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Abstract—As the network slicing is one of the critical enablers
in communication networks, one anomalous physical node (PN)
or physical link (PL) in substrate networks that carries multiple
virtual network elements can cause significant performance
degradation of multiple network slices. To recover the substrate
networks from anomaly within a short time, rapid and accurate
identification of whether or not the anomaly exists in PNs and
PLs is vital. Online anomaly detection methods that can analyze
system data in real-time are preferred. Besides, as virtual nodes
and links mapped to PNs and PLs are scattered in multiple
slices, the distributed detection modes are required to adapt to
the virtualized environment. According to those requirements,
in this paper, we first propose a distributed online PN anomaly
detection algorithm based on a decentralized one-class support
vector machine (OCSVM), which is realized through analyzing
real-time measurements of virtual nodes mapped to PNs in
a distributed manner. Specifically, to decouple the OCSVM
objective function, we transform the original problem to a
group of decentralized quadratic programming problems by
introducing the consensus constraints. The alternating direction
method of multipliers is adopted to achieve the solution for the
distributed online PN anomaly detection. Next, by utilizing the
correlation of measurements between neighbor virtual nodes,
another distributed online PL anomaly detection algorithm based
on the canonical correlation analysis is proposed. The network
only needs to store covariance matrices and mean vectors of
current data to calculate the canonical correlation vectors for
real-time PL anomaly analysis. The simulation results on both
synthetic and real-world network datasets show the effectiveness
and robustness of the proposed distributed online anomaly
detection algorithms.

Index Terms—Virtualized network slicing, online anomaly
detection, distributed learning, one-class support vector machine
(OCSVM), canonical correlation analysis (CCA).

I. INTRODUCTION

ETWORK slicing has been regarded as an important

technology to satisfy diverse requirements for emerging
service types [1]], [2]. Network function virtualization (NFV)
facilitates the deployment of network slices through unleashing
network functions from the dedicated hardware and imple-
menting them on general-purpose servers [3[]. By NFV tech-
nique, network slicing can customize virtual network functions
based on demands to generate service paths, i.e., customized
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service function chains (SFCs). Generally, multiple network
slices can be instantiated in a shared substrate network to
support diversified applications [4]], [S].

A substrate network consists of multiple physical nodes
(PNs) and physical links (PLs), and a virtualized network
slice consists of multiple virtual nodes (VNs) and virtual
links (VLs). Due to the many-to-one embedding relationship
between VNs (VLs) and PNs (PLs), network slices are prone
to unexpected and silent forms of failures caused by anomalies
arising in the shared substrate network [6]. As the performance
of multiple network slices hinges on the normal running of
the shared substrate network, the accurate and rapid anomaly
detection for PNs and PLs in the substrate network is the
prerequisite for ensuring the service quality of network slices.

Anomaly detection refers to the problem of finding patterns
in data that do not conform to the expected behaviors [7].
Existing efforts [8]—[15] on anomaly detection usually model
all data of a time slot as a long vector and consider it as
a single sample in implementing data analysis. Based on
this idea, in virtualized network slicing environment, we can
obtain the traning dataset for PN anomaly detection through
modeling all measurements of VNs mapped to a PN within
a period as a series of vectors. Then, normal profiles can be
trained to differentiate anomalies arising in PNs. Furthermore,
the VN measurements can also be utilized to implement PL
anomaly detection. Since the flow passes through each VN
of an SFC in sequence, the measurements between neighbor
VN5 are naturally related [[16]]. Therefore, we can implement
PL anomaly detection by analyzing the correlation of mea-
surements between neighbor VNs, which are mapped to both
ends of the PL. Through modeling all measurements of VNs
mapped to both ends of a PL as two sets of vectors, we
can obtain the training dataset for the PL anomaly detection.
Note that the key difference between PL and PN anomaly
detection is that the anomaly detection for PLs is required to
find anomalous correlation patterns between two vectors.

However, since VNs are distributed in multiple slices, if we
collect all relevant VN data of a time slot to form vectors
and analyze them in a centralized mode, the data privacy of
different slices will be compromised. Besides, additional com-
munication and storage cost can be introduced by collecting
all data to a central manager. Therefore, distributed detection
modes [17]], [18]], which can detect anomalies in PNs and PLs
by analyzing distributed VN datasets in respective managers,
are more effective for virtualized network slicing scenarios.

To recover the substrate networks from anomaly within a
short time, the identification of whether or not the anomaly



exists in PNs and PLs should be rapid and accurate. However,
classical anomaly detection methods are usually based on the
batch formulation, which requires storing all historical data
within a period and trains the normal profiles through offline
learning. The process will not only introduce high storage and
computation cost but prevent timely detection of anomalies
[19], [20]. Besides, in anomaly detection, the training datasets
are assumed to contain only one-class samples, i.e., normal
samples. If the number of anomalous data contained in training
samples increases, the performance of the detection model
trained by the offline learning can be greatly degraded [21]].
Therefore, online anomaly detection methods that can analyze
system data in real-time are preferred.

Based on the above analysis, we propose a distributed online
PN anomaly detection algorithm based on a decentralized
one-class support vector machine (OCSVM) and a distributed
online PL anomaly detection based on the canonical corre-
lation analysis (CCA). By the distributed online mode, the
real-time measurements of VNs can be analyzed in respective
managers distributedly to detect anomalies in PNs and PLs.
To the best of our knowledge, this is the first work which
proposes the distributed online anomaly detection algorithms
for the virtualized network slicing environment. Our main
contributions are summarized as follows:

Firstly, based on a decentralized OCSVM, we propose a
distributed online PN anomaly detection algorithm for the vir-
tualized network slicing environment. Specifically, to decouple
the OCSVM objective function, we transform the original
OCSVM objective function to decentralized quadratic pro-
gramming problems by introducing the consensus constraints.
To realize a distributed online implementation for PN anomaly
detection, we establish a distributed online augmented La-
grange function and solve it by the alternating direction
method of multipliers (ADMM).

Secondly, we propose a CCA-based distributed online PL
anomaly detection algorithm, which is realized through analyz-
ing the real-time correlation of measurements between neigh-
bor VNs in respective managers distributedly. To facilitate the
real-time analysis, we derive a new method to calculate the
canonical correlation vectors, with which the managers only
need to store covariance matrices and mean vectors of current
VN data instead of all historical data.

Finally, the effectiveness and robustness of the proposed
distributed online anomaly detection algorithms are verified
on both synthetic and real-world network datasets.

The rest of the paper is organized as follows. Section
IT presents the related works and Section III describes the
system model. The distributed online PN and PL anomaly
detection algorithms are elucidated in Section IV and Section
V, respectively. Simulation results on both synthetic and real-
world network datasets are shown in Section VI. Section VII
concludes the paper.

II. RELATED WORKS

The key feature of the anomaly detection problem is that,
a labeled dataset, where each training sample is labeled as
anomalous or normal, is usually prohibitive to obtain [22].

Therefore, we usually deal with the anomaly detection as
a special classification problem by assuming that the entire
dataset contains only one-class samples, i.e., normal samples.
OCSVM [23] is a popular unsupervised method to detect
anomalies in data. In literature [12]-[14], [24]], it has been
proved that the OCSVM algorithm has good applicability to
a wide range of anomaly detection problems.

CCA algorithm is an important method for analyzing the
correlation between two sets of data [25]. In [15]], [26]—
[28], the CCA algorithm has identified whether or not the
anomaly exits in the whole system successfully by detecting
the variation of correlation between two subsystems, which is
also an unsupervised learning method.

However, the classical OCSVM and CCA algorithms are
both based on the batch formulation, which requires storing
all historical data within a period and trains the normal profiles
through offline learning. The process will not only introduce
high storage and computation cost but prevent timely detection
of anomalies. To conquer this difficulty, online anomaly detec-
tion algorithms have attracted much attention in many domains
since they can analyze the system data in real-time and
enable the timely detection of anomalies. For instance, [20]]
proposed a bilateral principle component analysis algorithm
to realize the online and accurate traffic anomaly detection for
Internet management. In [29], an adaptive OCSVM method
was designed to realize online novelty detection for time series
scenarios. [30] proposed an online subspace tracking algorithm
to supervise the flight data anomalies of the unmanned aerial
vehicle system. An online and unsupervised anomaly detection
algorithm for streaming data was designed in [31]] using an
array of sliding windows and the probability density-based
descriptors. These online algorithms showed good anomaly
detection performance with relatively short running time and
low CPU resources.

Centralized detection, where the training dataset is available
in its entirety to one centralized detector, is a well-studied area.
However, if the dataset is distributed over more than one loca-
tion, different approaches need to be taken. Therefore, some
distributed algorithms have been designed to achieve the global
anomaly detection with datasets distributed in the networks.
In [17], a distributed version of principal component analysis
algorithm was developed to identify the global anomalies in
distributed local datasets. Based on the hierarchical temporal
memory, a distributed anomaly detection system was designed
in [32] for the security of the in-vehicle network. [33[] proposed
a collaborative intrusion detection framework for Vehicular Ad
hoc Networks, which enabled multiple controllers jointly train
a global intrusion detection model without direct sub-network
flow exchange. In wireless sensor networks, because data
used for anomaly detection were distributedly collected, [34]]
proposed a distributed online one-class support vector machine
algorithm for anomaly detection. This algorithm showed a
good anomaly detection performance with requiring relatively
short running time and low CPU resources. As the virtualized
network slices utilize the network resources spanning the
whole substrate networks, the training dataset used for PN
and PL anomaly detection has a similar distributed property
as wireless sensor networks. Therefore, inspired by [34], we



develop a distributed online anomaly detection method that
can be applied to the virtualized network slicing environment.

III. SYSTEM MODEL

As shown in Fig. 1, when the networks receive a network
slice service, its specific demand and required virtual network
functions are analyzed by the Service Manager to generate
customized SFCs. The Network Slice Manager is responsible
for the configuration, life-cycle management and performance
monitoring of all VNs in SFCs. During the instantiation
process of network slices, multiple SFCs are embedded to a
shared substrate network to provide customized services for
different slice requests [35]]. The Infrastructure Manager takes
charge of the management and maintenance of PNs and PLs
in substrate networks.

Many unexpected behaviors can cause the anomaly of PNs
and PLs in substrate networks, including device malfunction,
malicious attackers, fault propagation, external environment
changes, etc. Since multiple VNs and VLs from different
slices can be mapped to the same PN and PL, one anomalous
PN or PL in substrate networks can degrade the performance
of multiple network slices. Therefore, the accurate and rapid
anomaly detection for PNs and PLs in substrate networks is the
prerequisite for ensuring the performance of network slices.

We present a substrate network by an undirected graph
G = (Q, R), where @Q and R represent the PN and PL sets
contained in the substrate network. Besides, the set of VNs and
VLs mapped to PN ¢ (¢ € Q) and PL r(r € R) are assumed to
be J, and J,. In the virtualized network slicing environment,
the Network Slice Manager will monitor the performance
and resource consumption and store the measurements of
each customized VN contained in an SFC. VN measurements
include processing rate, data flow, queuing delay, processing
delay, and the usage of CPU, memory, etc. For each VN
Jjq € Jq mapped to PN ¢, its measurements in a time slot
can be represented by x; = {x}q,x?q, ...,x?q}, where p is
the number of features. Therefore, the measurements related
to the anomaly detection of PN ¢ can be expressed as
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where |J,| represents the number of VNs mapped to PN g¢.

The VN measurements can also be utilized to implement
PL anomaly detection. Since the flow passes through each VN
of an SFC in sequence, the measurements between neighbor
VNs are naturally related. Therefore, we can implement PL
anomaly detection by analyzing the correlation of measure-
ments between neighbor VNs, which are mapped to both ends
of the PL. The measurements related to the anomaly detection
of PL r can be expressed as
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where m,l € @ represent the both ends of PL r, |J,| is
the number of VLs mapped to PL r, and p and d denote
the number of features for VNs mapped to PN m and I,
respectively.

To realize the real-time detection for substrate networks in
virtualized network slicing scenarios, the Infrastructure Man-
ager is required to collect VN measurements from the Network
Slice Manager sequentially if the centralized detection modes
are used. As a central manager, the management module of
PN ¢ can utilize measurements of all VNs mapped to it to
realize anomalous PN detection. Existing anomaly detection
algorithms [8]—[15] usually model all data of a time slot as a
long vector and consider it as a single sample in implementing
data analysis, so the collected data in a time slot used for the
PN anomaly detection can be represented by

Lq = {CCl,...,-’BL]q‘}
_ 1.2 p 1 2 p
={ zy,27, ..., 2} , ...,zqu‘,xqu‘,...,:C‘Jq‘}. (3)
—_——

VN1 mapped to PN ¢

VN |.J4| mapped to PN ¢

Through modeling all measurements of VNs in a time slot
mapped to both ends of a PL as two sets of vectors, we can
obtain the data used for the PL anomaly detection. The set of
VLs mapped to PL r is assumed to be J,, so the anomaly
detection for PL r can be realized through analyzing the
correlation between the following vectors:

Ty = {x1, .., 2,1}

={ a},2},..,2% ,...,x‘lm, ir‘,...,x‘p‘m}
VN1 mapped to PN m VN | ,.| mapped to PN m (4
€T :{wl,...,:c|J7,|} )
= { (E},.%%,...,LL’% 7""x\1J1,|’ ‘2J7v|a"'ﬂx|d‘]7,‘ :

VN1 mapped to PN [ VN |, mapped to PN 1

However, the centralized detection modes will introduce
additional communication and storage cost by collecting all
VN measurements to the Infrastructure Manager. Besides, the
data privacy of different slices can be compromised. Therefore,
to determine whether or not the anomaly exists in PNs and PLs
rapidly and accurately with low communication and storage
cost, the distributed online PN and PL anomaly detection
methods are required to analyze the real-time measurements
of VNs in respective Network Slice Manager distributedly.

Notation: In this paper, boldface letters are used to denote
vectors and ()T is the operator of transposition. ||-|| represents
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Fig. 1. Network slice management and orchestration (MANO) overview.

the Euclidean norm. 0 and 1 denote the vectors of all zeros and
ones, respectively. Other notations will be defined if necessary.

IV. DISTRIBUTED ONLINE PN ANOMALY DETECTION
BASED ON DECENTRALIZED OCSVM

From the perspective of the centralized mode, to implement
the anomaly detection for a PN, its management module
will model measurements of all VNs mapped to it within
a period as a series of vectors to form the training set.
For each VN j, € J, its training set can be expressed as
qu = {(w]’qn,y‘jqn),n = 1,2,....,qu}, where Tjn € RP,
Nj, is the number of training data, and y;,, = +1 indicates
that all training data are normal samples. As the training set
of VN is qu, the collected data of PN ¢ within a period
can be represented by S=UJ; c; S, = {(@gn,Ygn). n
1,2,...,N,}, where x4, = i e, Tign and Ygn = Yin
sy = Yj,n = +1. Generally, the training data are complex
and linearly inseparable. Therefore, OCSVM algorithm uses
the feature mapping function to map the training data from
input space to high-dimensional feature space. The purpose
of the mapping is to make the data linearly separable in the
new space. Through finding a hyperplane in the feature space,
OCSVM algorithm can isolate the mapped samples from the
origin with maximum margin [23]].
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We use the feature mapping function ¢(+) to map the input
data x, into a reproducing kernel Hilbert space, and then
calculate the inner product of the feature mapping function by
the kernel function k(x41,,2). The commonly used kernel
function is the Gaussian kernel function [23]

k(mqh wq2) = <¢(wq1)a ¢(ch2)>
= exp [—||zg — zq2|[*/07]
where o denotes the kernel width. According to formula (1),
we can get that k(xz,, z,) =< ¢(x,), p(x,) >= 1, which
means that the mapping function ¢(-) will map the original
samples into a hypersphere with center 0 and radius 1. As

(&)

k(®q1, g2) = exp [~[|@q1 — ®g2[|?/0?]

= [lp(@q1)l| - [|d(@g2)[| - cos(@(zq1), ¢(wq2)(>é)
if sample x,; is normal while x,s is distant from x,; in
input space, the value of k(x,1,242) will be small, which
means that the value of cos(¢(x41), P(x42)) is small and the
angle between ¢(x41) and ¢(xy2) is large. In this case, we
usually consider x> as anomalous data, which can be isolated
from normal data through finding (wy, pq), which are a weight
vector and an offset parameterizing a hyperplane quqb(a:) —
pq = 0 in the feature space associated with the kernel. The
hyperplane can isolate the training samples from the origin
with maximum margin (p,)/(||wgl]).



Based on the above reasoning, the problem of the anomaly
detection for PN ¢ can be formulated as the following opti-
mization objective:

Nq
wmlg *||wT||2+CZ§qn Pq
e n=1 (7)
s.t. @t (Tgn)wg > pg —&gn, mn=1,2,....,Ng,
Eqn = 0, n=12,..,Ng,

where C' is the penalty parameter, and &, denotes the slack
variable that allows some samples to appear in the margin of
the hyperplane: After obtaining the optin'lal' wy and p;‘ for
anomaly detection, we can define the discriminant function as

Pg) V4 €Q, n €Ny ()

For any data x,, it can be determined as a normal data if
g(xgn) > 0, and an anomalous data otherwise.

9(®gn) = sgn(¢T(qu)wq* -

A. Decentralization of OCSVM

The above-mentioned centralized detection mode requires
the Infrastructure Manager collecting measurements of all VNs
sequentially from the Network Slice Manager and analyze
them as a whole, which will not only bring high commu-
nication and storage cost but compromise the data privacy
of different slices. Therefore, we distribute the OCSVM-
based PN anomaly detection problem to the Network Slice
Manager instead of transmitting all VN measurements to
the Infrastructure Manager. The Network Slice Manager is
responsible to analyze the measurements of each VN.

To present the centralized problem (7) in a distributed form,
a group of decentralized quadratic programming problems that
satisfy the consensus constraints are established [36].

The global variables {w,,p,} are replaced by auxiliary
local variables {wj,,pj,};’—; of each VN. To ensure the
consistency among local variables, extra consensus constraints
are added to the new objective. Therefore, the distributed form
of (7) can be expressed as

IJ ‘ [Jql qu [Jq|
D S ARAFATD B ST S
{’w PJq} Fa=1 Jo=1n=1 Jo=1
q q
st. @t (j,n)wj, > pj, — Ejyns Vig € Jgo n=1,2,....,Nj_,
Ejyn =0, Vi, € Jyy n=1,2, ....,N]q,
wj, = Wi, Pj, = Piy> qu,iq € Jq.
©)

As the local variables {wj_,p;, }3]::1 of VNs mapped to
the same PN satisfy w; = wy =,...,= wy, = w, and p; =

P2 =,...,= pJj, = pg> We can rewrite (9) as
|/q]
i;nif;l} |Jq ||wq||2+cle£jq Pq
o da=1 (10)
s.t. (I’T(X Jwg = pgly, — &, Vig € Jg,
&j, = 0, Vig € Jg,
where ®(X; ) = [¢(x),1), ..., p(xj,N;, )] and {wg, py} is the

feasible solution for (7). Since the factor |J,| is a constant, the

objective (10) is equivalent to (7). Therefore, the distributed
objective (9) is also equivalent to (7).

Similar to the objective (7), K(Tj,n,Ti,m) =
((xjn), &(Tim)), Vigiq € Jg, n € Nj,, m € Ni,
should be calculated instead of ¢(x;,,) or ¢(z;,m) in solving
the distributed problem (9), where ¢(x; ) and @(x; m)
are unknown [34]. Since the measurements are distributed
in many VNs, it is difficult to calculate A(Zj n, i m)
without information exchange among VNs. Therefore, the
random approximation method [[37]] is adopted to approximate
o(xj,n) With z(x, ).

Through introducing a random approximation function z :
R? — RP, we can map the input data to a random feature
space, where D is the dimension of the random feature space
and satisfies D > p. Using this technique, ¢(x;, ) can
be approximated by z(x; ,). The inner product calculation
between ¢(x;,,) and ¢(x;, ,,,) can be expressed as

k(qun’wiqm) = <¢(qu”)7 d)(wlqm» ~ Z(qu")TZ(xiqm)7

- ey
where 2(x;,n) = [2w, (Tj,n)r2wp (Xj,n)] > and ze, (X5,n)
is a mapping function and given by

2
Zw; (Tj,n) =1/ D cos(w;»rqun + ),

1=1,2,...,D, Vj, € Jg, n € Nj,

12)

where ©J; is uniformly drawn from [0, 27] and w; is drawn from
pw) = (2m)"P/De-l«I?/2] which denotes the Fourier
transform of Gaussian kernel function [37]).

Note that the random approximate function z(x;, ) and the
mapping feature function ¢(x; ,,) share the same properties
in reproducing kernel Hilbert space. z(x;, ,) also can map
the original data into a hypersphere with center 0 and radius 1
similar to ¢(x;,,,). Besides, as proved in [37], if the dimension
of z(x;,n) is proper, k(x;,n, Ti,m) can be well approximated
by z(x;,n) " z(@;,m). Then, we have

k(% ns Tigm)
= |[¢(xj,n)ll - ll@(@iym)| - cos(@d(Tj,n), P(Tiym))
~ |[z(xj,0)] - ||2(@igm)|| - cos(z(xj,n), 2(Tiym)),

which  means  that  cos(d(xj,n), d(Ti,m)) R~
cos(z(xj,n), 2(xi,m)). Therefore, if data x; , is close
to ;,m, their corresponding mapping vectors 2z, and 2;_m,
will be close in the new random feature space.

Based on the above reasoning, the problem (9) can be
transformed as follows:

(13)

Jq Njq
min ) *||qu|| T CD " &in — 04,
{w.iq’pJQ} Jq=1 n—1
s.t. zT(a:jqn)qu > pjy — Ejgns Vig € gy n=1,2,..., N;_,
gjqn > 07 qu S Jq, n= 1,2,....,qu,
qu = wiqaqu = piqa qu,iq € Jq7
(14)

where x; , € S;, denotes the training samples of VN j,.
It should be noted that the symbol w;, in (14) has different
dimension with that in (9), but for simplicity, we choose to
use the same symbol to represent them.



B. Distributed Online PN Anomaly Detection

For each VN, new unlabeled measurements will be gen-
erated at each time. If we keep all historical data of each
VN within a period for offline training, it will not only
introduce high storage and computation cost but prevent timely
detection of anomalies. Therefore, unlabeled training data are
expected to be processed in an online mode. Based on the
above analysis, we propose a distributed online PN anomaly
detection algorithm based on the decentralized OCSVM.

Through introducing the Lagrange multipliers {r;}, {);},
{a;;} and {f;;}, the augmented Lagrange function for the
problem (14) is expressed as

L{wj, }. {pj, }: {&nt {5} AN} {eyi} {5ji}) =

N]‘q
1
§||qu||2+\Jq\CZ§jqn—qu R Zan
n=1 q n=1
LT
j T
17, _ﬁ (2" (@) w3, = Pjy + Ejun]
1 n=1
Zl | Jql [Jql
e Z aj;(w), —w;, )+ Z Bii(pj, — piy)
ig=1 ig=1
" [Tl
23 (Mg, —wi, |+ [los, = i, |
ig=1

(15)

Here, the last term is the regularization term, which plays

two roles: (1) It eliminates the condition that L(6;) must be

differentiable, where 6, represents the set of variables; (2) The

convergence speed of ADMM could be controlled by adjusting

the augmented Lagrange parameter 7. Then, L(6;) could be

minimized in a cycle fashion: at each iteration, we minimize

L(6;) with respect to one variable while keeping all other

variables fixed [36[]. The ADMM solution at each iteration

t + 1 takes the form

{qu (t + 1)7 Piq (t + 1)7 gjqn(t + 1)} =

. (*{wy‘q}v Py} {&n}s {ffj}> (16a)

arg min L ,

{w;, Y pig } {Eign} A} i)}, {85i(t)}

[ql

o (t+1) = a; (1) +3 Z:l (wj, (¢ +1) = w;, (t + 1)), (16b)
7 /g
Bit+1) =80+ 2 (P, (t+1) = pi, (t+ 1)), (16¢)

Tl Jq
where o (1) = 2.7 v(t) and (1) = 35,74 Byi(t).
Model parameters {w;_}, {p;, } and {{;,»} of decentralized

OCSVM could be obtained by solving the problem (16a).
It is obvious that the problem (16a) is a batch formulation
of distributed algorithm, where all data of each VN are
required to be available. This will bring a big challenge to the
storage resources of the networks. To overcome this problem,
a distributed online augmented Lagrange function is defined
in equation (17) by replacing p; and w;, 6 at time ¢ with
1(pj,(t) + pi, (t)) and 3(wj, (t) +w;, (1)) as in [36].

In (17), t is the time instant of online learning, z;, (t) =
(2w, (25, (), 2wp (T4, t)]*, where x;, (t) is the training
data of VN j, at time t. §;, (t) is the slack variable for x;_(t).

From the KKT conditions for (17) it follows that

qu (t + 1))\j(t + 1) - 2(1J(t)

1 |Jq

w; (t+1)=— , (18a)

i, (t+1) = 3 +;’2 (w;, (t) +wi, (1))

1= A(t+1) —285(t)

|Ja|
pa(t 1) = — ., (18b)
J ( ) A-1 +gzz::1 (p]q(t)+plq<t))

0=|JylC =X — K (18¢)

where A = n|J| + 1. The KKT conditions require \; >
0, k; = 0, so (18c) is allowed to be replaced by 0 < \; <
|J4|C. To implement the update (18a) and (18b) for every
VN, the optimal Lagrange multipliers {\;(t+1)} are obtained
by solving the dual problem of (17). The corresponding dual
function is given by

A+ 1)) =

—ZLE+ DAz, t+ D)+ (A=A (19)
HAT () + (A= 171 = hy()]Ag,
where 1;(t) = 2a;(t) — _Ii‘ (wj, (t) +w;, (t)) and h;(t) =

‘Jql
26;(t) — 3 _Zzl (Pj, () + pi, (£)). {A;(E+ 1)} is given by
DA™ 'z, (t+1)+

L= By ().
(20)

Algorithm 1 presents the detailed steps of the distributed
online PN anomaly detection algorithm. In Algorithm 1, steps
(2)-(8) are implemented in Network Slice Manager and steps
(9)-(13) are implemented in Infrastructure Manager. Since
the distributed online algorithm can eliminate the impact of
anomalous data on estimates in each iteration (step 12), it can
hold high detection accuracy without any labeled data.

From formulas (18a) and (18b), we can know that VN j,
requires estimates w;, (t) and p; (t)(i4 € J4) to be available
when updating estimates w), (t+1) and p;, (t+1). According
to [23]], the time complexity of classical OCSVM algorithm is
O(N, 5’) Since all training samples and their labels need to be
available in OCSVM, its storage complexity is O(N,|J,|(p+
1)). The calculation of the online OCSVM algorithm depends
on the number of iterations 7' and the number of VNs |J|
mapped to PN ¢, so its time complexity is O(N4|J,;|) when
the number of iterations 7' = N,. Since the online algorithm
only needs current measurements to be available, its storage
complexity is O(|J,|p). Due to the distributed online mode,
the time and storage complexity of the proposed PN anomaly

detection algorithm are O(N,) and O(p), respectively.

Aj(t+1) = argmax —[ij (t+
0<A; K| J,lC !
A+

(A-1)~ [A7H;(0) +(A-1)”
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Algorithm 1 OCSVM-based distributed online PN anomaly
detection algorithm

Initialization: Initialize the iteration number 7', dimension
D, multipliers c;(0) and 3;(0), and estimates w;, (0) and
pj,(0) of each VN

1: fort=1,2,...,T do
2. for j, € J, do
3: VN j, obtains a new sample x; (t), and calculate

the approximation z;_(t) of ¢(x;, (t)) by the random
approximate function

4: Compute \;(t), wy, (t) and p;, (t) according to (20),
(18a) and (18b)

5: Compute o;(t) and f3;, (t) according to (16b) and
(16¢)

Compute g, (£)) = sgn(=T (tyws, (t) — ps, (1)
Send g(x;, (t)), wj, (t) and p;,(t) to the management
module of PN ¢

8: end for

9. if queJq g(x;, (t)) == 1 then

10 PN g 1s detected as normal at time ¢, and update
estimates wj, () and p;_ (t). Then, broadcast them
to related VNs

11:  else

12: PN ¢ is detected as anomaly at time ¢, and reserve
estimates at time ¢ — 1 and discard current ones

13:  end if

14: end for

V. CCA-BASED DISTRIBUTED ONLINE PL ANOMALY
DETECTION

The basic principle of PL anomaly detection: Since the
flow passes through each VN of an SFC in sequence, the
measurements between neighbor VNs are naturally related

VLWL, . .
[16]. Assume that the virtual path VN,,, — "VN ; 1s instan-

tiated into the path PN,, Plinfl PN;, where virtual link VL,, ;
is instantiated into physical link PL,,;, and VN, and VI;
are instantiated into PN,, and PN, respectively. Then, the
correlation of measurements between VN, and VN; will be
stable within a certain range if PL,,; is in a normal state,
and will change if an anomaly occurs in PL,, ;. As shown in
Fig. 2, if the working state of PL 34 becomes anomalous, the
correlation of measurements between VN 2 and 3 in Slice
2 will change. Therefore, we can implement PL anomaly
detection based on the correlation of measurements between
neighbor VNs, which are mapped to both ends of this PL.

CCA is a widely used multivariate analysis algorithm [38]].
Given two sets of random variables U and Y where

(17)
2
O aeea — .
PNs VNs PL VL  Anomaly PL
Network
. 1 Sa 1 Q. PN
Slice N Nen \4 2/ N
Request Slicel 2 Slice 2 Slice3 ' °
Substrate
Networks
Fig. 2. The PL mapping schematic.
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U = =
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(t samples p variables), 21
Y1 Y1 Y12 Yid
Y2 Y21 Y22 Y2d
Y = . = .
L Yt | L Y1 Y2 --- Ytd

(t samples d variables),

CCA algorithm attempts to find canonical correlation vectors
J and L, which maximize the correlation p between J Tu
and LY, ie.,

(J, L) = arg max p(JTU)(LTY)
J,L)

JT EUYL (22)

(JTSg )2 (LTSy L)1/

= arg max
(J,L)
where 3.,y denotes the covariance matrix. The solution to
problem (22) can be obtained by implementing singular value
decomposition on the matrix K, which is shown as

K- E,}I/QEUYE;I/z _ REVT, (23)
with R = (r1,...,7p), V = (v1,...,09), % = E(J)N 8 )

where X, = diag(p1,...,px), £ denotes the number of
nonzero singular values and p; (¢ = 1,...,k) are canonical
correlation coefficients. r; (i = 1,...,p) and v; (i = 1,...,q)
are corresponding singular vectors.



The canonical correlation vectors can be derived as
J=1[Ji,...J,) = ;" *R e RP*?, 24)
L=[Ly,... Ly = £,"°V e R¥, 25)

Assume that PL 7 and its both ends are corresponding to the

PL,,
physical path PN,, ' PN;,. To detect the working state of
PL r,i.e., PL,,; in a distributed manner, we need to find each

SFC, whose virtual path VN,, —5" VN, is embedded to this
physical path. Then, the correlation of measurements between
VN,,, and VN; needs to be analyzed in its Network Slice Man-
ager distributedly. Assume that the current measurements of
VN,,, and VN; are represented by uw and y, respectively, then
the key step for analyzing the correlation of measurements
between neighbor VNs is to produce an anomaly detection
residual, which is shown as follows:

r=J—XL%. (26)
Then, the T2 test for residual can be established as
T2 =r™S e, where ¥, = I, - =27, 27

Therefore, the correlation of measurements between neigh-
bor VNs can be determined based on the following decision
logic as
= anomaly - free,

2 2
TT < Tr.cl (28)
= anomaly,

T >T7,
where T is the control limit of 77, which represents the
threshold that distinguishes between normal and anomalous
correlation patterns.

Proposition 1: Because the residual vector » = JTu —
3 LTy has the minimum covariance, it is an optimal residual
for detecting the variation of correlation between two sets of
variables u and y.

Proof: See Appendix A.

Since new measurements will be generated in each period,
to obtain the real-time canonical correlation vectors J(¢) and
L(t) for the online PL anomaly detection, we need to calculate
covariances in formula (23) with all the historical data at each
time ¢. Its computational complexity will become extremely
high over time. To reduce the computational complexity and
the storage consumption, we derive a new method to update
covariances in formula (23), with which the Network Slice
Manager only needs to store the covariance matrices and mean
vectors of current VN data instead of all the historical data.

Proposition 2: Assume that the covariance matrix of U () is

a1 ai12 A1p
L | e e az
Yuw == | - ) and the mean vector
ap1 Ap2 ... G

P pp
of U(t) is [e1(t), c2(t), ..., cp(t)] at time ¢, if the measurements
of wis ws1 = (Up41)1, U(t41)25 o> U(t41)p) At time £4-1, the
covariance matrix of U (¢ + 1) can be computed by

2U(t+1) =
a1 +mi1 a1z +mi2 a1p + Mmip
1 G21 +Ma21 a2 + Ma2 Qzp + Map (29)
- X . )
t : : :
ap1 +Mp1  Gp2 + Mp2 app + Mpp

t(ei(t)—uryi) (e (B)—u@r1),) (1 <i,j< p)'

where m; ; = )

Proof: See Appendix B.
Similarly, assume that the covariance matrix between U ()
€1d

€2d
and

and Y(t) is EU(t)Y(t) = 1

€pl  €Ep2 -eo €Epd
the mean vector of Y (¢) is [f1(t), f2(¢), ..., fa(t)] at time ¢, if
the measurements of ¥ is yy+1 = (y(t+1)1, Y(+1)25 -+ y(t+1)d)
at time ¢ + 1, the covariance matrix between U (t + 1) and
Y (¢ + 1) can be computed by

EU(t+1)Y(t+1) =
e1r +ni1 ez +ni2 €1d + Nid
1 €21 +n21 €22 + Ma2 €2d + Nad (30)
- X . )
t . . .
€p1 +Np1 €p2 + Np2 €pd T Npd

where n,; = t(ci(t)*“(t-kl)tii(ldj(t)*y(t-*-l)j) (1<i,(j) <p,(d).

Therefore, the covariance matrices at time ¢ + 1 can be
calculated by only keeping the covariance matrices and mean
vectors at time ¢. Then, the canonical correlation vectors J(¢+
1) and L(¢+1) can be derived to produce the optimal residual
without storing all the historical data, so large storage and
computing resources can be saved.

The detailed steps of the CCA-based distributed online PL
anomaly detection algorithm are shown in Algorithm 2.

We usually deal with the anomaly detection as a special
classification problem by assuming that the entire dataset
contains only normal samples. When the number of anomalous
data contained in training samples increases, the performance
of classical CCA method will decline greatly. By comparison,
the proposed algorithm is more robust for it can eliminate the
impact of anomalous data on the detection accuracy in each
iteration (step 13).

The computation of CCA algorithm mainly focuses on the
covariance calculation. When the number of samples reaches
T and the number of VLs mapped to PL r is |J,.|, the time
and storage complexity of the classical CCA algorithm are
O(T|J.|(p* + pd + d?)) and O(T|J.|(p + d + 2)), respec-
tively. For the distributed online mode, the time and storage
complexity of the proposed algorithm are O(p? +pd+d?) and
O(p + d), respectively.

VI. SIMULATION RESULTS
A. Evaluation Metrics

In this section, numerical simulations on both synthetic
and real-world network datasets are executed to evaluate the
proposed distributed online PN and PL anomaly detection
algorithms. The performance analysis of the proposed algo-
rithms is evaluated using various metrics such as precision,
recall and fl-socre, which can be formulated by confusion
matrix as presented in Table L.

TN, FN, FP and TP are defined as follows: TN represents
the number of normal working states which are identified
correctly. FN indicates the number of anomalies which are
not identified. FP summarizes the normal working states that



Algorithm 2 CCA-based distributed online PL anomaly de-
tection algorithm

Initialization: Initial number of labeled samples ¢, mea-

surements U (t) and Y (¢) of VN,, and VN; for each
VL, PL;,, .
VN,, —"VN; mapped to PN,,, " PN,,, ;, control limit

T7?, and number of iterations 7'

1: Compute the covariance matrices
tors of U(t) and Y(t): EU(t)’ Ey(t), zu(t)y(t),
[e1(t), ca(t), ..., cp(t)] and [f1(t), f2(t), ..., fa(t)]

2. fort=t+1:7 do

and mean vec-

VLi, 141

3:  for each VN; —  VN;y; do

4 Compute Xy (1), Xy (1) and Xy sy (r) according to
formulas (29) and (30)

5: Implement singular value decomposition on the ma-
trix K (t) according to formula (23)

6: Compute canonical correlation vectors J(¢) and L(t)
according to formulas (24) and (25)

7: Produce the optimal anomaly detection residual 7 ()

according to formula (26)
: Establish the 72 test: Tf(t) = r(t)TEZé)r(t)
9:  end for

. : 2 2
0. T, <T,

VL,
(t) rycl for each VN,,, — LVN[ then

11: Determine that PL,, ; (or PL r) is normal, and update
covariance matrices and mean vectors

12:  else

13: Determine that PL,,; (or PL r) is anomalous, and

reserve covariance matrices and mean vectors at time
t — 1 and discard current ones

14:  end if

15: end for

TABLE I
CONFUSION MATRIX

Predicted result

normal anomalous
normal True Negative (TN) | False Positive (FP)
Actual result
anomalous | False Negative (FN) | True Positive (TP)

have been judged as anomalies. TP represents the number of
anomalies which are identified correctly.

e Accuracy is the proportion of correctly predicted PN or
PL working states to the total ones.
TP+ TN
TP+TN+FP+FN
o Precision represents the proportion of correctly predicted

anomalous PN or PL working states to the total predicted
anomalous ones.

Accuracy = (31)

TP
TP+ FP
e Recall represents the proportion of correctly predicted

anomalous PN or PL working states to the total actual
anomalous ones.

Precision = (32)

TP

Recall = m

(33)

TABLE II
SIMULATION PARAMETERS
Parameter Value
PN number 10
SFC number 6
VN number in each SFC 4~6

Service 1 (arrive rate, packet size)

Service 2 (arrive rate, packet size)

Service 3 (arrive rate, packet size)
Random feature space

(10packets/s, 200kbit/packets)
(100packets/s, 10kbit/packets)
(500packets/s, 1kbit/packets)
100-dimensional

e Fl-score is the weighted average of the precision and
recall metrics.

precison X recall
F1 — score =2 x

precison + recall 4
Accuracy is an effective evaluation metric when the datasets
are balanced, but for imbalanced ones it may give biased eval-
uation results. Compared to accuracy, precision and recall are
less biased metrics for the evaluation of imbalanced datasets.
Therefore, precision, recall and fl-score metrics are mainly
used to analyze the performance of the proposed anomaly
detection algorithms.

B. Synthetic Dataset

To generate synthetic data to validate the effectiveness of
the proposed PN and PL anomaly detection algorithms, a
simple virtualized network slicing scenario with 10 PNs and 6
SFCs has been established in MATLAB platform. Each SFC
is assumed to contain 4 ~ 6 VNs [39]. Three different service
requests are contained to simulate the diverse service types in
network slicing. VNs and VLs in SFCs are randomly mapped
to the substrate network to provide end-to-end services for
different user types. When PNs and PLs are in normal states,
their processing capacity is in normal range. To simulate the
anomalous cases, the loss rates of processing capacity for PNs
and PLs, which follows the Gaussian distribution N (u,c?)
with the mean p = 0.5 and the variance ¢ = 0.01, are
randomly injected into the networks. Then, the simulated data
can be acquired in each period, including processing rate, data
flow, queuing delay, processing delay, etc. Table II presents the
main parameters used for simulation.

For comparison, we have simulated the OCSVM based [12]
and online OCSVM based [29] anomaly detection methods.
Fig. 3 shows the comparison results of precision, recall and f1-
score among the OCSVM, online OCSVM and the proposed
distributed online OCSVM (DO-OCSVM) algorithms. The
presented results are averaged total 500 Monte Carlo runs. To
verify the impact of anomalous data contained in training sam-
ples on the classical OCSVM algorithm, we have introduced
the concept of anomaly ratio in training data (ARTD). From
Fig. 3, compared with the classical OCSVM and the online
OCSVM algorithms, the proposed DO-OCSVM has a higher
recall and fl-score, but its precision is a little lower. This is
because in the proposed DO-OCSVM algorithm, as long as
measurements of one VN mapped to a PN are detected as
anomaly, this PN will be determined to be anomalous. There-
fore, the proposed algorithm can detect the anomalous PNs
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Fig. 3. Performance comparison among different PN anomaly detection
algorithms on synthetic dataset.

more accurately, but the possibility of wrongly determining
normal PNs as anomalous ones also increases. Since we pay
more attention to the recall in anomaly detection, a slight drop
in precision is acceptable. Note that when the training samples
contain anomalous data (ARTD=0.1), the performance of the
classical OCSVM in three metrics will be greatly degraded.
However, it is costly to obtain large amounts of accurate
labeled data in actual networks. Fortunately, the proposed DO-
OCSVM algorithm can eliminate the impact of anomalous data
on the detection accuracy during the iteration process without
any labeled data, which makes it more economic and robust
anomaly detection method.

Fig. 4 shows the convergence process of w and p in the
proposed DO-OCSVM algorithm. Since w is a 100-D vector,
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—-—-rho/2
02 . . . n n
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Fig. 4. Convergence process of w and p in DO-OCSVM algorithm.

it is difficult to depict all the components. Therefore, we
randomly select 5 components for illustration. From Fig. 4, we
can see that w and p in DO-OCSVM algorithm nearly remain
stable after 1000 iterations. Note that the convergence process
of parameters presented in Fig. 4 is basically consistent with
that of precision, recall and fl-score shown in Fig. 3.

The performance comparison results between the CCA
algorithm in [15]], online CCA algorithm and the proposed
distributed online CCA (DO-CCA) algorithm for PL anomaly
detection are shown in Fig. 5. We set the initial number of
labeled samples ¢ = 10 and control limit 72, = 1. The
presented results are averaged total 500 Monte Carlo runs.
To verify the impact of anomalous data in training samples
on the classical CCA algorithm, we simulate the condition
when ARTD=0.1. Observing Fig. 5, the proposed DO-CCA
has a higher recall compared to the CCA and online CCA
algorithms, which suggests that proposed DO-CCA algorithm
can predict the anomalous PLs more accurately. Meanwhile,
the precision of the proposed DO-CCA algorithm is a little
lower, implying that the possibility of wrongly determined
normal PLs as anomalous ones also has a little increase.
Since we concentrate more on the performance of recall in
anomaly detection, a slightly small precision is acceptable.
Note that when the training samples contain anomalous data,
the performance of the classical CCA algorithm will decline
greatly. Since the proposed DO-CCA algorithm can eliminate
the impact of anomalous data during the iteration process, it
is more adaptive.

C. Real-World Network Dataset

Except validating the proposed distributed online anomaly
detection algorithms on the synthetic dataset from the simu-
lated virtualized network slicing scenario, we further evaluate
their performance on the real-world network dataset. The data
rate performance measurements of NFV cloud native scaling
for a media application [40], which is selected from IEEE-
DataPort, include CPU, memory, disk and network metrics.
The system monitoring period, i.e., the data sampling period
was set to 15s. To evaluate the performance of different PN
anomaly detection algorithms, we introduce four cases to
simulate the anomalies in PNs, including endless loop in CPU,
memory leak, Disk I/O fault and network congestion.
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Fig. 5. Performance comparison among different PL anomaly detection
algorithms on synthetic dataset.

For the purpose of further comparison, we also evaluate the
performance of two state-of-the-art classical anomaly detection
methods on the four anomaly cases, which are k-nearest
neighbor (k-NN) method [41]] and local outlier factor (LOF)
[42] algorithm. The comparison results of different anomaly
detection algorithms on four anomaly cases are summarized
in Table III. The results show that the online OCSVM and
DO-OCSVM algorithms have comparable or better detection
performance than k-NN and LOF. For example, under the
case of Disk I/O fault, the detection performance of LOF
is significantly lower than that of the other three algorithms.
The reason is that anomalous disk read or write rate is not
much different from the normal one, so the local density of
monitored measurements has only a little fluctuation, which is
difficult to capture for the LOF algorithm. Besides, LOF has
a better performance on detecting endless loop in CPU, which
indicates that LOF is more sensitive to the fluctuant metrics.
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Fig. 6. Fl-score comparison among different PN anomaly detection algo-
rithms versus different sizes of real-world network dataset.
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Fig. 7. CPU time comparison among different PN anomaly detection
algorithms versus different sizes of real-world network dataset.

By contrast, our proposed DO-OCSVM based PN anomaly
detetion algorithm has the best detection performance on the
four anomaly cases.

The fl-score, which is the weighted average of the pre-
cision and recall metrics, is used to evaluate the overall
performance of different anomaly detection algorithms with
different datatset sizes. The corresponding results are shown
in Fig. 6. Furthermore, we also record the CPU time and
memory consumption of each detection method with different
dataset sizes, and the results are shown in Figs. 7 and 8§,
respectively. It should be noted that for the proposed dis-
tributed detection scheme, we only take the average CPU
time and memory consumption of every distributed manager
into account. Observing the simulation results depicted in
Figs. 6-8, it is obvious that the online OCSVM and DO-
OCSVM algorithms take much less CPU time and memory
consumption than the classical k-NN and LOF methods, and
obtain better detection performance. The fl-score of k-NN
and LOF methods increases as the dataset size grows. By
contrast, the online OCSVM and DO-OCSVM algorithms are
not sensitive to the dataset sizes. Besides, the required CPU
time and memory consumption of k-NN and LOF methods
increase exponentially as the dataset size grows. For the online
OCSVM and DO-OCSVM algorithms, the required memory
consumption remains nearly unchanged, and the required CPU
time grows linearly due to the online detection mode.

For validating the performance of the proposed DO-CCA
based PL anomaly detection algorithm on the real-world



TABLE III
THE COMPARISON RESULTS OF DIFFERENT ANOMALY DETECTION ALGORITHMS ON FOUR ANOMALY CASES
Anomalic k-NN LOF Online OCSVM Proposed DO-OCSVM
1eS
Recall  Precision  Fl-score | Recall Precision Fl-score | Recall Precision Fl-score | Recall Precision Fl-score
Endless loop in CPU | 0.951 0.975 0.963 0.905 0.960 0.932 0.984 0.961 0.972 1.00 1.00 1.00
Memory Leak 0.903 0.939 0.923 0.894 0.849 0.871 0.976 0.934 0.955 0.988 0.969 0.978
Disk I/O fault 0.979 0.977 0.976 0.588 0.600 0.594 0.976 0.931 0.953 0.979 0.960 0.969
Network congestion 0.858 0.965 0.908 0.808 0.727 0.767 1.00 0.970 0.986 1.00 0.977 0.988
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Fig. 8. Memory consumption comparison among different PN anomaly
detection algorithms versus different sizes of real-world network dataset. . . . . .
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Fig. 9. Fl-score comparison among different PL anomaly detection algorithms
versus different sizes of real-world network dataset.

network dataset, in addition to the CCA and online CCA
algorithms, we also evaluate the performance of the principal
component analysis method (PCA) [43], which is the state-of-
the-art classical multivariate analysis method. The f1-score, the
required CPU time and memory consumption are used to eval-
uate the overall performance of different PL. anomaly detection
algorithms. The corresponding results are shown in Figs. 9-
11, respectively. Observing the simulation results depicted in
Figs. 9-11, we can see that the online CCA and DO-CCA
based PL anomaly detection algorithms take much less CPU
time and memory consumption than the classical PCA and
CCA methods, and obtain better detection performance. The
fl-score of PCA and CCA methods increases, and the required
CPU time and memory consumption increase linearly as the
dataset size grows. By contrast, for the online CCA and DO-
CCA algorithms, the f1-score, required CPU time and memory
consumption all remain nearly unchanged as the dataset size
grows. Besides, our proposed DO-CCA based PL anomaly

algorithms versus different sizes of real-world network dataset.
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Fig. 11. Memory consumption comparison among different PL. anomaly
detection algorithms versus different sizes of real-world network dataset.

detetion algorithm has the best detection performance with the
lowest CPU time and memory consumption for the distributed
online mode.

VII. CONCLUSIONS

The accurate and rapid anomaly detection for PNs and
PLs in substrate networks is the prerequisite for ensuring
the performance of virtualized network slices. To realize the
real-time anomaly detection for the substrate networks with
low communication and storage cost, a distributed online
PN anomaly detection algorithm was first proposed based
on a decentralized OCSVM. This detection algorithm could
identify the working state of a PN through analyzing the real-
time measurements of each VN mapped to it in a distributed
manner. Then, we proposed a CCA-based distributed online
algorithm to realize the PL anomaly detection. This algorithm



could infer the working state of a PL based on the correlation
of measurements between neighbor VNs, which were mapped
to both ends of the PL. Finally, the effectiveness and ro-
bustness of the proposed distributed online anomaly detection
algorithms were verified on both the synthetic and real-world
network datasets.

APPENDIX A
PROOF OF PROPOSITION 1
As J = S5°R and 25'°Syy5y? = REVT,
then RTE;Y? = VTELQE and JTu =
EVT21/2EUYu We can get that
r=Jw—- XLy
—sVTE’y bu—2vTis, Py (35)

ZEVTEY”%zyzgyu—yL

where § = EyE{]lYu is the least square estimation of y
by w. In this case, the residual has the minimal covariance
value, and the Tf statistic, which includes the inverse of
the covariance matrix, has the best performance for anomaly
detection [38)).

APPENDIX B
PROOF OF PROPOSITION 2

The covariance calculation processes of U (t) are as the
following steps.
Firstly, subtract average values from each column as

uin —e1(t)  uiz — ca(t) u1p — cp(t)
_ Ug1 — C1 (t) ugo — C2(t) U9y — C (t)
U(t) = P ' P
up —c1(t)  upe — ea(t) Utp — Cp(t)
U1l Uiz Uip
U1 U2z Uzp
Uty U2 Utp
(36)
Then, the covariance of U (t) can be computed by
1 _ _
Yuw = m(U(t))TU(t)
a1l a12 G1p
1| az ax asy G37)
Ct-1
ap1  Ap2 App
The mean vector of U (t+1) is (c1(t + 1), ...,¢cp(t + 1)) =
(tcl(t)+u(t+1)1 tCs(t)+7t(t+1)p) 50
T+1 IR T+1 ’
a11+c1(t);’:«{t+1)1 'alp + Cp(t);r{t+l)p
U(t+1) = : :

tuge41)p—Cp(t)

t+1
(38)

t(ugny—ci(t))
t+1

Assume that the covariance matrix of U (t+1) is Xy 41y =

bir bz bip
bo1  bao bap
. . , where
bpr  bp2 bpp
t
= ¢i(t) — u@+nyi - cj(t) — ugey1);
bij = Z (Uki“l‘H_l Ukj+lf—|——1]
k=1
1 tus)i — ailt t(uen); —¢(t))
t+1 t+1
— U(t41)5 i B Ci(t) — U(t41)i
701J+Z’uk1 t—‘rl Zuk]T

k=1

) (Cj (t)t—+u1(t+1)j)

Q(ﬂ)) (t(Uu+1n'—<%(ﬂ)>

t+1

+(“WHW—
t+1

i(l) — i
it (C ( ) U(r41)

t+1
_ t(ci(t) — ugr1)i) (e () — wiey1);)
— T t+1
t t
(Zﬂ Z )1 <1i,j <p).
k=1 k=1

(39)

Therefore, the Proposition 2 is proved.
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