-Amplitude-Modulation
(PAM) like constellation Xq = [−10 : q : 10] with step size q
to be determined. The channel states S1 and S2 are quantized
with alphabet [−5 : q : 5]. The communication noise N is
quantized with alphabet [−5 : q2 : 5]. The noise in echo
signal Nfb is quantized with alphabet [−5 : αq2 : 5]. The
sensing noise V is quantized with alphabet [−5 : αq : 5].
Denoting the resultant quantized input, noise, and channel
state by Xq, Nq, Nfb,q, Vq, Sq , the channel output and sensing
state become Yq = SqXq +Nq, Zq = αS1,qXq +Nfb,q, and
ST,q = αS1,q + Vq. Then, the alternating solving method
proposed in Sec. IV-B is applied to obtain the optimal input.

To determine how small q should be sufficient for the
computation, we first evaluate the impact of quantization
step q on the value of capacity-distortion pair (C,D). More
specifically, we consider the case SR = S, and the penalty
parameter µ is set as 1 in the numerical algorithm. The set
of values for quantization step q is set as {1, 0.5, 0.25, 0.125}.
The results are shown in Fig. 5. It can be found that q = 0.125
suffices to achieve a quite satisfactory approximation. Thus, in

the following numerical evaluations, q is set as 0.125.
We compare ISAC with TSA when α = 0.5 for both SR = φ

and SR = S. We also test the impact of reflection coefficient
with the consideration of α = 0.75 and α = 1 for SR = S.
When α = 0.5, there are two extreme points for each case.

1) SR = φ: On one extreme, the minimum distortion Dmin

is achieved by 2-ary PAM and is equal to 1 + α2

1+α2P =
1.0714, while corresponding capacity C(Dmin) = 0.
On the other extreme, the maximum capacity Cmax =
0.5514 is achieved by applying the alternating solving
method, and the corresponding distortion is D = 1.1719.

2) SR = S: On one extreme, the minimum distortion Dmin

is still 1.0714, and the corresponding capacity becomes
C(Dmin) = 0.8223. On the other extreme, the maximum
capacity Cmax = 1

2ES [log(1 + S2P )] = 1.6128 is
achieved when X is Gaussian distributed with zero mean
and variance P , while the corresponding distortion is
D = 1 + EX [ α2

1+α2X2 ] = 1.1279.
The entire capacity-distortion regions are shown in Fig 6.

The results of TSA are achieved via a time-sharing between
pair (C,D) = (0, 1.0714) and (0.5514, 1.25) for SR = φ
and between (0, 1.0714) and (1.6128, 1.25) for SR = S when
α = 0.5, respectively. The upper extreme distortion D =
var[ST ] = 1.25 is achieved by considering a fixed estimator
ŝT = 0 . The results reveal that ISAC can indeed provide a
significant gain over the separation-based approach. Besides,
with the increase of α, the capacity-distortion region becomes
smaller. The reason is that the value of α affects the SNR of
echo signal, the sensing state, and then the performance of
sensing, while the communication rate keeps constant.

VI. CONCLUSION

In this work, we have investigated the fundamental limit of
ISAC over general memoryless point-to-point channels. A new
state-dependent ISAC channel model with correlated sensing
state and channel state, and imperfect CSIR is formulated.
Based on the model, the optimal capacity-distortion tradeoff
is characterized. Two examples are further constructed to
demonstrate that ISAC provides a significant gain for both
communication and sensing as compared to the separation-
based approach. As future work, it is of great interest to extend
the current framework to multi-terminal ISAC topologies (such
as MACs and BCs), establishing the fundamental limits to
support the efficient application of ISAC in vehicular networks.

APPENDIX A
ACHIEVABILITY PROOF OF THEOREM 1

In the achievability proof, we show that the capacity-
distortion tradeoff in Theorem 1 is achieved when
the distortion function d(·) is bounded by dmax =
max(sT ,ŝT )∈ST×ŜT d(sT , ŝT ) < ∞. The achievable coding
scheme is given as follows.
• Codedbook generation: Fix the input distribution PX(·)

and state estimating function ŝT (x, z) that achieves
C(D/(1 + ε)), where D is the desired distortion. Ran-
domly and independently generate 2nR sequences xn(w)
for each message w ∈ [1 : 2nR]. The collection of these
sequences form a codedbook C which is then revealed to
both the transmitter and receiver.
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Fig. 6. Capacity-distortion tradeoff for real Gaussian
channel with noisy sensing echo signal.

• Encoding: To send a message w ∈ [1 : 2nR], the encoder
chooses and transmits the wth codeword xn(w).

• Decoding: The decoder finds a unique message ŵ such
that (yn, snR, x

n(ŵ)) is jointly typical, i.e.,

(yn, snR, x
n(ŵ)) ∈ T (n)

ε .

• Estimation: The encoder computes the resconstruction
sequence for sensing state based on the state estimating
functions as ŝnT = ŝT (x

n(w), zn).

The analysis of the probability of decoding error and the
expected distortion is given as follows.

Analysis of the probability of decoding error: Due to the
symmetry of the random codebook generation in the proposed
scheme, the probability of decoding error averaged over all
messages and codebooks Pe is equal to the the probability of
decoding error when a certain message is transmitted. Thus,
we assume without loss of generality that message w = 1 is
sent, the decoder makes an error if and only if one or both of
the following events occur:

E1 = {(yn, snR, xn(1)) /∈ T (n)
ε },

E2 = {(yn, snR, xn(ŵ)) ∈ T (n)
ε for some w 6= 1}.

By the union of events bound,
Pe = P (E1 ∪ E2) ≤ P (E1) + P (E2).

By the law of large numbers, the first term P (E1) tends to zero
as n → ∞. By the independence of the codebooks and the
packing lemma [17], the second term tends to zero as n→∞
if R < I(X;Y |SR). Therefore, the probability of decoding
error Pe tends to zeros as n→∞ if R < I(X;Y |SR).

Analysis of expected distortion: The expected distortion
averaged over the random codebook, encoding, and decoding,
is upper bounded as

lim sup
n→∞

E[d(SnT , ŜnT )]

(a)

≤ lim sup
n→∞

(
Pedmax + (1− Pe)(1 + ε)E[d(ST , ŜT )]

)
(b)

≤ lim sup
n→∞

(Pedmax + (1− Pe)(1 + ε)
D

1 + ε
)

(c)
= D,

where (a) follows by applying the upper bound of the distortion
function to the decoding error event and the typical average
lemma [17] to the successful decoding event; (b) follows from
the random codebook generation with the input distribution
PX(·) and state estimating function ŝT (x, z) that achieves
C(D/(1+ε)); (c) follows because Pe tends to zeros as n→∞
if R < I(X;Y |SR).

The above analysis shows that the capatiy-distortion tradeoff
(C( D

1+ε ), D) can be achieved. Therefore, by the continuity of
function C(D), C(D) as defined in Theorem 1 is achieved as
ε→ 0.
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