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Latency Minimization for mmWave D2D Mobile Edge
Computing Systems: Joint Task Allocation and Hybrid
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Abstract—Mobile edge computing (MEC) and millimeter wave
(mmWave) communications are capable of significantly reducing
the network’s delay and enhancing its capacity. In this paper we
investigate a mmWave and device-to-device (D2D) assisted MEC
system, in which user A carries out some computational tasks
and shares the results with user B with the aid of a base station
(BS). We assume partial offloading model and the task can be
partitioned into two portions: the first part is computed locally
at user A, while the second part is transmitted to the BS and
computed by the MEC server. The computational results are then
sent to user B through a D2D link and via the link from the BS
to user B, respectively. To support computation offloading, both
the users and the BS are equipped with multiple antennas and
employ analog and digital (A/D) hybrid beamforming. Moreover,
we propose a novel two-timescale joint hybrid beamforming and
task allocation algorithm to reduce the system latency whilst
cut down the required signaling overhead. Specifically, the high-
dimensional analog beamforming matrices are updated in a
frame-based manner based on the channel state information
(CSI) samples, where each frame consists of a number of time
slots, while the low-dimensional digital beamforming matrices
and the offloading ratio are optimized more frequently relied on
the low-dimensional effective channel matrices in each time slot.
A stochastic successive convex approximation (SSCA) based algo-
rithm is developed to design the long-term analog beamforming
matrices. As for the short-term variables, the digital beamforming
matrices are optimized relying on the innovative penalty-concave
convex procedure (penalty-CCCP) for handling the mmWave
non-linear transmit power constraint, and the offloading ratio
can be obtained via the derived closed-form solution. Simulation
results verify the effectiveness of the proposed algorithm by
comparing the benchmarks.

Index Terms—Mobile edge computing, D2D, mmWave, latency
minimization.

I. INTRODUCTION

Given the rapid growth of computational-intensive mobile
applications such as virtual reality (VR) [1], augmented reality
(AR) [2], automatic driving [3], and face recognition [4], con-
ventional remote cloud computing centers tend to struggle in
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meeting the stringent latency requirements of next-generation
wireless systems [5]. Mobile edge computing (MEC) - which
supports servers at the base station (BS) of cellular networks
- has emerged as a promising solution [6], [7]. Thanks to
the proximity of the mobile devices to the server, users
can directly offload the computational-intensive tasks to the
edge server without passing the back-haul networks, which
significantly reduces the end-to-end delay and the network
burden [8]–[17]. Specifically, the works in [8]–[12] considered
the binary offloading in MEC systems. The authors of [8]
studied an energy efficient binary offloading problem and
designed optimal scheduling policies for both the mobile
execution and cloud execution. An MEC system combined
with energy harvesting techniques has been investigated in [9],
[10]. In [11], the authors proposed a general framework for
offloading tasks from a single user to multiple access points.
Moreover, the authors of [12] investigated a joint design
problem of the computation offloading decision, the resource
allocation, and the content caching strategy. The partial of-
floading schemes have been proposed to further improve the
performance of MEC systems [13]–[17]. In [13], an optimal
resource allocation scheme has been proposed for a multi-user
MEC system based on time-division multiple access (TDMA)
and orthogonal frequency-division multiple access (OFDMA),
respectively. The authors of [14] studied a multi-user TD-
MA partial offloading MEC system, and derived the optimal
solution to the delay minimization problem. By taking user
cooperation into consideration, the authors of [15] investigated
an energy-efficient problem for both binary offloading and par-
tial offloading. To improve edge cloud efficiency with limited
communication and computation capacities, the collaboration
between cloud computing and edge computing was studied in
[16], [17]. Furthermore, the authors of [18]–[20] investigated
the intelligent reflecting surface (IRS) assisted MEC systems
to improve the network efficiency.

However, MEC needs frequent data exchange between the
mobile devices and the edge server, which requires a large
communication capacity of the radio access network. Taking
the 360-degree immersive VR as an example, even under the
265 HEVC 1 : 600 video compression rate, a bit rate of
up to 1 Gbps [21] is needed to match the 2 × 64 million
pixel human-eye accuracy, which is challenging for the current
5th generation (5G) mobile communication technology [22].
Therefore, it is necessary to further enhance the system
capacity for beyond 5G MEC systems. The millimeter wave
(mmWave) and device-to-device (D2D) communications are
exactly two promising techniques. MmWave has tremendous
spectral resources and can achieve multi-gigabit transmission
capacity. Moreover, at this short wavelength it is possible to
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integrate a large number of antenna elements in a compact
space [23], thus achieving significant beamforming gain. D2D
communication supports multiplex of the cellular spectrum,
which allows mobile devices in proximity to communicate
directly. It features high data rate, low latency, and high
throughput [24], which fits the communication needs of MEC
systems well. As a result, a number of solutions applying
D2D techniques to MEC systems have been proposed to
enable direct data transmission and computational resource
sharing [25]–[28].

To the best of our knowledge, the mmWave and D2D
assisted MEC has not been well investigated in the literature.
Although the D2D-aided MEC systems have been studied
in the aforementioned works [25]–[28], they assumed sub-
6GHZ band and the tremendous mmWave spectral resource
has not been considered to further enhance the capacity.
Moreover, despite the tremendous benefits brought by the
integration of mmWave, D2D and MEC, there are more
challenges compared with existing works. To elaborate, 1) The
challenges of the physical layer signal processing incurred
in the mmWave frequency band, such as hybrid analog and
digital (A/D) beamforming [29]–[34], associated non-linear
power consumption model, CSI acquisition etc. 2) The design
of practical protocols to avoid the occurrence of transmission
collisions that may happen in simultaneous uplink/downlink
and D2D transmissions. 3) The design of efficient algorithms
to solve the challenging non-convex optimization problems.

Hence, to fill this research blank and tackle the above
challenges, we investigate a mmWave and D2D assisted MEC
system, where user A processes the computational tasks to
be solved and then shares the results with user B with the
aid of a BS. The investigated model is general and its typical
application scenarios include vehicle to vehicle communica-
tion [35], VR/AR gaming [36], and ultra high definition video
transmission [37]. We assume partial offloading model as
in [13]–[17], i.e., the task of user A can be partitioned into
two portions: the first part is computed locally at user A, while
the second part is transmitted to the BS and computed by the
MEC server. The computation results are then sent to user
B through a D2D link and the link from the BS to user B,
respectively. In order to support computation offloading, both
the users and the BS are equipped with multiple antennas and
employ A/D hybrid beamforming. However, directly solving
it by using the single-timescale algorithm requires very high
complexity and a large amount of CSI feedback. Thus, we
propose a novel two-timescale joint hybrid beamforming and
task allocation algorithm to reduce the system latency whilst
cut down the required signaling overhead. Specifically, the
high-dimensional analog beamforming matrices are updated in
a frame-based manner based on the channel state information
(CSI) samples, where each frame consists of multiple time
slots, while the low-dimensional digital beamforming matrices
and the offloading ratio are optimized more frequently relied
on the low-dimensional effective channel matrices in each
time slot. We respectively formulate a long-term weighted
ergodic channel capacity maximization problem and a short-
term latency minimization problem for practical design. Our
main contributions are summarized as follows:

• We study a novel scenario that combines MEC with

mmWave and D2D to significantly reduce the delay.
We consider the raw data and result transmission in the
uplink, the downlink, and the D2D link in details and
make practical protocols to avoid collisions.

• For the long-term weighted ergodic channel capacity
maximization problem, a stochastic successive convex
approximation (SSCA) based algorithm is developed for
designing the analog beamforming matrices, which em-
ploys surrogate functions to approximate the original
problem and converges to a stationary feasible solution.

• Regarding the design of the digital beamforming ma-
trices and offloading ratio, we equivalently decompose
the short-term latency minimization problem into sev-
eral decoupled subproblems. For the subproblems w.r.t.
the digital beamforming matrices, an efficient penalty-
CCCP based algorithm is proposed to tackle the nonlinear
mmWave transmit power constraints. We also develop a
low-complexity heuristic algorithm to design the digital
beamforming matrices for performance-complexity trade-
off.

• The closed-form expressions of offloading ratio are de-
rived based on classified discussion. We compare our
proposed joint design algorithm of the task allocation and
hybrid beamforming with the conventional algorithms in
the simulation. The results verify the effectiveness of our
proposed joint design algorithm.

The paper is structured as follows. Section II describes the
system model. Section III formulates the two-timescale prob-
lem under investigation. The long-term analog beamforming
design problem is solved in Section IV while the solutions to
the design of the short-term digital beamforming matrices and
the optimal offloading ratio are given in Section V. Section
VI presents the simulation results and Section VII concludes
this paper.

Notations: Scalars, vectors and matrices are denoted by low-
er case, boldface lower case and boldface upper case letters,
respectively. I represents an identity matrix and 0 denotes
an all-zero matrix. For a matrix A, AT , conj(A), AH , A†

and ∥A∥ denote its transpose, conjugate, conjugate transpose,
Moore-Penrose inverse and Frobenius norm, respectively. For
a square matrix A, Tr{A} and A−1 denotes its trace and
inverse, respectively, while A ≽ 0 (A ≼ 0) means that A is
positive (negative) semi-definite. For a vector a, ∥a∥ represents
its Euclidean norm. ℜ{·} (ℑ{·}) denotes the real (imaginary)
part of a variable. | · | denotes the absolute value of a complex
scalar. Cm×n (Rm×n) denotes the space of m× n complex
(real) matrices. ∠ denotes the angle operator.

II. SYSTEM MODEL

In this section, we introduce the investigated system model.
As shown in Fig. 1, we consider a system consisting of user A,
user B and a BS with a MEC server. User A aims to process
computation tasks and share the results with user B with the
aid of the BS. We assume partial offloading model as as [13]–
[17], i.e., user A has a total of L bits task to be processed, and
this task can be divided into two parts: ρL bits and (1− ρ)L
bits, where ρ denotes the offloading ratio. The first part is
transmitted to the BS and computed by the MEC server, and
the second part is computed at the local CPU of user A. The
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Fig. 1: mmWave D2D MEC system.

computational results are transmitted to user B through the
D2D link and the downlink (between the BS and user B),
respectively.1 Both the users and the BS are equipped with
A/D hybrid beamformers and work in mmWave band (The
hybrid beamforming architecture of the BS is not plotted here
since it is similar with that of the users).

A. Computation model

In this paper, we adopt a general compression model and
denote the computational results as αL bits, where 0 ≤ α ≤ 1
denotes the compression ratio for the computation task and
can be chosen as different values based on the category of
the task and the adopted algorithm [38]. Defining KL , L

FL
,

KE , L
FE

, K1 , L
R1

, K2 , αL
R2

and K3 , αL
R3

for
convenience of notation, where FL and FE stand for the
local computing capacity and the edge computing capacity
(computing capacity of the MEC server), respectively, and R1,
R2 and R3 represent the transmission rates of the uplink (from
user A to the BS), downlink and D2D link, respectively. We
express different delays as follows,

• The local computing time: T c
L = (1− ρ)KL.

• The computing time at the MEC server: T c
E = ρKE .

• The offloading time from user A to the BS: T t
up = ρK1.

• The delay for transmitting the computational result from
the BS to user B: T t

down = ρK2.
• The delay for transmitting the computational result from

user A to user B: T t
D2D = (1− ρ)K3.

Let us consider the process of computation and transmission
more concretely. As shown in Fig. 2, there are four cases in
total.

• Case 1: T t
up ≥ T c

L and T c
E ≥ T t

D2D. In this case, the local
computing at user A finishes before the edge offloading.
Thus user A has to wait until the task offloading is over
to send the local computing result to user B through the
D2D link. Moreover, in this case the transmission of the
local computing result ends before the edge computing.
Hence, the BS can send the edge computing results to

1It is worth mentioning that unlike the works in [28] where the authors
utilize the computation resource of both the MEC server and the D2D users,
we do not use the computation resource of user B because transmitting the
raw data is time-consuming while the computing capacity at user B has no
advantages over that of the BS.
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Fig. 2: The timeline of different offloading schemes.

user B directly without waiting until the transmission of
D2D link is over.

• Case 2: T t
up ≥ T c

L and T c
E < T t

D2D. In this case, the
local computing at user A also finishes before the edge
offloading. Hence, similar with Case 1, user A has to wait
until the task offloading is over. However, we consider
that the edge computing finishes before the transmission
of the local computing result. Under this situation, the
BS has to wait until the D2D link transmission is over
to send the edge computing results to user B. Otherwise,
collisions would happen at user B.

• Case 3: T t
up < T c

L and T t
up + T c

E < T c
L + T t

D2D.
In this case, the edge offloading ends before the local
computing. Hence user A can send the local computing
results to user B through the D2D link directly since
the communication resource is available at the moment.
Moreover, in this case the edge computing finishes before
the D2D transmission of the local computing result from
user A to user B. Thus, the BS has to wait until the
D2D link transmission is over to send the edge computing
result to user B.2

• Case 4: T t
up < T c

L and T t
up + T c

E ≥ T c
L + T t

D2D. In this
case, the edge offloading ends before the local computing,
and the D2D link transmission finishes before the edge
computing. As a result, no wait happens.

According to the four cases discussed above, we obtain the
expression for the overall system delay as follows,

Ttotal =


T t
up +max{T c

E , T
t
D2D}+ T t

down,

T t
up ≥ T c

L,

max{T t
up + T c

E , T
t
D2D + T c

L}+ T t
down,

T t
up < T c

L.

(1)

B. Communication model

Consider the three mmWave links that adopt hybrid A/D
beamforming structures. User A and user B are equipped with
Na, Nb antennas, respectively, and Nrfa (Nrfa ≤ Na), Nrfb

2It is also possible that the edge computing finishes before the local
computing. However, if the BS transmits the edge computing results to user
B immediately, collisions may happen because user A does not know when
the BS finishes its transmission and may send the local computing results to
user B simultaneously. Thus, we assume that user A has a priority to transmit
results to user B compared to the BS, even if the computation at the BS ends
earlier.
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(Nrfb ≤ Nb) RF chains, respectively, while the BS has N
antennas and Nrf (Nrf ≤ N) RF chains. Let s1 ∈ Cd1×1,
s2 ∈ Cd2×1 and s3 ∈ Cd3×1 ∼ CN (0, I) denote the data
symbols that transmitted from user A to the BS, the BS to
user B and user A to user B, respectively. The received signal
at the uplink, the downlink and the D2D link can be written
as3

y1 = VH
1 UH

1 H1FaWa1s1 +VH
1 UH

1 n1,

y2 = WH
b2F

H
b H2V2U2s2 +WH

b2F
H
b n2,

y3 = WH
b3F

H
b H3FaWa3s3 +WH

b3F
H
b n3,

respectively, where Wa1 ∈ CNrfa×d1 and Wa3 ∈ CNrfa×d3

represent the transmitting digital beamforming matrices of
user A for the uplink and the D2D link, respectively.
Fa ∈ CNa×Nrfa represents the long-term transmitting analog
beamforming matrices of user A. Wb2 ∈ CNrfb×d2 and
Wb3 ∈ CNrfb×d3 represent the receiving digital beamforming
matrices of user B for the downlink and the D2D link, re-
spectively. Fb ∈ CNb×Nrfb represents the long-term receiving
analog beamforming matrices of user B. V1 ∈ CNrf×d1

and V2 ∈ CNrf×d2 represent the receiving and transmit-
ting digital beamforming vectors at the BS, respectively, and
U1 ∈ CN×Nrf and U2 ∈ CN×Nrf represent the long-term
receiving and transmitting analog beamforming matrices at
the BS, respectively. H1 ∈ CN×Na , H2 ∈ CNb×N , and
H3 ∈ CNb×Na denote the channel matrices of the uplink,
downlink and D2D link, respectively, E{n1n

H
1 } = σ2

1I,
E{n2n

H
2 } = σ2

2I, and E{n3n
H
3 } = σ2

3I denote the zero mean
additive white Gaussian noise of the uplink, downlink and
D2D link, respectively.

With the above definitions, we write the transmission rate
for the uplink R1, downlink R2, and D2D link R3, respectively
as (2)-(4)4, where B1, B2 and B3 represent the bandwidth of
the uplink, downlink and D2D link, respectively.

In practice, the relationship between the circuit power and
the output power may be non-linear due to the working mode
of RF power amplifiers (PA) in mmWave band [39]. Hence, it
is necessary to take the non-linear energy efficiency of PAs into
consideration. Specifically, we consider the Doherty PA in this
paper, which is one of the most widely used PA architecture
in high frequency band that has enhanced energy efficiency
and linearity [40]. The relationship between the output power
Pout and the actual PA power consumption PPA is given by
[41]

PPA =


2
√
PoutPmax/π,

0 < Pout ≤ 0.25Pmax,

6
√
PoutPmax/π − 2Pmax/π,

0.25Pmax < Pout < Pmax,

(5)

3Here we adopt a single analog beamforming matrix Fa at user A and
Fb at user B for different transmission phases, because this scheme can
avoid frequent hand-off of the analog beamforming matrices with acceptable
performance loss. Moreover, although we introduce the proposed algorithm
under this case, it can be readily extended to the situation that there are
independent analog beamforming matrices for different transmission stages.

4We do not include the receiving digital beamformers in the rate expressions
because it is well-known that the optimal digital receivers (i.e., minimum mean
square error (MMSE) receivers) can achieve the maximum system rate, see
[48] for more details.

where Pmax is the maximum output power of the PA. In order
to compute the total power consumption of all PAs, we must
calculate the output power of each PA first, which is given by

Pout1(i) = E(|Fa(i, :)Wa1s1|2) = ∥Fa(i, :)Wa1∥2, ∀i (6)

Pout2(i) = E(|U2(i, :)V2s2|2) = ∥U2(i, :)V2∥2, ∀i (7)

Pout3(i) = E(|Fa(i, :)Wa3s3|2) = ∥Fa(i, :)Wa3∥2, ∀i (8)

where Pout1(i) and Pout3(i) represent the output power of the
ith PA of user A in the uplink and D2D link, respectively, and
Pout2(i) represents the output power of the ith PA of the BS
in the downlink. By substituting (6)-(8) into (5), the power
consumption of each PA, i.e. PPA1(i), PPA2(i) and PPA3(i)
can be obtained.

III. PROBLEM FORMULATION

Based on the system model introduced above, we provide
the two-timescale latency minimization problem in this sec-
tion. We first introduce the proposed two-timescale scheme.
Then, we formulate the long-term optimization problem and
the short-term optimization problem, respectively. For the
former, we seek to maximize the weighted ergodic channel
capacity. As for the latter, we minimize the overall system
latency. The details are given as follows.

A. Two-timescale scheme

In a typical mobile radio environment, the channel matrices
appearing in the system model of Section II will exhibit a
random behavior and change more or less rapidly over time.
The joint design of A/D hybrid beamforming matrices and
offloading ratio for each channel instance is not realistic for
implementation since as it requires repeated application of
a search-based algorithm with extremely high computation-
al complexity [42]. Moreover, this approach entails a huge
amount of overhead in the estimation and exchange of real-
time CSI information, and is likely to be very sensitive to CSI
delays. Therefore, to circumvent these difficulties, we hereby
propose a practical two-timescale hybrid beamforming scheme
that takes into account changes in both the instantaneous CSI
and their local statistics. Let us define the following concepts
of timescales:

• Long-timescale: The time interval over which the channel
statistics5 are assumed constant.

• Short-timescale: The time interval over which the channel
gains are assumed constant, i.e. the channel coherence
time.

As illustrated in Fig. 3, the time domain is divided into
a number of super frames within which the channel statistics
are invariant. Each super frame consist of Tf frames, and each
frame is further divided into Ts time slots. In our proposed
approach, to reduce CSI overhead, we only make use of one
complete estimated CSI at the end of each frame, while we

5In this work, channel statistics refer to the moments or distribution of the
channel fading realizations. The proposed long-term beamforming design only
has to obtain a single (potentially outdated) channel sample at each frame.
By observing one channel sample at each time, our proposed algorithm can
automatically learn the channel statistics and converge to a stationary point
of the considered stochastic optimization problem.
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R1 = B1 log det[I+
1

σ2
1

UH
1 H1FaWa1W

H
a1F

H
a HH

1 U1(U
H
1 U1)

−1], (2)

R2 = B2 log det[I+
1

σ2
2

FH
b H2U2V2V

H
2 UH

2 HH
2 Fb(F

H
b Fb)

−1], (3)

R3 = B3 log det[I+
1

σ2
3

FH
b H3FaWa3W

H
a3F

H
a HH

3 Fb(F
H
b Fb)

−1], (4)

0 t

stT stT i+ ( 1) 1st T+ -
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Fig. 3: The two-timescale model.

employ a so-called effective CSI (the multiplication of the
analog beamforming matrices and the CSI matrices, take the
uplink as an example, Hef1 , UH

1 H1Fa ∈ CNrf×Nrfa

while H1 ∈ CN×Na) with reduce dimension within each time
slot. The short-timescale digital beamforming matrices and the
offloading ratio are optimized in each time slot by using the
effective real-time channel matrices with reduced dimension,
and the long-timescale analog beamforming matrices are up-
dated at the end of each frame based on estimated (possibly
outdated) CSI. In the following, we formulate the long-
term optimization problem and the short-term optimization
problem, respectively.

Remark 1. We assume the tasks can be finished within a
channel coherence time. If the user has too many tasks and
cannot finish in a single time slot, then he can allocate his
tasks to multiple time slots and ensure as much tasks being
finished in a time slot as possible. Hence we focus on the
latency minimization in a single time slot in this paper.

B. Problem formulation

Note that the long-timescale analog beamforming matrices
should be optimized based on the CSI statistics over a long-
term scale, and we cannot directly optimize them by mini-
mizing the system latency that relies on the optimal digital
beamforming matrices and offloading ratio for all channel re-
alizations. To overcome this difficulty, we propose to optimize
the analog beamforming matrices by maximizing the weighted
ergodic sum capacity, that does not depend on the short-term
variables. Then, we minimize the system latency by optimizing
the digital beamforming matrices and offloading ratio in each
time slot.6

1) The long-term master problem for designing analog

6Note that it makes sense that the maximization of the channel capacity
by designing long-term analog beamforming matrices can help minimize the
system latency and this formulation is more suitable for practical design.
Moreover, we validate the effectiveness of the proposed algorithm in our
simulation.

beamforming matrices yields

P1 : max
θU1

,θU2
,θFa ,θFb

f(θU1 ,θU2 ,θFa ,θFb
)

, E{g(θU1 ,θU2 ,θFa ,θFb
)}

, w1C̄1 + w2C̄2 + w3C̄3,

(9)

where we define θU1
= ∠U1, θU2

= ∠U2, θFa
= ∠Fa

and θFb
= ∠Fb for convenience to meet the unit modulus

constraint, and the weight w1, w2 and w3 can be empirically
chosen based on the transmission tasks of the corresponding
link. Specifically, we choose the weight as wk = L̄k∑3

i=1 L̄i
, k =

1, 2, 3, where L̄1, L̄2 and L̄3 denote the total number of trans-
mission bits of the uplink, the downlink and the D2D link in
the last super frame. Please note that this formulation is quite
similar with that of maximizing the queue-length-weighted
sum rate, which is widely adopted in the area of wireless
resource scheduling [43]–[45], and it is also reasonable to
use the number of transmission data in the last super frame
because this information is available at the BS and the statistics
between two adjacent super frames are much alike. By defining

C1 , log det[I+ 1
σ2
1
UH

1 H1FaF
H
a HH

1 U1(U
H
1 U1)

−1],(10)

C2 , log det[I+ 1
σ2
2
FH

b H2U2U
H
2 HH

2 Fb(F
H
b Fb)

−1], (11)

C3 , log det[I+ 1
σ2
3
FH

b H3FaF
H
a HH

3 Fb(F
H
b Fb)

−1], (12)

then, the expressions of the ergodic channel capacity for the
link between user A and the BS, the link between the BS and
user B, and the link between user A and user B, are given by
C̄1 , E{C1}, C̄2 , E{C2}, and C̄3 , E{C3}, respective-
ly [46], and g(θU1 ,θU2 ,θFa ,θFb

) , w1C1 +w2C2 +w3C3.
2) The short-term optimization problem for designing the

digital beamforming matrices and offloading ratio can be
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expressed as

P2 : min
S

Ttotal (13a)

s.t. 0 ≤ ρ ≤ 1, (13b)
Na∑
i=1

PPA1(i) ≤ PUA,

Na∑
i=1

PPA3(i) ≤ PUA, (13c)

N∑
i=1

PPA2(i) ≤ PBS , (13d)

0 ≤ Poutk(i) ≤ Pmax, k = 1, 2, 3,∀i, (13e)

where S , {ρ,Wa1,Wa3,V2} denotes the set of the short-
term optimization variables. (13c) and (13d) denote the trans-
mit power constraints at user A and the BS, respectively. (13e)
denotes the output power constraints of the PAs.

IV. LONG-TERM ANALOG BEAMFORMING DESIGN

In this section, we introduce the proposed long-term analog
beamforming design algorithm for solving P1. The origi-
nal problem cannot be solved straightforwardly due to the
stochastic and non-convex objective function. However, based
on the theoretical framework exposed in [47], we seek to
approximate the original objective function (9) by using a
quadratic surrogate function. Specifically, at the end of each
channel frame t, the channel samples Ht

1, Ht
2 and Ht

3 are
obtained and the surrogate objective function is updated based
on these channel samples and the approximated gradients as
follows,

f̄ t(θU1 ,θU2 ,θFa ,θFb
) = f̃ t + (f tU1

)T (θU1 − θt
U1

)

+ (f tU2
)T (θU2 − θt

U2
) + (f tFa

)T (θFa − θt
Fa

)

+ (f tFb
)T (θFb

− θt
Fb
) +ϖ∥θU1 − θt

U1
∥2

+ϖ∥θU2 − θt
U2

∥2 +ϖ∥θFa − θt
Fa

∥2

+ϖ∥θFb
− θt

Fb
∥2,

(14)

where ϖ is a constant, and f̃ t, f tU1
, f tU2

, f tFa
and fFb

denote
the approximation of the objective function f , the partial
derivatives ∂f

∂θU1
, ∂f

∂θU2
, ∂f

∂θFa
and ∂f

∂θFb
, respectively. The

quantities can be updated based on the following expressions

f̃ t = (1− εt)f̃ t−1 − εtg(θt
U1
,θt

U2
,θt

Fa
,θt

Fb
), (15)

f tU1
= (1− εt)f t−1

U1
− εt

∂g

∂θU1

(θt
U1
,θt

U2
,θt

Fa
,θt

Fb
), (16)

f tU2
= (1− εt)f t−1

U2
− εt

∂g

∂θU2

(θt
U1
,θt

U2
,θt

Fa
,θt

Fb
), (17)

f tFa
= (1− εt)f t−1

Fa
− εt

∂g

∂θFa

(θt
U1
,θt

U2
,θt

Fa
,θt

Fb
), (18)

f tFb
= (1− εt)f t−1

Fb
− εt

∂g

∂θFb

(θt
U1
,θt

U2
,θt

Fa
,θt

Fb
), (19)

with initial value f̃−1 = 0, f−1
U1

= 0, f−1
U2

= 0, f−1
Fa

= 0 and
f−1
Fb

= 0. The expressions of the partial derivatives are given
in Appendix A, and {εt} is a sequence of the parameters
to be properly chosen. Subsequently, we aim to solve the
approximated problem at time frame t, which is given by

min
θU1

,θU2
,θFa ,θFb

f̄ t(θU1 ,θU2 ,θFa ,θFb
). (20)

Algorithm 1 Proposed SSCA-based algorithm for the long-
term analog beamforming design

1: Initialize the optimization variables θ0
U1

,θ0
U2

,θ0
Fa

,θ0
Fb

with a
feasible point. Set an appropriate value for ϖ and let t = 0.

2: repeat
3: Obtain the CSI samples Ht

1, Ht
2 and Ht

3. Compute the
surrogate function (14) based on (15)-(19) and εt.

4: Obtain the optimal solution via (21).
5: Update θt

U1
,θt

U2
,θt

Fa
,θt

Fb
based on (22) and γt.

6: Update the iteration number t = t+ 1.
7: until the convergence condition is satisfied or the maximum

number of iterations is reached.

It is readily seen that this is a convex problem and the solution
is given by

θ̄U1 = θt
U1

−
f tU1

2ϖ
, θ̄U2 = θt

U2
−

f tU2

2ϖ
,

θ̄Fa = θt
Fa

−
f tFa

2ϖ
, θ̄Fb

= θt
Fb

−
f tFb

2ϖ
.

(21)

Then, the long-term variables are updated as

θt+1
U1

= (1− γt)θt
U1

+ γtθ̄U1 ,θ
t+1
U2

= (1− γt)θt
U2

+ γtθ̄U2 ,

θt+1
Fa

= (1− γt)θt
Fa

+ γtθ̄Fa
,θt+1

Fb
= (1− γt)θt

Fb
+ γtθ̄Fb

,
(22)

where similarly {γt} denotes a sequence of parameters. Based
on [47], the convergence can be guaranteed if we choose εt

and γt by following the conditions

lim
t−→∞

εt = 0,
∑
t

εt = ∞,
∑
t

(εt)2 <∞,

lim
t−→∞

γt = 0,
∑
t

γt = ∞,
∑
t

(γt)2 <∞, lim
t−→∞

γt

εt
= 0.

(23)

Then the proposed SSCA-based algorithm can be guaranteed
to converge to a stationary solution of P1. We summarize
the proposed long-term analog beamforming design algorithm
in Algorithm 1, and its complexity is dominated by the
procedure of updating the surrogate functions, which is given
by O{N3

rf +NNrf (Na +Nb)}.

V. SHORT-TERM DIGITAL BEAMFORMING AND
OFFLOADING RATIO DESIGN

In this section, we introduce the proposed algorithm for
solving P2. We first decompose P2 into several subproblems
that are easier to solve. Then, for the subproblems regarding
the digital beamforming design, we propose a penalty-CCCP
based algorithm to handle the non-linear power consumption
constraints. As for the subproblems regarding the offloading
ratio design, we derive closed-form solution via classification
and discussion. The details are as follows.

A. Problem decomposition
Due to the fact that the transmissions occur over orthogonal

time in a single time slot, the transmission rates of the uplink,
downlink and D2D link, i.e. R1, R2, R3 are independent of
each other. Furthermore, since the overall system delay (13a)
is nonincreasing with R1, R2 and R3, we can maximize the
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transmission rates first, and then optimize the offloading ratio.
Hence the short-term latency minimization problem P2 can
be equivalently decomposed into the following two parts.

• The digital beamforming design subproblems for the
uplink, the downlink and the D2D link, respectively, are
provided as:

P3-1 : max
{Wa1}

R1 (24a)

s.t.
Na∑
i=1

PPA1(i) ≤ PUA, (24b)

0 ≤ ∥Fa(i, :)Wa1∥2 ≤ Pmax, ∀i, (24c)

P3-2 : max
{V2}

R2 (25a)

s.t.
N∑
i=1

PPA2(i) ≤ PBS , (25b)

0 ≤ ∥U2(i, :)V2∥2 ≤ Pmax, ∀i, (25c)

P3-3 : max
{Wa3}

R3 (26a)

s.t.
Na∑
i=1

PPA3(i) ≤ PUA, (26b)

0 ≤ ∥Fa(i, :)Wa3∥2 ≤ Pmax, ∀i, (26c)

• The offloading ratio optimization subproblem is given by:

P4 : min
0≤ρ≤1

Ttotal. (27)

Although we have decomposed the original problem into
several more tractable one, there are still some challenges, i.e.
the non-linear power consumption constraint in P3 and the
multi-case piece-wise objective function in P4. In the follow-
ing two subsections, we introduce our proposed algorithms for
tackling these issues.

B. Short-term digital beamforming design

In this subsection, we introduce the proposed short-term
digital beamformer design algorithm for solving P3-1−P3-3.
Since these subproblems are essentially the same, we focus
on the uplink to introduce our proposed algorithm. First,
we equivalently transform P3-1 into a more tractable form
based on the celebrated weighted minimum mean square error
(WMMSE) method [48] as follows,

min
V1,Wa1,Z

Tr(ZE)− log det(Z) (28a)

s.t. (24b), (24c), (28b)

where Z is an auxiliary variable satisfying Z ≽ 0 and

E ,(VH
1 Hef1Wa1 − I)(VH

1 Hef1Wa1 − I)H

+ σ2
1V

H
1 UH

1 U1V1.
(29)

Then, to tackle the non-linear power constraint, we introduce
two auxiliary variables PPA1 and Vout1, and equivalently

convert (28) as

min
S̄

Tr(ZE)− log det(Z) (30a)

s.t.
Na∑
i=1

PPA1(i) = P̄UA, (30b)

0 < PPA1(i) ≤ 4Pmax/π, ∀i, (30c)
0 < Vout1(i) ≤ Pmax, ∀i, (30d)
PPA1(i) = h(Vout1(i)), ∀i, (30e)
Vout1(i) = ∥Fa(i, :)Wa1∥,∀i, (30f)

where S̄ , {V1,Wa1,Z, PPA1, Vout1} is the set of opti-
mization variables and P̄UA , min(PUA,4NaPmax/π), while
h(Vout1(i)) is defined as

h(Vout1(i)) =


2Vout1(i)

√
Pmax/π,

0 < Vout1(i) ≤ 0.25Pmax,

6Vout1(i)
√
Pmax/π − 2Pmax/π,

0.25Pmax < Vout1(i) < Pmax.
(31)

Then, we solve the transformed problem based on the penalty-
CCCP framework, the detailed introduction of which can be
found in [49]. By penalizing the equality constraints (30b),
(30e) and (30f) into the objective function (30a), we obtain
the penalized problem shown as follows.

P5 : min
S

Tr(ZE)− log det(Z)

+
1

2ϱ
(

Na∑
i=1

(PPA1(i)− h(Vout1(i)))
2

+

Na∑
i=1

(∥Fa(i, :)Wa1∥ − Vout1(i))
2

+ (

Na∑
i=1

PPA1(i)− P̄UA)
2) (32a)

s.t. (30c), (30d),

where ϱ denotes a penalty coefficient. Referring to the penalty-
CCCP, the proposed algorithm contains two loops, where the
penalty coefficient is adjusted in the outer loop, while in the
inner loop the optimization variables are updated in a block
coordinate descent fashion. In each block of the inner loop,
we aim to decompose the resulting penalized problem into a
number of subproblems, which can be solved easily in parallel.
To this end, we divide the optimization variables into three
blocks, i.e. {V1, PPA1}, {Z, Vout1}, {Wa1}. The detailed
solutions within each block are given in Appendix B and we
summarize the proposed penalty-CCCP based algorithm for
uplink short-term digital beamforming design in Algorithm 2.
The complexity is given by O{I1I2(N3

rf+N
3
rfa+NNrfNa)},

where I1 and I2 denote the iteration numbers for the outer and
inner loops, respectively.

Although the computational complexity in a single iteration
is low, the required iteration number may be large for the
double loop nature of the penalty-CCCP. Hence, we also
propose a low-complexity heuristic algorithm for the short-
term digital beamformer design. Ignoring the non-linear power
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Algorithm 2 Proposed penalty-CCCP based algorithm for
uplink short-term digital beamformer design

1: Initialize the optimization variables with a feasible point. Define
the tolerance of accuracy δ1 and δ2. Set iteration number i = 0
and j = 0. Set ϱ0 > 0 and c > 1.

2: repeat
3: repeat
4: update V1 and PPA1 according to (50) and (52), respec-

tively.
5: update Z and Vout1 according to (54) and (59), respective-

ly.
6: update Wa1 according to (63).
7: update the iteration number i = i+ 1.
8: until the difference between two successive objective values

is less than δ1.
9: ϱj+1 = cϱj .

10: update the iteration number j = j + 1.
11: until the difference of successive objective function value is less

than δ1 and the penalty term is less than δ2 or the maximum
number of iterations is reached.

constraint, the uplink digital beamforming design problem
yields

max
Wa1

log det(I+
1

σ2
1

Hef1Wa1W
H
a1H

H
ef1(U

H
1 U1)

−1)

(33a)

s.t. Tr{QFaWa1W
H
a1} ≤ PUA, (33b)

where QFa , FH
a Fa. Since the long-term analog beamformer

U1 is fixed, we further view H̄ef1 , Σ̄−1V̄Hef1 as the
effective channel matrix, where Σ̄ and V̄ are the diagonal
singular value matrix and the right singular vector matrix of
U1, respectively. This problem has a well-known water-filling
solution which is given by

Wa1 , Q
−1/2
Fa UeΣe, (34)

where Ue is the set of the right singular vectors corresponding
to the Na largest singular values of H̄ef1Q

−1/2
Fa , and Σe is the

diagonal power allocation matrix. Since this low-complexity
algorithm does not consider the nonlinear transmit power
constraint directly, we scale the digital beamforming matrix
Wa1 to satisfy constraint (24b) and (24c), where the scaling
factor can be conveniently found by using the bisection search.
The computational complexity of the proposed low-complexity
short-term digital beamforming design algorithm is given by
O{NNaNrf +NrfN

2
rfa}.

C. Optimization of offloading ratio ρ

In this subsection, we aim to optimize the offloading ratio
by solving P4. Referring to the analysis of different cases for
timelines shown in Fig. 2, it is readily seen that Ttotal is a
linear piece-wise function of ρ, and we can derive the optimal
expression for ρ through classification and analysis. Based on
the four cases shown in Fig. 2, let us rewrite the expression
of Ttotal with ρ being the variable as (35). In order to derive
the optimal ρ, we need to analyze all possible situations. It
is apparent that when ρ grows from 0 to 1, Case 1 and
Case 3 will happen for sure, while the occurrence of Case
2 depends on the condition of KL

K1+KL
< K3

K3+KE
, which can

be simplified to KL

K1
< K3

KE
. Similar to Case 2, the occurrence

of Case 4 depends on KL

K1+KL
≥ K3+KL

K3+KL+K1+KE
, which can

be simplified to KL

K1
≥ K3

KE
. As we can see, the criteria of

Case 2 and Case 4 contradict each other and thus only one
of them can appear. Hence, there are two possible situations
in general.

i) Situation A: KL

K1
≥ K3

KE

In this situation, Case 2 does not happen. Thus, the expres-
sion of Ttotal consists of (35c), (35d) and (35a) in order as
ρ increases from 0 to 1. However, note that the line function
(35a) is the same as (35d). Therefore, the expression of Ttotal
in situation A essentially consists of two line segments. It
is apparent that (35a) or (35d) is nondecreasing, while the
monotonicity of (35c) depends on whether K2 −KL −K3 is
positive or negative:

1) K2−KL−K3 ≥ 0: In this case, (35c) is a nondecreasing
function of ρ, thus the whole function is nondecreasing
and we have ρ∗ = 0.

2) K2−KL−K3 < 0: In this case, the expression of Ttotal
consists of a decreasing line followed by an increasing
one, thus the optimal ρ should be at the turning point,
i.e. ρ∗ = K3+KL

K3+KL+K1+KE
.

ii) Situation B: KL

K1
< K3

KE

In this situation, Case 4 does not happen. So the expression
of Ttotal consists of (35c), (35b) and (35a) in order. Since
(35a) is a nondecreasing line segment, we can conclude that
ρ∗ ∈ [0, K3

K3+KE
]. Then, let us focus on the monotonicity of

(35c) and (35b). There are four kinds of situations in total:
1) K2−KL−K3 < 0 and K2+K1−K3 < 0: In this case,

Ttotal is monotonically decreasing when ρ ∈ [0, K3

K3+KE
].

Thus we obtain ρ∗ = K3

K3+KE
.

2) K2−KL−K3 < 0 and K2+K1−K3 ≥ 0: In this case,
Ttotal is decreasing first when ρ ∈ [0, KL

K1+KL
] and then

increasing when ρ ∈ [ KL

K1+KL
, K3

K3+KE
]. Thus we obtain

ρ∗ = KL

K1+KL
.

3) K2−KL−K3 ≥ 0 and K2+K1−K3 < 0: This case is
impossible because from K2 −KL −K3 ≥ 0 we obtain
K2 ≥ K3 while from K2 + K1 − K3 < 0 we obtain
K2 < K3.

4) K2−KL−K3 ≥ 0 and K2+K1−K3 ≥ 0: In this case,
Ttotal is nondecreasing in the whole feasible region of ρ.
Thus we obtain ρ∗ = 0.

By following the above discussion, we obtain the final result
of the optimal ρ. The above analysis is summarized in a
flowchart given as Fig. 4.

The complexity of the proposed short-term variables design
algorithm for solving P2 is dominated by the penalty-CCCP
algorithm, whose complexity is given above. Regarding the
convergence, according to the detailed convergence analysis
of the penalty-CCCP algorithm [49], the proposed short-term
digital beamforming algorithms converge to the stationary
solutions of P3-1, P3-2 and P3-3. Moreover, considering the
optimality of the derived offloading ratio and the fact that
Ttotal is non-increasing with the transmission rate R1, R2

and R3. The proposed joint short-term digital beamforming
and offloading ratio design algorithm converge to a stationary
point of P2.

Remark 2. We assume that the design algorithm is imple-
mented at the BS. Specifically, in each time slot, the effective



9

Ttotal =


Case 1 : K1ρ+KEρ+K2ρ, if ρ ∈ [ KL

K1+KL
, 1] ∩ [ K3

K3+KE
, 1], (35a)

Case 2 : K1ρ+K3(1− ρ) +K2ρ, if ρ ∈ [ KL

K1+KL
, 1] ∩ [0, K3

K3+KE
), (35b)

Case 3 : (KL +K3)(1− ρ) +K2ρ, if ρ ∈ [0, KL

K1+KL
) ∩ [0, K3+KL

K3+KL+K1+KE
), (35c)

Case 4 : K1ρ+KEρ+K2ρ, if ρ ∈ [0, KL

K1+KL
) ∩ [ K3+KL

K3+KL+K1+KE
, 1]. (35d)
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Fig. 4: Offloading ratio optimization.

uplink CSI matrix Hef1 is estimated at the BS. The effective
downlink CSI matrix Hef2 and D2D CSI matrix Hef3 are
estimated at user B and fed back to the BS. Moreover, user A
sends the necessary information such as the local computing
capacity FL and the task compression ratio α to the BS
and the BS conducts the short-term digital beamforming and
task allocation algorithm. In each frame, the full channel
samples H1, H2 and H3 are collected by the BS using the
similar channel estimation strategy and Algorithm 1 is then
performed.

VI. SIMULATION RESULTS

In this section, we present simulation results to verify
the effectiveness of our proposed algorithm. The simulation
parameters are provided as follows unless otherwise stated.
The number of antennas at the BS server is set as N = 64,
while the number of antennas at the users is Na = Nb = 8.
The number of RF chains at the BS is Nrf = 4, with user RF
chain numbers set as Nrfa = Nrfb = 2. We set the number of
data streams as d1 = min(Nrfa, Nrf ), d2 = min(Nrf , Nrfb)
and d3 = min(Nrfa, Nrfb), respectively. For the mmWave
channel model, we employ the generally used extended Salch-
Valenzuela geometric model [50]. Specifically, the channel

matrix is given by

H =

√
N1N2

Lp

Lp∑
l=1

αlar(φr
l )at(φ

t
l)

H × exp(j2πfdτ cos(φ
r
l )),

(36)
where N1 and N2 are the number of transmit and receive
antennas, respectively. Lp is the number of distinguishable
paths, αl ∼ CN (0, σ2

pl) is the complex gain of the l-th path,
ar(φr

l ) and at(φt
l) are the receive and transmit antenna array

response vectors, where φr
l and φt

l are the azimuth angles of
arrival and departure, respectively. fd is the maximum Doppler
shift, and τ is the delay. The expression of the response vector
is given by

a(θ) =
1

N

[
1, ejk0daπ sin(θ), ..., ejk0da(N−1)π sin(θ)

]T
, (37)

where k0 = 2π/λ0, λ0 is the wavelength and da is the antenna
spacing set as da = λ0/2. We assume that there are 1 line-of-
sight (LOS) path and 15 non-line-of-sight (NLOS) path, and
the gain for the LOS path is σ2

p1 = 1, while the gain for the
NLOS path is σ2

pl = 0.1,∀l ̸= 1. We set the Doppler shift as
fd = 70Hz and the transmission delay as τ = 4ms according
to [42].

The BS is located at [0, 0, 10m] and the positions of user
A and user B are set to [Dx, Dy, 1m] and [−Dx, Dy, 1m],
respectively, with Dx = 5m and Dy = 50m. The path loss is
modeled as Pls = C0(

dlink

D0
)−β , where C0 is the path loss at

the reference distance D0 = 1m and is set to C0 = −30dB,
dlink is the link distance, and β is the path loss exponent
where we set it for the uplink, the downlink and the D2D
link as β1 = 3, β2 = 3 and β3 = 2.4, respectively. The
power of additive white Gaussian noise is assumed to be
σ2
1 = σ2

2 = σ2
3 = −90dBm and the power budgets of the

BS and user A are PBS = 40dBm and PUA = 20dBm,
respectively. The maximum power output of the PA is set
to 30dBm and we assume that the bandwidth of the three
links are B1 = B2 = B3 = 100MHz [51]. The number
of computation tasks is L = 106 bits and the compression
ratio is chosen as α = 0.01, which is a typical value for
tasks like such as MPEG4 video (2D data and point cloud
data) compression [52]. The computation capacities of the
local CPU and the edge server are FL = 200Mbps and
FE = 1600Mbps, respectively. The number of frames in a
channel statics coherence time and the number of time slots in
a frame is set to Tf = 100 and Ts = 100, respectively. As for
the algorithm parameters, the long-term analog beamforming
design algorithm is updated based on εt = 0.6t and γt = 0.9t.
For the short-term digital beamforming design, the tolerance
of accuracy is set as δ1 = 10−3, and δ2 = 10−8. The initial
value of the penalty coefficient is ϱ0 = 0.1 and the control
parameter is c = 0.8.
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Fig. 5: Convergence performance of our proposed long-term
analog beamforming design algorithm.

We first study the convergence behavior of the proposed
algorithm. Fig. 5 presents the convergence performance of the
proposed long-term analog beamforming design Algorithm 1.
The left y axis shows the value of the weighted ergodic channel
capacity, which converges rapidly within 100 iterations. We
also provide the value of the system latency, which is shown
along the right y axis. As we can see, the system latency
converges almost synchronously with the weighted ergodic
capacity and decreases significantly when the iteration number
increases, which validates the effectiveness of convergence
for the proposed long-term algorithm. Fig. 6 presents the
convergence performance of the proposed short-term digital
beamforming design Algorithm 2. As shown in Fig. 6(a), the
objective function converges within about 40 iterations. Fig.
6(b) shows the penalty terms versus the number of iterations,
which finally decreases to a level less than 10−12, indicating
that the constraint is satisfied at the convergence point, thereby
verifying the effectiveness of the proposed penalty-CCCP
algorithm for handling the non-linear power constraint.

In the following, we analyze the performance of our pro-
posed two-timescale joint hybrid beamforming and offloading
ratio design algorithm. We provide the following benchmarks
for comparison,

• Two-timescale heuristic beamforming: This scheme
adopts Algorithm 1 for the long-term analog beam-
forming design and the derived optimal solution for
the offloading ratio design, and the proposed heuristic
low-complexity algorithm is employed for the short-term
digital beamforming design.

• Two-timescale binary offloading: This scheme adopts Al-
gorithm 1 for the long-term analog beamforming design
and Algorithm 2 for the short-term digital beamforming
design. Moreover, the binary offloading strategy, i.e.
selecting the one that has the lowest delay between the
local computing scheme (ρ = 0) and the edge computing
scheme (ρ = 1), is employed.

• Single-timescale OMP: This scheme adopts the OMP
algorithm [29] for the hybrid beamforming design and
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Fig. 6: Convergence performance of our proposed short-
term digital beamforming design algorithm in the uplink: (a)
Objective function value versus the number of iterations; (b)
Penalty terms versus the number of iterations.

the optimal solution for the offloading ratio design in
each time slot.

• Single-timescale CM: Similar to the single-timescale
OMP, however, it employs the CM algorithm [30] for
the A/D hybrid beamforming design.

• Single-timescale AO: Similar to the single-timescale OM-
P, however, it employs the AO algorithm [31] for the A/D
hybrid beamforming design.

We assume that the CSI delay is proportional to the size of
the required CSI matrix as [53]. Specifically, the size of the
CSI overhead for the two-timescale algorithm in a frame is
given by ζ[NNb+NaNb+Ts(NrfNrfb+NrfaNrfb)], where ζ
is the number of quantization bits for each element of the CSI
matrices, while that of the single-timescale algorithm is given
by ζ[Ts(NNb + NaNb)]. Fig. 7 illustrates the CSI overhead
versus the number of antennas at the BS N . We can see that
the proposed two-timescale algorithm remarkably reduces the
required signaling overhead, especially when N is large. In the
simulation, we set the CSI delay of the single-timescale algo-
rithm as τ = 4ms. Then, the CSI delay of the two-timescale
algorithm can be computed as τtts =

NrfbNrf

NbN
τ = 0.094ms.

Fig. 8 shows the latency performance of different algorithms
versus the CSI delay. As we can see, the proposed two-
timescale algorithms vary slightly when the CSI delay increas-
es, while the conventional single-timescale algorithms degrade
dramatically with the CSI delay. We also observe that the pro-
posed algorithm outperforms the other compared algorithms
when the CSI delay is larger than 3ms. Fig. 9 compares the
delay of different algorithms versus the transmit power of user
A, i.e., PUA. We observe that our proposed algorithm provides
evident superiority over the single-timescale algorithms and
the binary offloading algorithm. When the transmit power is
large, the proposed heuristic short-term beamforming algo-
rithm achieves close performance as the proposed short-term
penalty-CCCP based algorithm. However, when the transmit
power is small, the gap between the heuristic low-complexity
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algorithm and the penalty-CCCP based algorithm becomes
large for the impact of the non-linear PAs becomes evident.

Fig. 10 presents the latency of various algorithms when
the user position Dy changes. We observe that our proposed
algorithm still achieves the lowest latency performance, and
as the distance between the BS and the users increases, the
latency of different schemes gradually converges to the small
level. This is not hard to understand because when the users
are far from the BS, the users will offload less tasks to the edge
server, for transmitting the raw data through the uplink is time-
consuming. When the distance is quite large, the offloading
ratio will be close to 0, i.e. the local computing scheme.
In fact, by observing the two-timescale binary offloading
algorithm, we can find that the local computing scheme starts
to outperform the edge computing scheme if Dy is larger than
80m.

Fig. 11 indicates the delay of different algorithms versus the
computation resource ratio η, where η , FE

FL
and FL is fixed

to 200MHz. We present the latency of our proposed algorithm
under two transmit power settings, i.e. PUA = 100mW and
PUA = 200mW. As we can see, when PUA = 100mW, the
proposed algorithm and the binary offloading algorithm vary
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Fig. 9: System delay Ttotal versus the transmit power of user
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slightly, even when η is large. However, when PUA = 200mW,
the proposed algorithm and the binary offloading algorithm
decrease evidently with η. This is because when the system
latency is limited by the transmission rate, simply increasing
the computing resource will not significantly reduce the delay,
which motivates us to alleviate the system bottleneck instead
of simply raising the edge computing capacity.

Fig. 12 shows the latency performance of the analyzed
algorithms versus different quantization bits of the analog
beamformer. We observe that latency of all algorithms de-
creases with the increasing of quantization bits. Moreover,
the proposed algorithm only needs 4 or 5 quantization bits
to achieve near performance with that of infinite quantization
level, which means that the developed algorithm is efficient in
practice.

Fig. 13 illustrates the delay of different algorithms versus
the Rician factor ψ, which is defined as ψ =

σ2
p1∑Lp

l=2 σ2
pl

. It is

observed that when ψ increases, the delay of the proposed two-
timescale algorithm decreases significantly. This is because
a larger Rician factor means a more deterministic channel.
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Hence the proposed stochastic optimization algorithm will
perform better. We also observe that the latency of the single-
timescale AO algorithm and the CM algorithm decreases with
ψ, which is due to the fact that as the channel approaches
rank-1, these two algorithms can find near optimal solution-
s. However, because of the CSI delay, our proposed two-
timescale algorithm still outperforms them. The performance
of the single-timescale OMP algorithm degrades severely with
ψ because the OMP algorithm assumes that the LOS and
NLOS components have the same gain and is not suitable for
channels with large Rician factors. In contrast, our developed
algorithm does not assume a specific channel model and can
be applied to a variety of channels.

VII. CONCLUSION

In this paper, we investigated a mmWave and D2D assisted
MEC system, in which user A aims to process computation
tasks and share the results with another user B with the aid of
BS. We proposed a two-timescale algorithm where the analog
beamforming matrices are updated at a long-timescale and
the digital beamforming matrices and the offloading ratio are
optimized at a short-timescale to reduce the required CSI over-
head and minimize the system latency. We developed a SSCA-
based algorithm to design the long-term analog beamforming
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Fig. 13: System delay Ttotal versus the Rician factor (ψ).

matrices. The short-term digital beamforming matrices have
been optimized relying on the concept of the penalty-CCCP
for dealing with the mmWave non-linear transmit power
constraint, and the offloading ratio has been obtained via
the closed-form solution. We carried out the optimality and
computational complexity analysis for the long-term and short-
term design algorithms, respectively. Simulation results have
been provided to verify the effectiveness of our proposed
joint design algorithm. Extending the mmWave and D2D
assisted MEC system to the multi-user case and more specific
computation model is worthy of further investigation.

APPENDIX A
DERIVATION OF THE GRADIENTS

Based on the rules of matrix computation, we express the
derivatives associated with the long-term analog beamforming
matrices as follows

∂g

∂θU1

=
∂g

∂U1
◦ 1jU1 −

∂g

∂U∗
1

◦ 1jU∗
1, (38)

∂g

∂θU2

=
∂g

∂U2
◦ 1jU2 −

∂g

∂U∗
2

◦ 1jU∗
2, (39)

∂g

∂θFa

=
∂g

∂Fa
◦ 1jFa −

∂g

∂F∗
a

◦ 1jF∗
a, (40)

∂g

∂θFb

=
∂g

∂Fb
◦ 1jFb −

∂g

∂F∗
b

◦ 1jF∗
b , (41)

and the derivatives associated with the analog beamforming
matrices are given by

∂g

∂U∗
1

=
w1

σ2
1

[I−U1(U
H
1 U1)

−1UH
1 ]

×Y−1
1 H1FaF

H
a HH

1 U1(U
H
1 U1)

−1,

(42)

∂g

∂U∗
2

=
w2

σ2
2

HH
2 Fb(F

H
b Fb)

−1FH
b Y−1

2 H2U2, (43)

∂g

∂F∗
a

=
w1

σ2
1

HH
1 U1(U

H
1 U1)

−1UH
1 Y−1

1 H1U1

+
w3

σ2
3

HH
3 Fb(F

H
b Fb)

−1FH
b Y−1

3 H3Fb,
(44)
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∂g

∂F∗
b

=
w2

σ2
2

[I− Fb(F
H
b Fb)

−1FH
b ]

×Y−1
2 H2U2U

H
2 HH

2 Fb(F
H
b Fb)

−1

+
w3

σ2
3

[I− Fb(F
H
b Fb)

−1FH
b ]

×Y−1
3 H3FaF

H
a HH

3 Fb(F
H
b Fb)

−1,

(45)

where

Y1 = I+
1

σ2
1

H1FaF
H
a HH

1 U1(U
H
1 U1)

−1UH
1 , (46)

Y2 = I+
1

σ2
2

H2U2U
H
2 HH

2 Fb(F
H
b Fb)

−1FH
b , (47)

and

Y3 = I+
1

σ2
3

H3FaF
H
a HH

3 Fb(F
H
b Fb)

−1FH
b . (48)

Moreover, we have ∂g
∂U1

= ( ∂g
∂U∗

1
)∗, ∂g

∂U2
= ( ∂g

∂U∗
2
)∗, ∂g

∂Fa
=

( ∂g
∂F∗

a
)∗ and ∂g

∂Fb
= ( ∂g

∂F∗
b
)∗ for the real value objective

function. By substituting (42)-(45) into (38)-(41), we finally
obtain the derivatives for the long-term analog beamforming
matrices.

APPENDIX B
DERIVATION OF UPDATING STEPS IN THE INNER LOOP OF

ALGORITHM 1

In this appendix, we provide the detailed solutions for
updating the block of variables in the proposed penalty-CCCP
based short-term digital beamforming algorithm.

Block 1: We update V1 and PPA1 in parallel with the other
variables fixed. The subproblem with regard to V1 is given by

min
V1

Tr(ZE) (49)

which is an unconstrained problem. By applying the first order
optimality condition, the optimal solution to V1 is given by

V1 = [σ2
1U

H
1 U1 +Hef1Wa1W

H
a1H

H
ef1]

−1Hef1Wa1. (50)

The subproblem w.r.t. PPA1 is given by

min
PPA1

Na∑
i=1

(PPA1(i)− h(Vout1(i)))
2 + (

Na∑
i=1

PPA1(i)− P̄UA)
2

(51a)
s.t. (30c).

This is a convex problem and the optimal solution can be
expressed as

PPA1(i) = max(0,min(4Pmax/π,

(h(Vout1(i)) + P̄UA −
Na∑
j ̸=i

PPA1(j))/2)).
(52)

Block 2: We update Z and Vout1 in parallel by fixing the
other variables. The subproblem of Z is given by

min
Z

Tr(ZE)− log det(Z) (53)

By checking the first order optimality condition, the optimal
Z can be expressed as

Z = E−1 = (I−VH
1 Hef1Wa1)

−1, (54)

where the last equality holds from substituting the optimal
value of V1, i.e. (50) into (29).

The subproblem w.r.t. Vout1 is given by

min
Vout1

Na∑
i=1

(PPA1(i)− h(Vout1(i)))
2

+

Na∑
i=1

(∥Fa(i, :)Wa1∥ − Vout1(i))
2 (55a)

s.t. (30d).

It is readily seen that the problem can be divided into Na

parallel subproblems, which yields

min
Vout1(i)

φ(Vout1(i)) , (PPA1(i)− h(Vout1(i)))
2

+ (∥Fa(i, :)Wa1∥ − Vout1(i))
2 (56a)

s.t. Vout1(i) ≤
√
Pmax. (56b)

Since the objective function is piecewise, we need to discuss
different situations and make comparison. Defining x∗1 and x∗2
whose expressions are given by (57) and (58), respectively,
where x|ba , min(max(x, a), b), we can express the optimal
solution to Vout1(i) as

Vout1(i) =

{
x∗1, φ(x∗1) ≤ φ(x∗2),

x∗2, φ(x∗1) ≥ φ(x∗2).
(59)

Block 3 We update Wa1 with the other variables fixed. The
subproblem regarding Wa1 is given by

min
Wa1

Tr(ZE) +
1

2ϱ

Na∑
i=1

(∥Fa(i, :)Wa1∥ − Vout(i))
2. (60)

By expanding the last term of (60) and ignoring the constant.
We rewrite (60) as

min
Wa1

Tr(ZE)+
1

2ϱ
∥FaWa1∥2−

Na∑
i=1

Vout(i)

ϱ
∥Fa(i, :)Wa1∥.

(61)
Note that the last term of (61) is concave. Hence we can ap-
proximate the original problem using the CCCP [54]. Through
the first order Taylor expansion, we provide a tight upper
bound of (61) as follows

min
Wa1

Tr(ZE) +
1

2ϱ
∥FaWa1∥2

−
Na∑
i=1

Vout(i)

ϱ

ℜ{W̄H
a1Fa(i, :)

HFa(i, :)W̄a1}
∥Fa(i, :)W̄a1∥

,

(62)

where W̄a1 is the current value of variable Wa1. By applying
the first order optimality condition and setting W̄a1 = Wa1,
we express the solution to Wa1 as

Wa1 = (HH
ef1V1ZV

H
1 Hef1 +

1

2ϱ
FH

a Fa)
−1

× (HH
ef1V1Z+

Na∑
i=1

Vout1(i)

2ϱ∥Fa(i, :)Wa1∥
Fa(i, :)

HFa(i, :)Wa1).

(63)
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x∗1 , π2(2
√
PmaxPPA1(i)/π + ∥Fa(i, :)Wa1∥)

π2 + 4Pmax

∣∣∣∣
√
Pmax/2

0

(57)

x∗2 , π2(6
√
PmaxPPA1(i)/π + ∥Fa(i, :)Wa1∥+ 12Pmax

√
Pmax/π

2)

π2 + 36Pmax

∣∣∣∣
√
Pmax

√
Pmax/2

(58)
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