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Toward Sustainable Transportation: Accelerating
Vehicle Electrification with Dynamic Charging

Deployment
Duc Minh Nguyen, Student Member, IEEE, Mustafa A. Kishk, Member, IEEE, and Mohamed-Slim Alouini,

Fellow, IEEE

Abstract—Electric vehicles (EVs) are being actively adopted as1

a solution to sustainable transportation. However, a bottleneck2

remains with charging, where two of the main problems are3

the long charging time and the range anxiety of EV drivers.4

In this research, we investigate the deployment of dynamic5

charging systems, i.e., electrified roads that wirelessly charge6

EVs on the go, with a view to accelerating EV adoption rate. We7

propose a traffic-based deployment strategy, statistically quantify8

its impact, and apply the strategy to two case studies of real9

traffic in New York City (USA) and Xi’an (China). We find that10

our analytical estimates not only closely match the real data, but11

they also suggest that dynamic charging considerably extends12

the driving range of popular EV models in urban mobility. For13

example, when only 5% of the existing roads in New York City14

are equipped with this technology, an EV model such as the15

Nissan Leaf will approximately maintain its battery level without16

stopping to recharge. If the percentage of charging roads is17

increased to 10%, then the Leaf will gain nearly 10% of its18

battery after every 40 kilometers of driving. Our framework19

provides a solution to public and private organizations that20

support and facilitate vehicle electrification through charging21

infrastructure.22

Index Terms—Sustainable transportation, vehicle electrifica-23

tion, electric vehicles, dynamic charging.24

I. INTRODUCTION25

In recent years, an increasing proportion of the general26

public gets to know and supports the idea of sustainable27

development, which is about meeting the needs of the present28

without compromising the ability of future generations to meet29

their needs. Therefore, the global trend toward sustainability30

has spread to several aspects of modern lives, e.g., produc-31

tion, consumption, and transportation. In fact, transportation32

contributes a significant portion to the global greenhouse-gas33

emission. Current transportation systems are accounted for34

20%-25% of the world’s energy consumption and carbon diox-35

ide emissions [1], [2]. In 2018, the carbon dioxide emission36

from transportation in the United States (US) was more than37

from electricity, industry, agriculture, and any other sector [3].38
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Fig. 1: An illustration of the dynamic charging system.

Furthermore, the primary cause of greenhouse-gas emission 39

from transportation is light-duty vehicles [3]. Thus, to reduce 40

the amount of greenhouse-gas emission, we need a solution to 41

the current diesel and gasoline personal vehicles. 42

A solution that is gaining popularity is electric vehicles 43

(EVs). EVs not only reduce our reliance on fossil fuels, cut 44

down on polluting emissions, but also improve public health 45

and foster economic growth [4], [5]. The global EVs sales 46

topped 2.1 million USD in 2019, with China, the European 47

Union, and the US being the three largest markets [6]. Even 48

though the EV market share is growing fast, reaching 2.6% in 49

2019, it is still much smaller than that of internal combustion 50

engine vehicles (ICEVs). Two of the main reasons that prevent 51

EVs from becoming the general public’s choice are the long 52

charging time and the range anxiety problem. In particular, 53

most current EV models rely on batteries that get charged 54

at charging stations. However, the charging time of EVs at 55

those charging sites is still way more than the refueling time 56

of ICEVs at gas stations, even with the latest fast-charging 57

technology. In addition, EVs may even run out of power 58

before reaching one of the charging stations. To compensate 59

for those two problems, current EV manufacturers focus on 60

producing large-capacity batteries with fast-charging technol- 61

ogy. Nevertheless, those are the exact components leading 62

to the high price of EVs, making them less affordable to 63

the general public [7]. Moreover, producing large-capacity 64

batteries in large quantities and replacing those batteries within 65

the lifetime of EVs put significant strain on the global lithium 66

supply, leading to possible shortage [8]. 67

An emerging technology that mitigates the problems with 68

charging stations and EV batteries is dynamic charging, i.e., 69

electrified roads that charge vehicles as they drive [9], as 70

illustrated in Fig. 1. This system consists of charging pads 71

installed under the roads and receivers installed at the bottom 72

of the EVs. The charging pads use electricity to create an 73
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alternating electromagnetic field with a receiving coil. The74

receiving coil of an EV converts the electromagnetic field75

into electricity that can charge a battery or power a motor.76

The technology behind dynamic charging has been thoroughly77

studied at various institutes in the world [10]–[12], and its sam-78

ples have been demonstrated by many companies including79

industry leaders [13]–[16]. Dynamic charging gives EV drivers80

the option to visit charging stations less often and increases81

their driving range. More importantly, it reduces the pressure82

to produce EV models with large-capacity batteries and fast83

charging. Instead, EVs manufacturers may opt for smaller-size84

batteries with more frequent short-charging cycles, which have85

been shown to possess several benefits. First, they reduce the86

retail prices for EVs. Second, in [17], it is found that operating87

the batteries with shallow and frequent charges/discharges can88

extend the lifetime of the batteries by up to 2.9 times. Due89

to this enormous saving in battery cost, which surpasses the90

power track installation cost, over the lifetime of the batteries,91

dynamic charging is much more economical than charging92

stations [18], [19]. Last but not least, it is presented in [18] that93

a 30% battery degradation leads to an 11.5–16.2% increase in94

energy consumption and greenhouse-gas emissions per km.95

Thus, by extending the lifetime of the batteries, dynamic96

charging keeps EVs a green means of transportation for a more97

extended period.98

Given the great potential of dynamic charging to accelerate99

the EV adoption rate and the fact that several modern cities100

have planned to ban diesel and gasoline cars by 2030 [20],101

we are motivated to study the problem of deploying dynamic102

charging in metropolitan cities. In more detail, we seek the best103

plan to deploy dynamic charging systems, i.e., charging roads,104

measure the deployment impact into quantitative metrics, and105

verify our analytical results with real case studies in urban106

cities.107

Before elaborating on our framework, we emphasize that108

our solution has a big market of urban planners, city policy-109

makers, infrastructure construction firms, and EV manufac-110

turers that seek insights about dynamic charging deployment.111

This emerging market is expected to grow quickly over the112

next decades because of the following reasons. First, the113

market for EVs is expanding fast and is forecast to reach114

234 million USD by 2027 [21]. Second, several countries115

have announced their strong commitment to sustainability. For116

example, both the EU and the US aim to reduce carbon dioxide117

emissions by 50% by 2030 [22], [23]. Third, pilot programs118

about dynamic charging are being actively run in various test119

sites in the world. For instance, Renault is examining the120

technology with 32 partners in Europe and expects to fully121

incorporate the dynamic charging capability in its vehicles122

by 2030 [16]. Last but not least, the EV transformation123

has received generous funding from government officials and124

private corporations, e.g., the US administration, Ford, and125

Hyundai all plan to heavily invest in EV infrastructure and126

production [24]–[26].127

In summary, with a view to facilitating the adoption of128

EVs worldwide, we present a plan to deploy and quantify129

the impact of a new kind of charging facility for EVs, i.e.,130

dynamic charging systems, in metropolitan cities. Our main131

TABLE I: Summary of notations

Notation Description
λ density of the 1D Poisson Point Process
r distance (in meters) from the city center
rmin lowest value of r at which the power law is

obeyed
α parameter of the power law function
dh horizontal distance between a source and a

destination
dv vertical distance between a source and a desti-

nation
Dn distance from a source to the nearest charging

road
ρc trip portion (in percentage) travelled on charg-

ing roads
ec the amount of energy charged in a trip
DN−HC distance from a source to the nearest horizontal

charging road
DN−VC distance from a source to the nearest vertical

charging road
DN−HNC distance from a source to the nearest horizontal

non-charging road
DN−VNC distance from a source to the nearest vertical

non-charging road

contributions are summarized as follows: 132

• We investigate the spatial distribution of commuting trips 133

and propose that the charging roads should be deployed 134

accordingly to maximize road usage and utilization. 135

• We quantify the impact of deployment through two 136

statistical metrics: the distribution of the distance to the 137

nearest charging road and the distribution of trip portion 138

traveled on the charging roads. 139

• We demonstrate our charging road deployment strategy 140

on case studies of New York City (NYC), USA, and 141

Xi’an, China, in which we combine real traffic data with 142

actual road network data to confirm our analytical results 143

and deduce important implications on the changes of EV 144

battery levels throughout urban commuting. 145

To the best of our knowledge, our work is one of few 146

research papers that capture the aggregated impact of a new 147

charging facility on urban mobility. Furthermore, the analysis 148

is not only derived mathematically but also verified with real 149

transport data from one of the most iconic metropolitan cities. 150

The results are abstracted into functions that relevant organi- 151

zations can use to plan the deployment of dynamic charging, 152

which accelerates EV adoption. The table of notations used in 153

our work is shown in Table I. 154

II. RELATED WORKS 155

In the literature, some previous studies have been introduced 156

on the topic of dynamic charging system deployment [27]– 157

[29]. Most of those studies formulate this topic as optimiza- 158

tion problems, in which specific components of the dynamic 159

charging systems are optimized, e.g., maximizing the power 160

received by EVs, minimizing infrastructure cost, and enhanc- 161

ing EV battery level [30]. For example, a categorization and 162
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clustering approach to minimizing the total deployment cost163

while maintaining the state-of-charge for EVs is presented164

in [31]. Analytical models to determine the optimum vehicle165

battery size and locations of power tracks in single-route and166

multi-route environments, which are particularly applicable to167

electric buses, using a Particle Swarm Optimization (PSO)168

algorithm, are illustrated in [32], [33]. A study on mini-169

mizing the capital costs of dynamic charging infrastructure170

while enabling EVs to travel among popular destinations in171

California is introduced in [34]. In [35], the installation of172

wireless charging lanes is framed as an integer programming173

problem. Given a budget, the number of routes that benefit174

from the charging lanes is maximized. In [36], a charging175

path optimization algorithm is introduced to minimize the176

traveling time and the charging cost. However, these kinds of177

works do not capture the impact of dynamic charging system178

deployment on consumers. Besides dynamic charging, to fa-179

cilitate vehicle electrification, some research on intelligent EV180

charging navigation [37] and other charging options have been181

introduced [38]. For instance, in [39], [40], a direct vehicle-182

to-vehicle energy-exchange strategy has been explored. Unlike183

those studies, our research focuses specifically on how dy-184

namic charging, a rising charging facility that simultaneously185

serves multiple EVs and mitigates charging stations’ problems,186

benefits drivers in their daily trips and fosters EV adoption.187

III. DYNAMIC CHARGING DEPLOYMENT STRATEGY188

In this section, we first review the goals of dynamic charging189

systems, i.e., charging roads, and then discuss two strategies190

for deploying dynamic charging in metropolitan cities.191

A. Deployment Goals192

Dynamic charging systems are developed to alleviate the is-193

sues with charging stations, i.e., the long charging time and the194

range anxiety problem. Therefore, dynamic charging should be195

deployed to extend the driving range, make visits to charging196

stations less often, and reduce the need for more charging197

stations. Moreover, they need to ensure practicality by having198

high utilization, i.e., benefiting multiple cars simultaneously,199

and efficiency, i.e., meeting the charging demand using only200

a small number of charging roads. Based on these goals,201

we examine two deployment strategies in the following two202

subsections.203

B. Baseline Strategy: Uniform Deployment204

A good starting point is to deploy dynamic charging systems205

uniformly across the city at a certain density. In other words,206

each road in the city will have an equal probability of being a207

charging road. This approach is simple yet may be sufficient208

for cities with uniformly distributed population and traffic.209

Moreover, it can serve as a baseline to compare against other210

well-planned strategies. The drawback of this strategy is that211

it may not be optimal for cities with non-uniformly distributed212

traffic and population.213

C. Traffic-Based Deployment Strategy 214

Since dynamic charging systems serve the people and their 215

commutes, it may be beneficial to study the spatial distribution 216

of population and traffic density, which are positively corre- 217

lated. To this end, we refer to popular models in the literature, 218

which found that in many urban cities, the population and 219

traffic are often dense in the interior, and then sharply decline 220

as we move to the outer suburbs. Indeed, in [41], it is revealed 221

that the spatial distribution of active population, i.e., a mixture 222

of working and residential population, the construction of road 223

networks, and the socioeconomic interactions along roads all 224

scale following a power law function in terms of the distance 225

from the city center, expressed as 226

y ∝ r−α,

where y can be the population, the road networks, or the 227

socioeconomic interactions. r is the distance from the city 228

center, and α is a positive parameter. A high value of α 229

indicates that the density falls sharply as the distance from 230

the city center increases, while a low value of α signifies that 231

the density declines more slowly. Despite its simplicity, the 232

model demonstrates a good agreement with empirical data of 233

several big cities such as Amsterdam, Beijing, Berlin, London, 234

Los Angeles, Milan, and Tokyo [41]. We also find that the 235

model fits the traffic data in New York City, as described in 236

Section V-B. 237

The charging roads can therefore be deployed following 238

a power law function from the city center. Compared to 239

the uniform deployment strategy, this approach is more cus- 240

tomized to fit the city traffic. Thus, it is likely to give better 241

results for cities where traffic is non-uniform. However, the 242

disadvantage is that the strategy is complex to develop and 243

more complicated to analyze theoretically. 244

Having introduced the deployment goals and the two strate- 245

gies, we proceed with the question of how to compare them. To 246

this end, in the next section, we discuss the quantitative metrics 247

that reflect the deployment goals stated in Section III-A. 248

IV. DYNAMIC CHARGING DEPLOYMENT ASSESSMENT 249

A. Quantitative Metrics 250

As stated in Section I, our framework targets policy makers 251

in either public institutions or private organizations who seek 252

strategies on deploying charging roads in metropolitan cities. 253

Thus, for this group of professionals, we propose two metrics 254

that provide a high-level executive summary of the impact 255

of charging road deployment on urban commuting trips. The 256

metrics are defined below. 257

Definition 1 (Probability distribution of the distance to the 258

nearest charging road, i.e., P (Dn < x)). It is the probability 259

that the distance traveled from a given source to the nearest 260

charging road is less than a positive number x. 261

Definition 2 (Probability distribution of the trip portion trav- 262

eled on charging roads, i.e., P (ρc < x)). It is the probability 263

that the trip portion (in percentage) traveled on charging road 264

from a given source to a given destination is less than a 265

positive number x ∈ [0, 100]. 266
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The first metric indicates how long a driver has to drive267

before meeting a charging road in a given trip, and the second268

describes how much the driver can benefit from the network269

of charging roads. These metrics are statistical, meaning that270

they should be understood as if the metrics were averaged over271

many trips in urban cities. Since the metrics capture traffic as272

a whole, they are not only useful for planning the deployment273

of charging roads, but also critical for comparing different274

deployment strategies as presented in Section III. In addition,275

EV manufacturers can leverage the metrics to produce suitable276

battery sizes to match certain cities’ road conditions.277

B. Analytical Framework & System Model278

To compute the two metrics, we need a means to model279

the stochastic road networks in metropolitan cities, with the280

charging roads being deployed following a certain probability281

function. We select stochastic geometry as the primary tool282

for this analysis, since there are several reasons why stochastic283

geometry is well-suited for this problem. First and foremost,284

stochastic geometry is a statistical tool that models the road285

networks as stochastic processes. Thus, it lets us study the286

metrics as if we were averaging over all the dynamic sources287

and destinations of urban trips [42], [43]. Second, it has been288

used extensively in the literature to model and characterize289

similar problems in transportation networks [44]–[49].290

Specifically, we model the road network as a homogeneous291

Manhattan Poisson Line Process (MPLP), which closely ap-292

proximates the road networks in several metropolitan cities293

such as New York [50], Vancouver [51], and Barcelona [52].294

A homogeneous Manhattan Poisson line process (MPLP) is295

a collection of random perpendicular lines in a 2D plane.296

These lines are generated from two Poisson point processes297

(PPP) with a density parameter λ along the x-axis and y-axis,298

respectively. A PPP with density parameter λ means on a line299

segment of length d, the number of points on that line segment300

follows a Poisson distribution with parameter λd.301

The assignment of charging roads is then done using a302

thinning function, reflecting the charging probabilities of the303

roads. Thinning is a process of removing points from a point304

process. Each point has a probability of being kept or removed305

following a user-defined thinning function. In this research, the306

points are removed independently. For the uniform deployment307

strategy, each road has a probability p of being equipped with308

dynamic charging. For the traffic-based deployment strategy,309

the thinning function is chosen to be a power law function310

that is defined as g : R 7→ [0, 1],311

g(r) =

{
( |r|
rmin

)−α | r |> rmin

1 | r |≤ rmin,
(1)

where rmin > 0 is some lowest value of r at which the power312

law is obeyed. Intuitively, g(r) represents the probability of313

equipping the road that is r meters away from the city center314

with dynamic charging. Applying the thinning function on the315

road systems modeled as a homogeneous MPLP, we can model316

the system of charging roads as an inhomogeneous MPLP with317

intensity function λg(r). The system of non-charging roads is318

modeled as an inhomogeneous MPLP with intensity function 319

λ(1− g(r)). 320

C. Methodology Overview 321

We derive the distribution of the distance to the nearest 322

charging road, i.e., Dn, and the distribution of the portion 323

traveled on charging roads, i.e., ρc, by breaking them down 324

into eight events based on the locations of a driver as he or 325

she makes the trip from a source to a destination, as presented 326

in Table II. 327

Let S and D denote the source and the destination of a trip,
respectively. The cumulative distribution functions (CDF) of
Dn and ρc are given by

P(Dn < x) =

8∑
i=1

P(Dn < x|Ti)P(Ti), (2)

P(ρc < x) =

8∑
i=1

P(ρc < x|Ti)P(Ti). (3)

To simplify the calculation process, we focus on the CDF of
Dn and ρc given S,D as follows:

P(Dn < x|S,D) =

8∑
i=1

P(Dn < x|Ti, S,D)P(Ti|S,D), (4)

P(ρc < x|S,D) =

8∑
i=1

P(ρc < x|Ti, S,D)P(Ti|S,D). (5)

To compute the conditional probabilities P(Dn < 328

x|Ti, S,D) and P(ρc < x|Ti, S,D), we need a consistent 329

way to know how drivers go from a source to a destination. 330

Therefore, we make an assumption about the driving behavior 331

of drivers. That is, drivers will always choose the shortest route 332

from a source to a destination. If there are several such routes, 333

the drivers will choose the one that maximizes the time they 334

spend on charging roads. More details on the computation of 335

equations (4) and (5) are given in the following subsections. 336

D. A Divide-and-Conquer Strategy 337

We adopt a ‘divide-and-conquer’ approach for all cases of 338

T , i.e., further breaking each event Ti into smaller subcases. 339

The same methodology is applied to each event Ti. Thus, to 340

avoid repetitiveness, we hereby show a representative example 341

of event T3. 342

To compute P(Dn < x|T3, S,D), we further divide it into 343

subcases in a probability tree, as shown is Fig. 2. 344

The notations for the subevents or nodes are three-fold. The 345

first subscript denotes the event as in Table II. The second 346

subscript means the level of depth in the probability tree, as 347

shown in Fig. 2. The third subscript represents the index of 348

the event at that level. A demonstration for those subevents of 349

event T3 is presented in Fig. 3. Consequently, the distribution 350

of Dn given T3, S, and D can be derived as follows: 351

P(Dn < x|T3, S,D)P(T3, S,D)

=

10∑
i=1

P(Dn < x|L3,i, S,D)P(L3,i|S,D), (6)
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TABLE II: Events to calculate Dn, ρc

Event
When the source road and

destination road are parallel
When the source road

and destination road are perpendicular
When both the source and the destination roads

are equipped with dynamic charging Event T1 Event T5

When only the source road is equipped with
dynamic charging Event T2 Event T6

When only the destination road is equipped with
dynamic charging Event T3 Event T7

When both the source and the destination roads
are not equipped with dynamic charging Event T4 Event T8

𝑇3

𝑇3,1,4𝑇3,1,2𝑇3,1,1

𝑇3,2,3 𝑇3,2,4

𝑇3,3,1 𝑇3,3,2 𝑇3,3,3 𝑇3,3,4

𝑇3,4,1 𝑇3,4,2 𝑇3,4,4𝑇3,4,3

𝑇3,1,3

𝑇3,2,2𝑇3,2,1

Fig. 2: Event T3: when the source road and the destination
road are parallel and only the destination road is equipped
with dynamic charging.

where L3,i’s are the intersection of consecutive events from the352

root to the leaves of tree T3. For example, L3,1 = T3,1,1 ∩T3,353

L3,2 = T3,1,2∩T3, L3,3 = T3,2,1∩T3,1,3∩T3, and so on (See354

Fig. 2).355

The details of nodes in the tree T3 are listed below. Each356

node corresponds to a case that drivers can face when traveling357

from a source to a destination.358

• Node T3,1,1: when drivers travel through no horizontal359

roads, as presented in Fig. 3a;360

• Node T3,1,2: when drivers travel through only one horizontal361

road that is not equipped with dynamic charging, as presented362

in Fig. 3b;363

• Node T3,1,3: when the route from the source to the destina-364

tion has at least two horizontal roads that are all not equipped365

with dynamic charging;366

– Node T3,2,1: when drivers pass through no vertical roads367

that are equipped with dynamic charging, as presented in Fig.368

3c;369

– Node T3,2,2: when drivers pass through at least one vertical370

road that is equipped with dynamic charging, as presented in371

Fig. 3d;372

• Node T3,1,4: when the route from the source to the desti-373

nation has at least one horizontal road that is equipped with374

dynamic charging;375

– Node T3,2,3: when drivers travel through no vertical roads376

that are equipped with dynamic charging;377

∗ Node T3,3,1: when the nearest horizontal road from the378

source is not equipped with dynamic charging, as presented379

in Fig. 3e;380

(a) Node T3,1,1 (b) Node T3,1,2 (c) Node T3,2,1

(d) Node T3,2,2 (e) Node T3,3,1 (f) Node T3,3,2

(g) Node T3,3,3 (h) Node T3,3,4

Charging road

Non-Charging road

Trip starting/ending point

Fig. 3: An illustration of the nodes of probability tree T3.

· Node T3,4,1: when drivers decide to take the nearest hori- 381

zontal road that is equipped with dynamic charging; 382

· Node T3,4,2: when drivers take the nearest horizontal road 383

that is not equipped with dynamic charging; 384

∗ Node T3,3,2: when the nearest horizontal road from the 385

source is equipped with dynamic charging, as presented in 386

Fig. 3f; 387

– Node T3,2,4: when drivers pass through at least one vertical 388

road that is equipped with dynamic charging; 389

∗ Node T3,3,3: when the nearest horizontal road from the 390

source is not equipped with dynamic charging, as presented 391

in Fig. 3g; 392

· Node T3,4,3: when drivers decide to take the nearest vertical 393

road that is equipped with dynamic charging; 394

· Node T3,4,4: when drivers decide to take the nearest hori- 395

zontal road that is equipped with dynamic charging; 396

∗ Node T3,3,4: when the nearest horizontal road from the 397

source is equipped with dynamic charging, as presented in 398
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Fig. 3h;399

To compute each term in equation (6), in section IV-E, we400

first derive some prerequisite propositions that will be used401

repeatedly in later proof. Then, in section IV-F, we show a402

detailed calculation of a subcase of event T3, i.e., a term in403

equation (6), to illustrate our idea.404

E. Summary of important distributions405

Proposition 1. Let DN−VC be the Manhattan distance from
the source to the nearest vertical road that is equipped with
dynamic charging. The CDF of DN−VC is

FDN−VC(x) = P(DN−VC < x)

= 1− 2

∫ ∞

−∞

∫ s

−∞
e−λ

∫ s
s−x

g(r)drfD(d)fS(s)ddds.

Proof: See Appendix A.406

Proposition 2. The CDF of DN−VC|S,D is

FDN−VC|S,D(x) = P(DN−VC < x|S,D) = 1− e−λ
∫
A

g(r)dr,

where A is a segment of length x from S, i.e., A = (s, s+ x)407

if S < D or A = (s− x, s) if S > D.408

The PDF DN−VC|S,D is

fDN−VC|S,D(x|s, d, s < d) =
d

dx
FDN−VC|S,D(x)

= λg(s+ x)e−λ
∫ s+x
s

g(r)dr,

fDN−VC|S,D(x|s, d, s > d) =
d

dx
FDN−VC|S,D(x)

= λg(s− x)e−λ
∫ s
s−x

g(r)dr.

The closed form for FDN−VC|S,D(x), which means the409

closed form for
∫
A
g(r)dr, is derived in Appendix B.410

Proposition 3. The CDF and PDF of DN−HC|S,D are the411

same as those of DN−VC|S,D.412

Proof: The proof of FDN−HC|S,D(x) and fDN−HC|S,D(x)413

are similar to those of FDN−VC|S,D(x) and fDN−VC|S,D(x)414

given in Proposition 2.415

Proposition 4. Let DN−VNC be the Manhattan distance from
the source to the nearest vertical road that is not equipped
with dynamic charging. The CDF of DN−VNC is

P(DN−VNC < x)

= 1− 2

∫ ∞

−∞

∫ s

−∞
e−λ

∫ s
s−x

(1−g(r))drfD(d)fS(s)ddds.

Proof: The proof of P(DN−VNC < x) is similar to that416

of P(DN−VC < x) given in Proposition 1.417

Proposition 5. The CDF of DN−VNC|S,D is

P(DN−VNC < x|S,D, S < D) = 1− e−λ
∫ s+x
s

(1−g(r))dr,

P(DN−VNC < x|S,D, S > D) = 1− e−λ
∫ s
s−x

(1−g(r))dr.

The PDF DN−VNC|S,D is

fDN−VNC|S,D(x|s, d, s < d) =
d

dx
FDN−VNC|S,D(x)

= λ(1− g(s+ x))e−λ
∫ s+x
s

(1−g(r))dr,

fDN−VNC|S,D(x|s, d, s > d) =
d

dx
FDN−VNC|S,D(x)

= λ(1− g(s− x))e−λ
∫ s
s−x

(1−g(r))dr.

Proposition 6. The CDF and PDF of DN−HNC|S,D are the 418

same as those of DN−VNC|S,D given in Proposition 5. 419

Proposition 7. Let dh be the horizontal distance between
S and D. Let X1 be the distance from the source’s nearest
vertical road that is not equipped with dynamic charging to the
next vertical road equipped with dynamic charging, provided
that both road types are present on the route from the source
to the destination. The CDF of X1 given S and D is

P(X1 < x|S,D, S < D)

=

∫ dh

x
(e−λ

∫ s+t−x
s

(1−g(r))dr − e−λ
∫ s+t
s

(1−g(r))dr)∫ dh

0
FDN−VNC|S,D(t)

×
fDN−VC|S,D(t|s, d, s < d)dt

fDN−VC|S,D(t|s, d, s < d)dt
.

Proof: See Appendix C. 420

Proposition 8. Let dv be the vertical distance between S and
D. Let X2 be the distance from the source’s nearest horizontal
road that is not equipped with dynamic charging to the next
horizontal road equipped with dynamic charging, provided that
both road types are present on the route from the source to
the destination. The CDF of X2 given S and D is

P(X1 < x|S,D, S < D)

=

∫ dv

x
(e−λ

∫ s+t−x
s

(1−g(r))dr − e−λ
∫ s+t
s

(1−g(r))dr)∫ dv

0
FDN−VNC|S,D(t)

×
fDN−VC|S,D(t|s, d, s < d)dt

fDN−VC|S,D(t|s, d, s < d)dt
.

Proof: The proof for P(X1 < x|S,D, S < D) is similar 421

to that of P(X1 < x|S,D, S < D) given in Proposition 7. 422

Proposition 9. Let DN−HNC be the Manhattan distance from 423

the source to the nearest vertical road that is not equipped 424

with dynamic charging. The CDF of DN−HNC is the same as 425

that of DN−VNC given in Proposition 4. 426

Proposition 10. Let DN−HC be the Manhattan distance from 427

the source to the nearest horizontal road that is equipped with 428

dynamic charging. The CDF of DN−HC is the same as that of 429

DN−VC. 430

Proof: The proof of P(DN−HC < x) is similar to that of 431

P(DN−VC < x) given in Proposition 1. 432

F. Calculation of ρc and Dn 433

To complete the computation in equation (6), we apply the
same methodology to each of its terms. To avoid repetitiveness,
we take the leaf ending at event T3,4,1 as an example. Since
this is the fifth leaf of tree T3, event L3,5 = T3,4,1 ∩ T3,3,1 ∩
T3,2,3 ∩ T3,1,4 ∩ T3 (see Fig. 2). Probability
P(L3,5|S,D) = P(T3,4,1|T3,3,1, T3,2,3, T3,1,4, T3, S,D)×
P(T3,3,1|T3,2,3, T3,1,4, T3, S,D)P(T3,2,3|T3,1,4, T3, S,D)×
P(T3,1,4|T3, S,D)P(T3|S,D).

Since T3 denotes the event when the source and destination 434

roads are parallel and only the destination road is equipped 435
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with dynamic charging, the probability of event T3|S,D is436

(1 − g(s))g(d), where s, d are the distances from the source437

and the destination to the city center, respectively.438

Assume that S < D, the computation of P(L3,5|S,D), i.e.,
component probabilities are listed below.

P(T3|S,D) = (1− g(s))g(d),

P(T3,1,4|T3, S,D) = 1− e−λ
∫ s+dv
s

g(r)dr,

P(T3,2,3|T3,1,4, T3, S,D) = e−λ
∫ s+dh
s

g(r)dr,

P(T3,3,1|T3,2,3, T3,1,4, T3, S,D)

= EDN−HC [P(T3,3,1|T3,2,3, T3,1,4, T3, DN−HC, S,D)]

= EDN−HC
[1− e−λ

∫ s+DN−HC
s 1−g(r)dr]

=

∫ dv

0

(1− e−λ
∫ s+a
s

1−g(r)dr)
fDN−HC(a)

FDN−HC(dv)
da,

P(T3,4,1|T3,3,1, T3,2,3, T3,1,4, T3, S,D) = FX2
(dh).

After calculating P(L3,5|S,D), we move on to P(Dn <
x|L3,5, S,D) and P(ρc < x|L3,5, S,D) as follows:

P(Dn < x|L3,5, S,D) = Ψ1(s, dλ, α, rmin, dh, dv, x),

P(ρc < x|L3,5, S,D) = Ψ2(s, d, λ, α, rmin, dh, dv, x),

where Ψ1() and Ψ2() are the functions of the (charging) road439

density (i.e., λ, α, rmin) and the trip detail (i.e., s, d, dh, dv, x).440

The full forms and proof of Ψ1() and Ψ2() are given in441

Appendix D.442

V. CASE STUDIES443

A. Datasets444

We collect datasets on actual traffic in two urban cities:445

New York City (USA) and Xi’an (China). The New York446

City (NYC) dataset was released by the New York City Taxi447

and Limousine Commission (TLC) [53]. It consists of over448

33 million trip records of yellow taxis over a 6-month period,449

from July 2019 to December 2019. Yellow taxis are the iconic450

taxis of New York and are the only serviced vehicles permitted451

to respond to street hails from passengers in all five boroughs452

of New York City. From the trip records, we mainly utilize the453

locations of the pickup and drop-off points. These locations are454

numbered as integers in the range of 1 to 263, corresponding to455

263 taxi zones roughly based on the NYC Department of City456

Planning’s Neighborhood Tabulation Areas. Since this dataset457

provides traffic information across NYC in neighborhood-level458

resolution, it is suitable to develop city-wide strategies for the459

deployment of charging roads.460

The second traffic dataset comes from Didi Chuxing Tech-461

nology Co., which is a Chinese vehicle-for-hire company with462

over five hundred million users [54]. The dataset contains463

trip records in an area of about 50 square kilometers inside464

the third ring road of Xi’an in October 2016. Unlike the465

NYC dataset, the Xi’an dataset zooms into an area with466

dense population and traffic [55]. Therefore, it is best used467

to examine intra-neighborhood deployment strategies that are468

locally optimized for populated regions of urban cities.469

For the existing road networks of NYC and Xi’an, we470

utilize the third dataset, which OpenStreetMap provides via471

the package OSMnx [56]. In this dataset, the driving streets472

in those cities are represented as graphs whose nodes are the 473

road intersections or deadends, and edges are the road portions 474

connecting the nodes. 475

B. Spatial Distribution of Urban Trips 476

This subsection mainly focuses on the NYC dataset, since 477

it contains trips across the whole New York City. To inves- 478

tigate the spatial distribution of the trips, we aggregate the 479

pickup/drop-off counts of each taxi zones and notice that zones 480

with a large number of pickup/drop-offs are usually around 481

the Manhattan area. When we select the centroid of the most 482

populous taxi zone as the city center and fit the pickup/drop- 483

off counts of other zones as a function of their distance from 484

the city center, we find that they roughly follow a power-law 485

function, as shown in Fig. 4. 486
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Fig. 4: Scatter plot of the taxi zones in New York City fitted
with a linear regression model and 95% confidence interval.

Most of the taxi zones fit closely to the regression line, with 487

few following outliers. Three zones that are far from the center 488

but have a relatively higher number of pickup/drop-off counts 489

than most are the three airports of NYC, i.e., LaGuardia, JFK, 490

and Newark International airports, which are not surprising 491

since NYC is well-known as a busy transportation hub. Two 492

zones that have a relatively lower number of pickup/drop- 493

off counts than most at its distance are Rikers Island and 494

Great Kills Park, which are also expected given their lesser 495

popularity. 496

This spatial distribution of taxi pickups/drop-offs, i.e., about 497

following a power-law function, agrees with the evidence 498

found in the literature, as presented in [41]. In addition, it also 499

suggests that a traffic-based deployment strategy of charging 500

roads will likely be suitable for cities such as New York. 501

C. Charging Road Assignment & Model Validation 502

Based on the traffic and road network datasets, we want to 503

simulate the scenario where the charging roads are actually 504

deployed and then measure the impact of deployment in 505

terms of the proposed metrics. To this end, on the NYC 506

dataset, we first calculate the distance from the city center 507
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to every node in the road network dataset. Then, we define508

the distance from the city center to each road as the minimum509

distance from the center to every node of that road. Once the510

distances from the center to the roads are ready, we assign511

the charging attribute to each road based on two proposed512

strategies: uniform deployment and traffic-based power-law513

deployment. For uniform deployment, each road has a fixed514

probability of being a charging road, regardless of its distance515

from the city center. On the other hand, for traffic-based516

power-law deployment, the probability of charging for a road517

is a function of its distance from the center. In this experiment,518

the charging probability is chosen so that on average, 20%519

of the roads in NYC will be charging roads. In addition,520

we assume an average driving speed inside NYC of 20km/h521

and a constant charging model, i.e., the power that an EV522

receives equal to the product of the dynamic charging system523

output power and the time the EV spent on the charging road.524

Note that in practice, the speed of vehicles may vary, and the525

charging rate depends on various factors such as the current526

EV battery level, driving speed, ambient temperature, and road527

elevation profile. However, since our metrics are aggregated528

over a large number of trips and this work is one of the first529

attempts to study the impact of dynamic charging deployment530

verified on real data, we begin with a basic assumption of531

constant driving speed and charging rate.532

When the charging roads are deployed following a traffic-533

based strategy, the simulation results for ρc with different trip534

lengths, i.e., 4km, 7km, and 10km across the center of NYC,535

are shown in Fig. 5. We see that in all three cases, the empirical536

distribution that we get from simulating trips on the actual537

roads of New York closely matches the analytical distribution538

that we find in section IV. In addition, we see from Fig. 5539

that in all three cases, P (ρc > 80) > 0.8, indicating that with540

20% of the roads being equipped with dynamic charging as541

in this case study, trips across the center of NYC will have542

more than 80% of the road portion traveling on charging road543

with a high probability of more than 0.8. Similarly, since544

P (ρc > 40) = 1 and P (ρc > 90) > 0.5, drivers in NYC545

will typically commute on more than 40% of charging road546

all the time and 90% of charging road half of the time. This547

distribution can be used by relevant organizations and policy548

makers to plan the deployment density of dynamic charging549

roads. Furthermore, given a trip distance, the distribution of550

the energy charged in a trip, denoted as ec, can also be derived.551

In Fig. 6, we show the probability of getting a certain amount552

of energy through a trip of different lengths. This distribution553

benefits EV manufacturers in configuring the battery size and554

suggesting suitable charging schedules to drivers. To gain more555

insights into the impact of deployment density on urban trips,556

we simulate traveling scenarios for various EV models in557

section V-D.558

D. Implications to popular EVs models in NYC559

After developing and validating the model used to compute560

the distribution of road portions traveled on charging roads,561

we aim to investigate the impact of deployment density on562

the travel activities of popular EV models. Specifically, we563
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Fig. 5: The CCDF of road portion traveled on charging roads
with different trip lengths across the center of New York City.

elaborate on how different deployment schemes, i.e., traffic- 564

based power law deployment and random deployment, at 565

various densities affect the battery levels of common EVs as 566

they commute in NYC. To this end, we select three of the 567

best-selling EV models in the U.S. [57] whose specifications 568

are given in Table III. 569

For all EVs, we assume a starting battery level of 50% and 570
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Fig. 6: The CCDF the energy charged in a trip of different
lengths across the center of New York City.

TABLE III: Popular EV models and their specifications

Model EPA Energy
Consumption
Rate (kWh/km)

Battery
Capacity
(kWh)

Tesla Model 3
Range Plus

0.149129 50

Chevrolet Bolt 0.180197 60
Nissan Leaf 0.186411 40

adopt a simple energy consumption model, i.e., the energy571

consumption of a trip equals the energy consumption rate572

multiplied by the length of that trip. Next, based on a survey of573

popular dynamic charging systems [9], we assume the power574

of a typical dynamic charging system to be 20 kW. Then,575

the energy gain after a trip will be calculated as a product576

of the dynamic charging system power, the travel time, and577

the charging portion. Using the actual trip records from the578

NYC dataset, we estimate the battery levels of the three EVs579

as they travel in NYC with 20% of the roads being charging,580

as shown in Fig. 7.581
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Fig. 7: Popular EV models traveling in NYC with 20%
charging roads.

From Fig. 7, we see that all EV models gain approximately 582

5%-7% of their battery levels after every 10 km driving when 583

traveling in NYC with 20% of the roads being charging. While 584

the Nissan Leaf and the Tesla Model 3 Range Plus have similar 585

battery levels, the Chevrolet Bolt takes a little more time to get 586

fully charged, partly because the Bolt has the biggest battery 587

capacity out of three. Nevertheless, in general, the remarkable 588

gain in battery levels across all 3 EV models suggests a 589

strong capability of dynamic charging systems to power EVs 590

in their everyday commute. Indeed, in Fig. 8, the simulated 591

battery level of the Nissan Leaf when traveling with different 592

percentages of charging roads is shown. It is clear that even 593

with only 5% of charging roads, the Nissan Leaf maintains its 594

battery level throughout its trips. This indicates that EV owners 595

need to visit charging stations much less often with dynamic 596

charging, reducing the demand for building more charging 597

stations. In addition, for transportation and logistic companies, 598

it means their electric fleets can operate continuously with less 599

idle time. 600
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Fig. 8: Nissan Leaf traveling with power law deployment of
charging roads.

After demonstrating how dynamic charging systems power 601

EVs in their daily trips, we hereby compare the traffic-based 602

power law deployment and the random deployment plans, 603

as presented in Fig. 9. The battery level simulation with 604

the Nissan Leaf implies that with the same percentage of 605

charging roads at 20%, the traffic-based power law deployment 606

scheme way outperforms the random deployment plan in 607

terms of the energy it provides to EVs. For example, from 608

Fig. 9, we see that after 100km of driving, while the random 609

deployment only roughly maintains the battery level of the 610

Nissan Leaf, the power law deployment charges the Leaf 611

to its nearly full capacity. Moreover, we observe that after 612

about 110km, the battery of the Leaf will otherwise deplete if 613

there are no charging roads, which underscores the ability of 614

dynamic charging systems to extend the driving range of EVs 615

significantly. 616
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Fig. 9: Nissan Leaf traveling in NYC with 20% charging roads.

E. Locally Optimized Deployment Plan for a Dense Neigh-617

borhood in Xi’an618

In this subsection, we examine the Xi’an dataset, which619

provides trip records in a dense area of Xi’an. Unlike the620

previous subsection in which we investigate deployment plans621

across NYC, in this subsection, we zoom into a populated area622

of Xi’an to see if we can further optimize the deployment of623

charging roads inside this dense neighborhood. Similarly, we624

compare two strategies: the traffic-based deployment plan and625

the random deployment plan. To explore traffic, we first plot626

the pickup/drop-off points of the trips on a heatmap, as in627

Fig 10.628

308
000

309
000

310
000

311
000

312
000

313
000

314
000

315
000

Easting

3.787

3.788

3.789

3.790

3.791

3.792

3.793

3.794

3.795

No
rth

in
g

1e6

0

100

200

300

400

500

Fig. 10: Heatmap of pickup/drop-off locations in Xi’an in
UTM coordinate system, zone 49.

From Fig. 10, one can see that there are some possible629

hotspots of pickup/drop-off locations near the edge of the data630

boundary. For a traffic-based deployment plan in this area,631

since there is not a clear center and the decreasing trend of632

traffic from a single center as in the case of NYC cannot633

be observed, we propose a strategy in which we deploy the634

charging roads at a decreased density from the top populated 635

traffic clusters. Specifically, we first select the top five most 636

populous clusters of pickup/drop-off locations using a popular 637

density-based clustering algorithm, i.e., DBSCAN [58]. Then, 638

we consider each of those clusters as a mini city center. Next, 639

each road will be assigned a charging probability following 640

a power law function in terms of its minimum distance to 641

the five centers. The idea behind this approach is aligned 642

with the one used in NYC, i.e., to deploy the charging roads 643

where the traffic is dense and then decrease their densities 644

following a power law function. The battery simulation results 645

of the Nissan Leaf traveling in Xi’an with 12.74% of the roads 646

being charging are presented in Fig. 11. It is clear that while 647

the traffic-based power law deployment plan roughly retains 648

the Leaf battery level throughout the trips, with the random 649

deployment plan, the Leaf loses nearly 20% of its battery after 650

100km of driving. 651
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Fig. 11: Nissan Leaf traveling in Xi’an with 12.74% charging
roads.

F. A Comparison with the Gaussian Deployment Plan 652

In section V-B and section V-D, we show the evidence that 653

in NYC, where the pickup/drop-off locations follow a power 654

law distribution, a power law deployment plan of charging 655

roads clearly outperforms the uniform one. In this subsection, 656

we further put the power law deployment plan to the test 657

against a much similar strategy, which uses a Gaussian density 658

function, to see if mimicking the distribution of traffic is 659

indeed a good approach. To guarantee a fair comparison, the 660

parameters of both plans are matched to the same average 661

road charging probability. The comparison results of the two 662

plans at different densities are presented in Fig. 12. One can 663

see that although at low charging density, the Gaussian plan is 664

slightly better than the power law one, when the average road 665

charging probability is above 15%, the power law strategy 666

apparently outperforms the Gaussian plan in terms of the 667

power each plan provides to EVs. This is because at low 668

charging density, both power law and Gaussian function share 669

a “long tail”, i.e., a zone in which the charging probability of 670

the roads is approximately zero, as shown in Fig. 13. The 671
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only difference is in the area close to the city center, in672

which the Gaussian function has a higher density, resulting673

in a slightly better performance. However, when the average674

road charging probability is above 15%, the difference between675

the two functions becomes more substantial. In this case, the676

power law plan is significantly better since it is closer to the677

actual traffic. Hence, the comparison suggests that, in general,678

a traffic-based deployment plan, e.g., the power law plan in679

the case of NYC, is the best plan to deploy dynamic charging680

systems in metropolitan cities.681

VI. CONCLUDING REMARKS682

In this research, we examined several strategies to deploy683

dynamic charging systems in metropolitan cities to alleviate684

the shortcomings of charging stations and thus facilitate vehi-685

cle electrification. To compare the strategies, we presented two686

statistical metrics that capture deployment’s impact on urban687

commuting. Next, we applied these metrics to deduce insights688

on the changes of battery levels of popular EV models under689

different deployment scenarios. We found that a traffic-based690

deployment strategy is not only superior to other deployment691

schemes in terms of the power provided to EVs, but it is692

also efficient, e.g., only 5% of charging roads in NYC can693

retain the battery levels of EVs without stopping to recharge.694

This research aims to assist decision makers in public or695

private organizations in planning the deployment of dynamic696

charging in urban cities. In the future, when dynamic charging697

roads become so popular in metropolitan cities that their costs698

substantially decrease, this work can also serve as a reference699

for the deployment in suburban and rural areas. In addition,700

several directions of future work can be extended from our701

findings. For example, the system model can be extended to702

the general PLP so that the results can be applied to cities703

with non grid-like street networks. In addition, various factors704

such as the driving speed, traffic flow, congestion, and road705

elevation profile can be considered to update the metrics and706

capture the impact of dynamic charging deployment even more707

precisely.708

APPENDIX A709

PROOF OF PROPOSITION 1710

P(DN−VC < x) = ES,D[P(DN−VC < x)|S,D)]

= ES,D[1− P(DN−VC > x)|S,D)]

= ES,D[1− P(DN−VC > x)|S > D)1{S > D}
− P(DN−VC > x)|S < D)1{S < D}] (7)

APPENDIX B711

CLOSED FORM OF PROPOSITION 2712

Assume that S < D, we now derive the closed form for∫ s+x

s
g(r)dr.∫ s+x

s

g(r)dr

=

∫ s+x

s

(
| r |
rmin

)−α

1{| r |> rmin}+ 1{| r |< rmin}dr
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Fig. 12: Nissan Leaf travelling in NYC with various percent-
ages of charging roads.

=

∫ s+x

s

(
| r |
rmin

)−α

(1{r > rmin}+ 1{r < −rmin})

+ 1{−rmin < r < rmin}dr

=

∫ min(s+x,−rmin)

s

(
−r

rmin

)−α

1{s < −rmin}dr
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Fig. 13: Density function according to various road average
charging percentage.

+

∫ min(s+x,rmin)

max(−rmin,s)

1{−rmin − x < s < rmin}dr

+

∫ s+x

max(rmin,s)

(
r

rmin

)−α

1{s+ x > rmin}dr

=
−rmin

1− α

((
−min(s+ x,−rmin)

rmin

)1−α

−
(

−s

rmin

)1−α)
× 1{s < −rmin}+ (min(s+ x, rmin)−max(−rmin, s))

× 1{−rmin − x < s < rmin}

+
rmin

1− α

((
s+ x

rmin

)1−α

−
(
max(s, rmin)

rmin

)1−α)
1{s+ x > rmin}. (8)

APPENDIX C713

PROOF OF PROPOSITION 7714

P(X1 < x|S,D, S < D)

= P(DN−VC−DN−VNC<x|DN−VNC<DN−VC<dv,S<D)

=
P(DN−VC − x < DN−VNC < DN−VC < dv)

P(DN−VNC < DN−VC < dv)

=
EDN−VC

[P(t−x<DN−VNC<t<dh)|DN−VC=t,S<D]

EDN−VC
[P(DN−VNC<t<dh)|DN−VC=t,S<D] (9)

APPENDIX D715

DERIVATION OF Dn AND ρc716

After calculating P(L3,5|S,D), we move on to P(Dn <
x|L3,5, S,D) as follows:
P(Dn < x|L3,5, S,D)

= P(Dn < x|T3,4,1, T3,3,1, T3,2,3, T3,1,4, T3, S,D)

= P(DN−HC<x|DN−HC<dv,DN−HNC<DN−HC,DN−HNC+dh>DN−HC,S,D)

× 1{x < dv}+ 1{x > dv}
=

EDN−HNC
[P(DN−HNC<DN−HC<min(DN−HNC+dh,x)|DN−HNC,S,D)]

EDN−HNC
[P(DN−HNC<DN−HC<min(DN−HNC+dh,dv)|DN−HNC,S,D)]

× 1{x < dv}+ 1{x > dv}

=

∫ x
0
(FDN−HC|S,D(min(t+dh,x)|s,d,s<d)−FDN−HC|S,D(t|s,d,s<d))∫ dv

0
(FDN−HC|S,D(min(t+dh,dv)|s,d,s<d)−FDN−HC|S,D(t|s,d,s<d))

×
fDN−HNC|S,D(t|s,d,s<d)dt

fDN−HNC|S,D(t|s,d,s<d)dt × 1{x < dv}+ 1{x > dv}.

Similarly, we can calculate P(ρc < x|L3,5, S,D).
P(ρc < x|L3,5, S,D)

= P(ρc < x|T3,4,1, T3,3,1, T3,2,3, T3,1,4, T3, S,D) =

P(dh+dv−DN−HC<x|DN−HC<dv,DN−HNC<DN−HC,DN−HNC+dh>DN−HC,S,D)

× 1{dh < x < dh + dv}+ 1{x > dh + dv}
= P(max(dh+dv−x,DN−HNC)<DN−HC<min(dv,DN−HNC+dh)|S,D)

P(DN−HNC<DN−HC<min(dv,DN−HNC+dh)|S,D)

× 1{dh < x < dh + dv}+ 1{x > dh + dv} =
EDN−HNC

[P(max(dh+dv−x,DN−HNC)<DN−HC<min(dv,DN−HNC+dh)|DN−HNC,S,D)]

EDN−HNC
[P(DN−HNC<DN−HC<min(dv,DN−HNC+dh)|DN−HNC,S,D)]

× {dh < x < dh + dv}+ 1{x > dh + dv} =∫dv
max(dv−x,0)

(FDN−HC|S,D(min(dv,t+dh)|s<d)−FDN−HC|S,D(max(dh+dv−x,t)|s<d))∫dv
0 (FDN−HC|S,D(min(dv,t+dh)|s,d,s<d)−FDN−HC|S,D(t|s,d,s<d))

×
fDN−HNC|S,D(t|s,d,s<d)dt

fDN−HNC|S,D(t|s,d,s<d)dt1{dh < x < dh + dv}+ 1{x > dh + dv}.

REFERENCES 717

[1] J. Conti, P. Holtberg, J. Diefenderfer, A. LaRose, J. T. Turnure, and 718

L. Westfall, “International energy outlook 2016 with projections to 719

2040,” USDOE Energy Information Administration (EIA), Washington, 720

DC (United States), Tech. Rep., 2016. 721

[2] IEA, “Tracking transport 2020,” 2020, https://bit.ly/3FLdw3o. 722

[3] L. Hockstad and L. Hanel, “Inventory of US greenhouse gas emissions 723

and sinks,” Environmental System Science Data Infrastructure for a 724

Virtual Ecosystem, Tech. Rep., 2018. 725

[4] F. Knobloch, S. V. Hanssen, A. Lam, H. Pollitt, P. Salas, U. Chew- 726

preecha, M. A. Huijbregts, and J.-F. Mercure, “Net emission reductions 727

from electric cars and heat pumps in 59 world regions over time,” Nature 728

Sustainability, vol. 3, no. 6, pp. 437–447, 2020. 729

[5] M. Isik, R. Dodder, and P. O. Kaplan, “Transportation emissions scenar- 730

ios for New York City under different carbon intensities of electricity 731

and electric vehicle adoption rates,” Nature Energy, vol. 6, no. 1, pp. 732

92–104, 2021. 733

[6] IEA, “Global EV outlook 2020,” 2020, https://bit.ly/3zcyaa2. 734

[7] J. Deng, C. Bae, A. Denlinger, and T. Miller, “Electric vehicles batteries: 735

requirements and challenges,” Joule, vol. 4, no. 3, pp. 511–515, 2020. 736

[8] H. Hao, Y. Geng, J. E. Tate, F. Liu, K. Chen, X. Sun, Z. Liu, and F. Zhao, 737

“Impact of transport electrification on critical metal sustainability with 738

a focus on the heavy-duty segment,” Nature Communications, vol. 10, 739

no. 1, pp. 1–7, 2019. 740

[9] C. Panchal, S. Stegen, and J. Lu, “Review of static and dynamic wireless 741

electric vehicle charging system,” Engineering Science and Technology, 742

an International Journal, vol. 21, no. 5, pp. 922 – 937, 2018. 743

[10] S. Y. Choi, B. W. Gu, S. Y. Jeong, and C. T. Rim, “Advances in wireless 744

power transfer systems for roadway-powered electric vehicles,” IEEE 745

Journal of Emerging and Selected Topics in Power Electronics, vol. 3, 746

no. 1, pp. 18–36, 2015. 747

[11] J. T. Boys and G. A. Covic, “The inductive power transfer story at the 748

University of Auckland,” IEEE Circuits and Systems Magazine, vol. 15, 749

no. 2, pp. 6–27, 2015. 750

[12] O. C. Onar, J. M. Miller, S. L. Campbell, C. Coomer, C. P. White, 751

and L. E. Seiber, “Oak Ridge national laboratory wireless power 752

transfer development for sustainable campus initiative,” in 2013 IEEE 753

Transportation Electrification Conference and Expo (ITEC), June 2013, 754

pp. 1–8. 755

[13] “Witricity acquires Qualcomm Halo,” https://bit.ly/3pC1Ry1, accessed: 756

2021-08-31. 757

[14] “Electrification of an industry,” https://bit.ly/3FiUHnP, accessed: 2021- 758

08-31. 759

[15] “INCIT-EV project: Innovative electric charging solutions to be tested 760

in Europe,” https://www.incit-ev.eu/, accessed: 2021-08-31. 761

[16] “These companies want to charge your electric vehicle as you drive,” 762

https://on.wsj.com/3zdAVYB, accessed: 2021-08-31. 763

[17] S. Jeong, Y. J. Jang, D. Kum, and M. S. Lee, “Charging automation 764

for electric vehicles: Is a smaller battery good for the wireless charg- 765

ing electric vehicles?” IEEE Transactions on Automation Science and 766

Engineering, vol. 16, no. 1, pp. 486–497, 2018. 767

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3180495

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: KAUST. Downloaded on June 09,2022 at 06:17:41 UTC from IEEE Xplore.  Restrictions apply. 



[18] F. Yang, Y. Xie, Y. Deng, and C. Yuan, “Predictive modeling of battery768

degradation and greenhouse gas emissions from US state-level electric769

vehicle operation,” Nature Communications, vol. 9, no. 1, pp. 1–10,770

2018.771

[19] S. Jeong, Y. J. Jang, and D. Kum, “Economic analysis of the dynamic772

charging electric vehicle,” IEEE Transactions on Power Electronics,773

vol. 30, no. 11, pp. 6368–6377, 2015.774

[20] “Battery electric vehicles. new markets. new entrants. new challenges.”775

https://bit.ly/3Hmgage, accessed: 2021-08-31.776

[21] “Wireless charging market,” Markets and Markets, Tech. Rep., 2021.777

[22] “New EU target to cut carbon emissions by at least 55% disappoints778

experts,” https://bit.ly/3pFBE1x, accessed: 2021-08-31.779

[23] “Fact sheet: President Biden sets 2030 greenhouse gas pollution re-780

duction target aimed at creating good-paying union jobs and securing781

U.S. leadership on clean energy technologies,” https://bit.ly/3ehWcqi,782

accessed: 2021-08-31.783

[24] “Biden, Yellen seek backing for $2.3 trillion infrastructure package,”784

https://on.wsj.com/3pDP6Dd, accessed: 2021-08-31.785

[25] “Ford will spend $30 billion on electric vehicles, a big increase from786

earlier plans,” https://nyti.ms/3eEvVTi, accessed: 2021-08-31.787

[26] “Hyundai Motor Group to invest $7.4 billion in the U.S. by 2025,”788

https://bit.ly/3ze6bGM, accessed: 2021-08-31.789

[27] Z. Chen, F. He, and Y. Yin, “Optimal deployment of charging lanes for790

electric vehicles in transportation networks,” Transportation Research791

Part B: Methodological, vol. 91, pp. 344–365, 2016.792

[28] R. Riemann, D. Z. Wang, and F. Busch, “Optimal location of wireless793

charging facilities for electric vehicles: flow-capturing location model794

with stochastic user equilibrium,” Transportation Research Part C:795

Emerging Technologies, vol. 58, pp. 1–12, 2015.796

[29] B. Csonka, “Optimization of static and dynamic charging infrastructure797

for electric buses,” Energies, vol. 14, no. 12, p. 3516, 2021.798

[30] E. A. ElGhanam, M. S. Hassan, and A. H. Osman, “Deployment799

optimization of dynamic wireless electric vehicle charging systems: A800

review,” in 2020 IEEE International IOT, Electronics and Mechatronics801

Conference (IEMTRONICS). IEEE, 2020, pp. 1–7.802

[31] L. Yan, H. Shen, J. Zhao, C. Xu, F. Luo, and C. Qiu, “CatCharger: De-803

ploying wireless charging lanes in a metropolitan road network through804

categorization and clustering of vehicle traffic,” in IEEE INFOCOM805

2017-IEEE conference on computer communications. IEEE, 2017, pp.806

1–9.807

[32] Y. D. Ko and Y. J. Jang, “The optimal system design of the online808

electric vehicle utilizing wireless power transmission technology,” IEEE809

Transactions on intelligent transportation systems, vol. 14, no. 3, pp.810

1255–1265, 2013.811

[33] I. Hwang, Y. J. Jang, Y. D. Ko, and M. S. Lee, “System optimization for812

dynamic wireless charging electric vehicles operating in a multiple-route813

environment,” IEEE Transactions on Intelligent Transportation Systems,814

vol. 19, no. 6, pp. 1709–1726, 2017.815

[34] M. Fuller, “Wireless charging in California: Range, recharge, and vehicle816

electrification,” Transportation Research Part C: Emerging Technolo-817

gies, vol. 67, pp. 343–356, 2016.818

[35] H. Ushijima-Mwesigwa, M. Z. Khan, M. A. Chowdhury, and I. Safro,819

“Optimal placement of wireless charging lanes in road networks,”820

Journal of Industrial & Management Optimization, vol. 17, no. 3, p.821

1315, 2021.822

[36] Y. Zhang, S. Zhou, X. Rao, and Y. Zhou, “EV-road-grid: Enabling823

optimal electric vehicle charging path considering wireless charging and824

dynamic energy consumption,” in 2021 IEEE 94th Vehicular Technology825

Conference (VTC2021-Fall). IEEE, 2021, pp. 1–5.826

[37] G. Li, X. Li, Q. Sun, L. Boukhatem, and J. Wu, “An effective MEC827

sustained charging data transmission algorithm in VANET-based smart828

grids,” IEEE Access, vol. 8, no. 1, pp. 101 946–101 962, 2020.829

[38] G. Li, L. Boukhatem, L. Zhao, and J. Wu, “Direct vehicle-to-vehicle830

charging strategy in vehicular ad-hoc networks,” in 2018 9th IFIP831

International Conference on New Technologies, Mobility and Security832

(NTMS). IEEE, 2018, pp. 1–5.833

[39] G. Li, C. Gong, L. Zhao, J. Wu, and L. Boukhatem, “An efficient834

reinforcement learning based charging data delivery scheme in VANET-835

enhanced smart grid,” in 2020 IEEE International Conference on Big836

Data and Smart Computing (BigComp). IEEE, 2020, pp. 263–270.837

[40] G. Li, Q. Sun, L. Boukhatem, J. Wu, and J. Yang, “Intelligent vehicle-838

to-vehicle charging navigation for mobile electric vehicles via VANET-839

based communication,” IEEE Access, vol. 7, no. 1, pp. 170 888–170 906,840

2019.841

[41] R. Li, L. Dong, J. Zhang, X. Wang, W.-X. Wang, Z. Di, and H. E.842

Stanley, “Simple spatial scaling rules behind complex cities,” Nature843

Communications, vol. 8, no. 1, pp. 1–7, 2017.844

[42] M. Haenggi, Stochastic Geometry for Wireless Networks. Cambridge 845

University Press, 2012. 846

[43] H. S. Dhillon and V. V. Chetlur, Poisson Line Cox Process: Foundations 847

and Applications to Vehicular Networks. Morgan & Claypool, 2020. 848

[44] W. S. Kendall, “Geodesics and flows in a Poissonian city,” The Annals 849

of Applied Probability, vol. 21, no. 3, pp. 801–842, 2011. 850

[45] R. G. Leal, “Mean traffic behaviour in Poissonian cities,” Ph.D. disser- 851

tation, University of Warwick, 2018. 852

[46] D. M. Nguyen, M. A. Kishk, and M.-S. Alouini, “Modeling and analysis 853

of dynamic charging for EVs: A stochastic geometry approach,” IEEE 854

Open Journal of Vehicular Technology, vol. 2, pp. 17–44, 2020. 855

[47] R. Atat, M. Ismail, E. Serpedin, and T. Overbye, “Dynamic joint 856

allocation of EV charging stations and DGs in spatio-temporal expanding 857

grids,” IEEE Access, vol. 8, pp. 7280–7294, 2020. 858

[48] R. Atat, M. Ismail, and E. Serpedin, “Stochastic geometry planning 859

of electric vehicles charging stations,” in ICASSP 2020-2020 IEEE 860

International Conference on Acoustics, Speech and Signal Processing 861

(ICASSP). IEEE, 2020, pp. 3062–3066. 862

[49] V. V. Chetlur, H. S. Dhillon, and C. P. Dettmann, “Shortest path distance 863

in Manhattan Poisson line cox process,” Journal of Statistical Physics, 864

vol. 181, no. 6, pp. 2109–2130, 2020. 865

[50] G. Baics and L. Meisterlin, “The grid as algorithm for land use: a 866

reappraisal of the 1811 Manhattan grid,” Planning Perspectives, vol. 34, 867

no. 3, pp. 391–414, 2019. 868

[51] L. Berelowitz, Dream city: Vancouver and the global imagination. 869

Douglas & McIntyre, 2010. 870

[52] K. Al Sayed, A. Turner, and S. Hanna, “Cities as emergent models: the 871

morphological logic of Manhattan and Barcelona.” Royal Institute of 872

Technology (KTH), 2009. 873

[53] “TLC trip record data,” https://on.nyc.gov/3EL0mSu, accessed: 2021- 874

10-07. 875

[54] “Didi GAIA open data,” https://bit.ly/32tH079, accessed: 2021-10-07. 876

[55] J. Li, J. Li, Y. Yuan, and G. Li, “Spatiotemporal distribution character- 877

istics and mechanism analysis of urban population density: A case of 878

Xi’an, Shaanxi, China,” Cities, vol. 86, pp. 62–70, 2019. 879

[56] G. Boeing, “OSMnx: New methods for acquiring, constructing, analyz- 880

ing, and visualizing complex street networks,” Computers, Environment 881

and Urban Systems, vol. 65, pp. 126–139, 2017. 882

[57] “U.S. plug-in electric vehicles sales by model,” 883

https://afdc.energy.gov/data/10567, accessed: 2021-08-31. 884

[58] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “DBSCAN 885

revisited, revisited: why and how you should (still) use DBSCAN,” ACM 886

Transactions on Database Systems (TODS), vol. 42, no. 3, pp. 1–21, 887

2017. 888

Duc Minh Nguyen (Student Member, IEEE) was 889

born in Hanoi, Vietnam. He received the M.S. de- 890

gree in Electrical and Computer Engineering from 891

King Abdullah University of Science and Technol- 892

ogy (KAUST), Saudi Arabia, and the B.Eng. de- 893

gree in Mobile Systems Engineering from Dankook 894

University, Republic of Korea, in 2020 and 2018, 895

respectively. He is currently pursuing the Ph.D. 896

degree with the Electrical and Computer Engineering 897

Department, King Abdullah University of Science 898

and Technology, Thuwal, Saudi Arabia. His research 899

interests include sustainable transportation and machine learning. 900

Mustafa A. Kishk (Member, IEEE) is an Assistant 901

Professor at Maynooth University, Ireland. From 902

2019 to 2022 he was a postdoctoral research fellow 903

at KAUST. He received his Ph.D degree from Vir- 904

ginia Tech in 2018, his M.Sc. and B.Sc. degrees from 905

Cairo University in 2015 and 2013, respectively, 906

all in Electrical Engineering. His research interests 907

include UAV communications, satellite communica- 908

tions, and global connectivity for rural and remote 909

areas. 910

911

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3180495

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: KAUST. Downloaded on June 09,2022 at 06:17:41 UTC from IEEE Xplore.  Restrictions apply. 



Mohamed-Slim Alouini (Fellow, IEEE) was born912

in Tunis, Tunisia. He received the Ph.D. degree in913

Electrical Engineering from the California Institute914

of Technology (Caltech), Pasadena, CA, USA, in915

1998. He served as a faculty member in the Univer-916

sity of Minnesota, Minneapolis, MN, USA, then in917

the Texas A&M University at Qatar, Education City,918

Doha, Qatar before joining King Abdullah Univer-919

sity of Science and Technology (KAUST), Thuwal,920

Makkah Province, Saudi Arabia as a Professor of921

Electrical Engineering in 2009. His current research922

interests include the modeling, design, and performance analysis of wireless923

communication systems.924

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3180495

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: KAUST. Downloaded on June 09,2022 at 06:17:41 UTC from IEEE Xplore.  Restrictions apply. 


