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Cooperation Method of Connected and Automated
Vehicles at Unsignalized Intersections:
Lane Changing and Arrival Scheduling

Chaoyi Chen1, Mengchi Cai1, Jiawei Wang1, Kai Li2, Qing Xu1, Jianqiang Wang1, Keqiang Li*1.

Abstract—The cooperation of connected and automated ve-
hicles (CAVs) has shown great potential in improving traffic
efficiency during intersection management. Existing research
mainly focuses on intersections where lane changing is prohibited,
which is impractical for real-life implementation. This paper
proposes a two-stage cooperation framework, which decouples
the longitudinal and lateral control of CAVs, allowing them to
change to their preferred lanes. Based on formation control,
an iterative framework is initially proposed to solve the target
assignment and path planning problem for multiple CAVs on
multiple lanes. A graph-based minimum clique cover method is
then applied to obtain the optimal scheduling plan for the CAVs.
Extensive numerical simulations for different numbers of vehicles
and traffic volumes validate the effectiveness of the proposed
algorithm.

Index Terms—Connected and Automated Vehicles, Lane
Change Permitted Intersections, Arrival Time Scheduling, In-
tersection Management

I. INTRODUCTION

Intersections are the most complicated scenarios in urban
traffic, where traffic jams and vehicle collisions frequently
occur [1]. With the rapid development of vehicle-to-everything
(V2X) technology, the central coordinator deployed at an inter-
section can guide connected and automated vehicles (CAVs)
through it. This guarantees the high-efficiency and conflict-
free cooperation of CAVs [2]. After receiving the scheduled
arrival time from the coordinator, each CAV optimizes its
speed trajectory in pursuit of high traffic efficiency and low
fuel consumption [3], [4]. Several methods have been proposed
to solve the longitudinal control problems of CAVs, including
model predictive control [5], [6], fuzzy logic [7], [8], and
optimal control [9], [10].

Apart from vehicle control, the CAV scheduling problem is
also frequently discussed in research on intersections. CAVs
approach from different directions with different destinations;
thus, their trajectories inevitably intersect in the middle of the
intersection. Therefore, staggering the arrival times of CAVs
is an essential functionality of intersection management. Pre-
vious studies have also found that scheduling CAVs is the key
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factor influencing the traffic efficiency at intersections [11],
[12]. To schedule the CAVs approaching intersections, the
most straightforward method is a first-in-first-out (FIFO) strat-
egy, wherein the CAVs that enter first are scheduled to leave
the intersection first [13], [14]. Similar concepts are applied
in reservation-based [15], batch-based [16], and platoon-based
methods [17].

Evidently, these ad hoc scheduling methods have low com-
putational burden; however, they are less likely to obtain
a high-efficiency scheduling plan. Therefore, other studies
have also proposed optimization-based methods to solve the
scheduling problem. Several researchers formulated this prob-
lem as a mixed integer program (MIP) problem [18], [19],
[20]. Other methods, such as Monte Carlo tree search [21],
dynamic programming [22], and minimum clique cover
(MCC) [23], were also proposed to schedule CAVs. It is
worth mentioning that because scheduling CAVs is a discrete
problem rather than a continuous one, a graph-based method
is another promising method to solve this problem. Apart from
the depth-first spanning tree algorithm proposed in [24], a
Petri net [25] and a conflict duration graph [26] have also
been used in modeling the scheduling problem. Although these
studies widely investigated the CAV scheduling problem, the
intersection scenarios remained limited to where lane changing
was prohibited.

In the aforementioned studies on intersections, the CAVs
were assumed to run in their target lanes, i.e., only their lon-
gitudinal control was considered. In practice, however, CAVs
approach from random lanes and have different target lanes;
therefore, it is necessary to extend this research to scenarios
that permit lane changing. Earlier studies on this topic focused
on obtaining a smooth CAV speed trajectory [27], [28];
however, traffic efficiency was not investigated completely.
With regard to CAV scheduling, which we are concerned with,
a few studies formulated this problem as an MIP [29] or a
linear programming problem [30]. This was done by assuming
that lane changing maneuvers are accomplished in a given
time interval. [31] proposed a practical bi-level framework,
where the high-efficiency arrival plans and collision-free path
planning are solved on the upper and lower levels separately.
Several other prospective studies focused on changing lane
directions dynamically rather than allocating CAVs to constant
directional lanes [32], [33], [34]. However, flexible lane direc-
tions are unsuitable for a mixed traffic environment, where
human-driven vehicles (HDVs) and CAVs coexist.

In summary, most of the existing studies were conducted
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in scenarios where lane changing was prohibited. Therefore,
only CAV scheduling or vehicle longitudinal control were
studied. In this study, we focus on a scenario where lane
changing is permitted. CAVs are required to change to their
target lanes on approaching the intersection. Most of the
aforementioned studies circumvent this problem by assuming
that the CAVs are running in their target lanes [11], [13], [15],
[16], [24]. A few studies considered lane changing behavior
in their scheduling algorithm [29], [30], [31]; however, the
optimality of the scheduling was not extensively discussed.
Moreover, although CAV cooperation control at intersections
has undeniable advantages in terms of collision avoidance,
constant traffic signal phase and timing (SPAT) control also
has advantages in terms of vehicle evacuation, especially for
large traffic volumes. In this respect, the comparison between
CAV cooperation control and constant traffic SPAT remains
deficient.

Thus, the main contributions of this study are as follows.
We propose a two-stage cooperation framework to decouple
the longitudinal and lateral control of CAVs. In the first stage,
a formation control method is used to guide the CAVs into
their target lanes. An iterative framework is developed to
solve the multi-vehicle target assignment and path planning
problem, preventing the deadlock problem in the single vehi-
cle lane changing algorithm. In the second stage, the CAV
arrival time is optimized to increase the traffic efficiency.
Specifically, a heuristic graph-based solution is proposed to
solve the scheduling problem with low computational burden.
As opposed to specially considering lane changing during
algorithm design [29], [30], [31], the decoupling framework
has an improved generalization ability in merging with other
scheduling methods. In simulations, we compare the proposed
algorithm with constant traffic SPAT, and our results verify the
effectiveness of the proposed algorithm.

The remainder of this paper is organized as follows. Sec-
tion II describes the scenario and introduces the two-stage
cooperation framework. Section III explains the multi-vehicle
target assignment and path planning method. Section IV
presents the graph-based CAV scheduling method. The sim-
ulation results are discussed in Section V, and Section VI
concludes the paper.

II. TWO-STAGE COOPERATION FRAMEWORK

In [23], we introduced a graph-based minimum clique cover
(MCC) method applied to an intersection with complex vehicle
conflict relationships, as shown in Fig. 1. In this previous
study, changing lanes was prohibited to guarantee vehicle
safety, i.e., the CAVs are assumed to be in their target lane
from the beginning. In this study, the same intersection is used
as the traffic scenario; however, lane change is permitted. The
CAVs have different destinations; therefore, it is apparent that
a scenario where lane changing is permitted is more realistic.
Moreover, two assumptions remain to be clarified.

Assumption 1: CAVs transmit their velocities and positions
to the central cloud coordinator through ideal wireless commu-
nication, e.g., V2I communication [35], where communication
delay and packet loss do not occur.

Fig. 1: Illustration of the traffic scenario. Vehicles are colored
in red, black, and blue to represent turning left, going straight,
and turning right, respectively. Red circles, orange squares, and
green arrows represent different types of potential collision
points.

Assumption 2: The CAVs are capable of fully autonomous
driving, implying that they are assumed to have perfect steer-
ing performance in their lane changing and turning behavior.

Considering the limit range of V2X communication, pre-
vious studies usually set a certain range of the control zone
to design cooperation algorithms [2], [3], [23], [24]. In our
study, we aim to decouple the longitudinal and lateral control
problem in CAVs; therefore, the control zone is divided into
a lane changing zone and a car-following zone, as shown in
Fig. 2, whose lengths are denoted as Lctrl, LLCZ, and LCFZ,
respectively.

Most of the existing studies only considered the trajectory
planning of CAVs, i.e., their longitudinal control, implying
that their target lane selection and lane changing behavior
was neglected in intersection management. In this study,
we propose a two-stage cooperation framework to decouple
the longitudinal and lateral control of CAVs, as shown in
Fig. 2. The lane changing behavior is strongly related to the
surrounding CAVs, and an edge coordinator is deployed at
the lane changing zone to coordinate the movement of the
CAVs to their target lanes. When entering the lane changing
zone, task assignment is first accomplished to allocate the
preferred lanes to the CAVs. We then develop multi-vehicle
path planning to guarantee a collision-free scenario during lane
changing. Therefore, when exiting the lane changing zone, all
CAVs are aligned to their target positions. As the CAVs enter
the car-following zone, the central coordinator collects the
information from all of them at the intersection and generates
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Fig. 2: Lane changing and car-following zones. When arriving at the lane changing zone, the CAVs perform lane change
maneuvers to arrive at their target lanes. In the car-following zone, the CAVs modify their car-following distances to arrive at
the stopping lane according to the scheduled plan.

an optimal arrival time plan to increase the traffic efficiency.
Subsequently, the CAVs modify their car-following distances
according to the scheduling result in the car-following zone.
Owing to the arrival time of the CAVs being staggered, each
CAV travels through the intersection without idling at the
stopping line, and thus, vehicle idling is avoided. Notably,
in Fig. 2, the lane lines in the lane changing zone are white
dashed lines while those in the car-following zone are white
solid lines. This implies that lane change is only permitted
in the lane changing zone, which corresponds to the current
traffic rules.

Remark 1: Decoupling the longitudinal and lateral control
of CAVs into two stages has the following advantages. First,
many studies have been conducted on the cooperative lane
changing behavior of CAVs on straight roads and also arrival
time scheduling at intersections. Solving these aforementioned
problems separately makes it feasible for us to inherit from
these existing studies. Second, although we assume ideal wire-
less communication in Assumption 1 as in most studies in this
field, the effective communication range of the wireless device
should not be neglected entirely. Previous experimental tests of
the dedicated short-range communications (DSRC) device [36]
have proved that when the communication distance exceeds
500m and the vehicle velocity is 120km/h, the average packet
loss rate exceeds 20% and the average round-trip time delay
exceeds 25ms. In previous studies, the LLCZ and LCFZ were
usually set to 400− 1000m. Thus, two types of coordinators
are deployed to realize intersection management.

III. MULTI-VEHICLE TARGET ASSIGNMENT AND PATH
PLANNING

In [37], Cai et al. proposed a relative coordinate system
(RCS) to realize the formation control of CAVs. In [38], a

bi-level conflict-based search (CBS) was further deployed to
solve the multi-vehicle collision-free path planning problem.
The original methods were applied to a straight road scenario
to increase traffic efficiency. We propose that similar methods
can be employed to solve the lane changing problem of CAVs.

A. Relative Coordinate System

First, we introduce the RCS in the formation control
method. As shown in Fig. 3, when CAVs arrive at the starting
point of the lane changing zone, they are not likely to be in
their desired lanes. Hence, the RCS is used to perform the
lane change task for the CAVs. Notably, there are two com-
monly observed formation geometric structures in formation
control, i.e., the parallel and interlaced structures [39], [40].
In [38], the interlaced structure was selected as the occupation
geometric structure to increase the flexibility in multi-vehicle
formation coordination. However, in this study, there exists a
car-following zone where we adjust the car-following distance.
Therefore, we focus on a feasible lane change solution in the
lane changing zone. Thus, the parallel structure is selected,
where each point in the RCS can be occupied.

When developing conflict-free path planning for a group
of CAVs, they are first assigned to the closest points in the
RCS. If the two-dimensional position of the CAV i is (xi, yi),
its relative coordinates in the RCS, (xri , y

r
i ), are determined

using
min (xi − xri )2 + (yi − yri )2,

subject to : xri ∈ N, yri ∈ N.
(1)

B. Vehicle-target Assignment

After assigning the CAVs to the primary positions in the
RCS, their target positions are also assigned based on their
destinations. Notably, we use a parallel occupation geometric
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Fig. 3: Relative coordinate system (RCS). When entering the lane changing zone, the approaching CAVs are aligned to their
nearest coordinates in the RCS. In this zone, the Hungarian algorithm is used to generate the target position assignment and
conflict-based search (CBS) is used to find collision-free paths for the CAVs. When exiting the lane changing zone, each CAV
adjusts to its target destination.

structure; thus, the CAVs fully occupy the RCS as shown in the
car-following zone in Fig. 3. If there are N CAVs at primary
positions (xri , y

r
i ), i ≤ N, i ∈ N+, there also exist N target

positions (xtj , y
t
j), j ≤ N, j ∈ N+. Every CAV i should be

assigned to a target position j.
Before assigning the target positions to the CAVs, the cost

of this assignment should be defined. We use the distance from
each primary position to each target position as the cost for one
CAV, where the Euclidean distance is used as the evaluation
index. Hence, we can obtain the cost matrix C as follows:

C = [cij ] ∈ RN×N , i, j ∈ N+,

cij =
√

(xtk − xri )2 + (ytk − yri ),
(2)

where the element in the i-th row and j-th column represents
the cost to assign vehicle i to target j.

Each CAV has a preferred lane; therefore, the preference
matrix L is obtained to define the CAV preferences.

L = [lij ] ∈ RN×N , i, j ∈ N+,

lij =

{
1, if vehicle i can be assigned to target j,
M, otherwise,

(3)
where the element in the i-th row and j-th column represents
whether vehicle i can be assigned to target j considering their
preferred lane. M is a positive number sufficiently large to
prevent vehicle i from being assigned to target j.

The assignment matrix A, whose element in the i-th row
and j-th column represents whether vehicle i is assigned to
target j, is defined as follows:

A = [aij ] ∈ RN×N , i, j ∈ N+,

aij =

{
1, if vehicle i is assigned to target j,
0, otherwise.

(4)

Subsequently, the assignment problem can be modeled as a

0-1 integer programming problem:

min

N∑
i=1

N∑
j=1

(cij × lij × aij) ,

subject to :

N∑
i=1

aij = 1,

N∑
j=1

aij = 1,

i, j ∈ N+,

(5)

where N is the number of CAVs, cij is the cost matrix, lij is
the preference matrix, and aij is the assignment result.

The Hungarian algorithm [41] is commonly used to solve
assignment problems such as (5), and we employ this algo-
rithm in our method to generate a feasible assignment with
the lowest cost. In the following section, for each group of
CAVs, we aim to obtain not only the best assignment but also
several sub-optimal assignments. For simplicity, we use Ak to
represent the k-th optimal assignment A and Ck to denote the
corresponding cost C.

C. Conflict Types in Lane Changing Behavior

After obtaining the assignment, we need to develop path
planning for the CAVs, which should not have conflicts in
their trajectories. First, the collision types in the lane changing
behavior of CAVs should be clarified. Notably, we regulate
the CAVs to move only along orthogonal directions in the
RCS, i.e., movement along diagonal directions in the RCS is
prohibited. Movement along diagonal directions in the RCS
produces large acceleration and deceleration in lane change
behavior, which is hazardous and also increases the com-
putational burden in multi-vehicle path planning. Hence, we
constrain the movement of the CAVs to orthogonal directions
in the RCS for simplicity.
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(a) Node Conflict I (b) Node Conflict II

(c) Edge Conflict (d) Intermediate Conflict

Fig. 4: Conflict types of CAVs in lane change behavior.

The conflict types in the path planning of the CAVs are
shown in Fig. 4. The first type is the node conflict. As shown in
Fig. 4a, if two CAVs are scheduled into the same coordinates
in the RCS, they will inevitably collide. A similar situation
occurs in Fig. 4b, where one CAV is scheduled into the
coordinates of another. The second type is the edge conflict,
as shown in Fig. 4c, where the scheduled coordinates of two
CAVs are interchanged. The third conflict is the intermediate
conflict, as shown in Fig. 4d. In this scenario, one CAV is
scheduled to the coordinates of another when the second CAV
is on the verge of moving away. Unlike the previous two
conflicts, the occurrence of an intermediate conflict depends
on the size of the vehicle and the duration of the lane change
behavior. For safety concerns, we include this type of conflict
in our further analysis.

D. Collision-free Path Planning

Studies on multi-agent coordination have thoroughly inves-
tigated the multi-agent path planning problem. One of the most
well-known methods is the CBS [42], which constructs a con-
straint tree to obtain the optimal solution in the same manner
as single-agent path planning. Other multi-agent path planning
methods have also been proposed to solve the problem, e.g.,
cooperative path planning [43], the swap method [44], and
M∗ [45]. The primary task of the CAVs in the lane changing
zone in this study is to successfully change their lanes to the
generated target coordinates. Hence, in this study, the CBS is
used to solve the multi-vehicle path planning problem.
A∗ [46] is a well-known path planning algorithm for a single

agent. The input of A∗ is the starting point, ending point, and
obstacle points. The output is a feasible path from the starting
point to the ending point, which avoids the obstacles. Single-
agent path planning is not the focus of this study; therefore,
we omit the details of the A∗ algorithm (hereinafter referred
to as A-STAR). Interested readers may refer to [46] for further
details.

For each assignment Ak of the k-th iteration, we define Pk

Algorithm 1 Conflict-based Search

Input: The k-th assignment Ak for a group of N CAVs
Output: Collision-free planning path set Pk

1: Initialize conflict point set Fi = ∅, i ∈ N+

2: while True do
3: for each CAV i in assignment Ak do
4: pi = A-STAR((xri0, y

r
i0), (xriT , y

r
iT ), Fi)

5: update the path pi in Pk
6: end for
7: if there exists conflict f for CAV i ∈ N+ in Pk then
8: Fi = Fi ∪ f
9: else

10: return Pk
11: end if
12: end while

as the corresponding collision-free path set. Pk is written as

Pk = [pit] ∈ RN×T , i ∈ N+, t ∈ N,
pit = (xrit, y

r
it),

(6)

where (xrit, y
r
it) are the coordinates of CAV i in the RCS at

time t. Notably, there are N CAVs in Ai; therefore, there are
N rows in Pi representing N paths. Considering the limited
length of the lane changing zone, the maximum number of
steps is defined as T . For simplicity, we use pi to represent
the planning path for CAV i in T time steps and pt to represent
the coordinates of all N CAVs at time step t.

The collision-free path set Pk should comply with the
following rules. First, the starting points (xri0, y

r
i0) and ending

points (xriT , y
r
iT ) of CAV i should correspond to the assign-

ment in Ak. Second, at each time step t, the coordinate set pt
should contain no conflict relationships, as shown in Fig. 4.
To solve the multi-vehicle path planning problem, the CBS
algorithm is proposed in Algorithm 1.

The essential part of the CBS algorithm is examining the
conflicts f in the current planning path set Pk, adding them
into the corresponding conflict point set Fi for CAV i, and
executing the next round of path planning. The iteration ends
when there exist no conflicts in Pk, i.e., the planning path
set Pk is collision-free. It can be argued that this method
may not find the collision-free path planning solution for
a large number of CAVs. However, the feasibility of the
algorithm also depends on the maximum number of steps.
In the worst case, provided that the maximum time step T
is sufficiently large, the CAVs can always find a collision-free
path planning solution. Notably, because the assignment Ak
does not consider the conflict while the planning path Pk is
collision-free, the cost of assignment Ak Ck never exceeds that
of the planning path Pk, which is denoted as C ′k. We interpret
that this non-decreasing property of the CBS guarantees the
optimality of the algorithm.

E. Iterative Solution for Assignment and Path Planning

In the previous sections, we have shown how we generate
the best assignment A1 according to the initial positions and
target lanes of the CAVs. We have also introduced how we
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cost C1

Collision-free path planning

Assignment A2

cost C2
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Paths P2
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Assignment A3

cost C3

Paths P3

cost C3'

Assignment Ak

cost Ck

Paths Pk

cost Ck'

Collision-free path planning

Collision-free path planning

…

Assignment Ak+1

cost Ck+1

Collision-free path planning

… …

Local optimal cost 
Cmin'

Optimality check

Cost non-decrease

Cost 
non-decrease

(a) Algorithm interpretation

Generate the best assignment with cost C1

Start

Obtain the CAVs & targets coordinates in RCS

Obtains collision-free planning paths with cost C'k

If Ck+1 > C'min 

C'min=min(C'1 , C'2 , C'3 , ... , C'k)

End

k=k+1Generate the (k+1)-th optimal assignment with cost Ck+1

Set the iteration index k=1

(b) Algorithm flow chart

Fig. 5: Iterative framework for solving the target assignment and path planning problem. Yellow blocks represent target
assignment sections. Green blocks stand for path planning sections. Purple ones are the optimality check process.

obtain a collision-free planning path set P1 from the best op-
timal assignment A1. However, P1 is the local optimal solution
generated from A1. We have not checked all the assignments;
therefore, a global optimal solution has not been found. Thus,
we propose an iterative framework to find this global optimal
solution, as shown in Fig. 5. In the figure, we use the colors
yellow to illustrate the part of the target assignment solved
using the Hungarian algorithm (Section III-B) and green to
denote the part of the multi-vehicle path planning solved using
A*-based CBS (Section III-E).

As shown in Fig. 5b, the CAVs are first assigned to
their target coordinates. The Hungarian algorithm provides
the optimal assignment A1 with the lowest cost C1, i.e.,
each CAV is assigned to unique target coordinates based on
their permitted lanes with the shortest total distance. We then
develop the initial path planning for each CAV and obtain the
initial collision-free path P1 with the cost C ′1. However, we
cannot claim that P1 is the global optimal solution because Pk,
generated using another Ak, could have a lower cost. Thus, we
generate the second-best assignment A2 using the Hungarian
algorithm, which has the lowest cost except for A1. A2 is not
the best assignment; therefore, the cost C1 ≥ C2 ≥ Ck, k > 2.
It is apparent that if C2 > C ′1, P1 is the global optimal solution
because the path C ′2 generated from P2 has a larger cost than
C2 and all the remaining assignments also have larger costs.
In other circumstances, if C2 ≤ C ′1, we further generate the
planning path P2 and the third-best optimal assignment A3,
and the iteration continues. The determination of the optimality
is colored in purple in Fig. 5.

Theorem 1: The planning path set Pmin generated in Fig. 5b
is the global optimal solution, i.e., the cost C ′min is the lowest
cost of the collision-free path set.

Proof: Without loss of generality, we set C ′i =
min(C ′1, C

′
2, C

′
3, . . . , C

′
k), implying that the generated plan-

ning path set Pmin = Pi. If there exists a planning path
set Pj with a lower cost C ′j ≤ C ′i, it must be generated
from the assignment Aj and C ′j ≥ Cj . Pj is not explored
in the previous path plannings; therefore, it must be generated
from an assignment that has not been explored, i.e., j > k.
Thus, we have Cj ≥ Ck. From the algorithm, we have
Ck > C ′min = C ′i; therefore, we summarize the inequality
equations as C ′j ≥ Cj ≥ Ck ≥ C ′i, which contradicts the
assumption C ′j ≤ C ′i. Therefore, C ′i is the lowest cost and
Pmin is the global optimal solution.

F. Vehicle Control

After obtaining the planning path set Pmin, generated from
the iterative solution method, each CAV has a collision-free
path to its target position. CAV control is not the focus in this
study; therefore, we simplify the CAV control process to ease
the calculation burden. In Assumption 2, we have assumed
that the CAV has perfect steering performance, which exempts
us from a lateral controller design. Therefore, given adequate
time, CAVs are able to execute the planned movement in one
step. Hence, a second-order vehicle model is used, and the
deviation from the current position of CAV i to its target
position at time t is defined as follows:

δ
(i,t)
p = xi,t − xrit,
δ
(i,t)
v = vi,t(t)− vp,

(7)

where (xi,t, yi,t), and vi,t(t) represent the position and veloc-
ity, respectively, of CAV i at time t, and vp is the designed



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 7

7

4

56

3
2

Car Following Zone

Lane Changing Zone

1

Turn Left

Go Straight

Turn Right

Crossing Conflict

Diverging Conflict

Converging Conflict

Fig. 6: Traffic scenario in the car-following zone. Potential
conflict points are denoted by red circles, orange squares, and
green triangles. CAVs are colored in red, black, or blue based
on their different destinations.

platoon velocity. A linear feedback controller is designed as
follows:

ui = −kpδ(i,j)p − kvδ(i,j)v . (8)

The design of the RCS coordinates and the controller also
considers the CAV control in the car-following zone, which is
described in Section IV-E. We obtain the lane change timing
for each CAV from the planning path set Pmin; however, the
lane changing behavior is accomplished by the lane changing
model in the traffic simulator SUMO [47]. Other key control
parameters are listed in Table II.

IV. CAV SCHEDULING AT UNSIGNALIZED INTERSECTIONS

As shown in Fig. 2, the CAVs run in their target lanes after
driving through the lane changing zone. The trajectories of
the CAVs intersect in the middle of the intersection; thus, in
the car-following zone, the CAVs have to schedule collision-
free arrival plans. In [24], a method using a virtual platoon
was proposed, which projects the CAVs from different lanes
onto a virtual lane. Thus, CAVs from different lanes can drive
through the intersection as if they were in the same lane.
Therefore, the central coordinator only needs to schedule the
CAVs and transmit their target positions in the virtual platoon.
Subsequently, CAVs can be controlled in terms of platooning
behavior.

A. Vehicle Model

The incoming CAVs are indexed from 1 to N according to
their arrival sequence in the car-following zone, as shown in

Fig. 6. For each vehicle i (i ≤ N, i ∈ N+), the second-order
dynamic model is given by{

ẋi(t) = vi(t),
v̇i(t) = ui(t).

(9)

ui(t) represents the input of vehicle i at time t. There also
exist velocity and acceleration constraints on the vehicle.

0 ≤ vi ≤ vmax,

umin ≤ ui ≤ umax.
(10)

B. Conflict Analysis

The CAVs from different lanes form multiple conflict
points. Despite the complicated conflict scenarios, they can
be classified into the following conflict modes. Without loss
of generality, several CAVs are selected in Fig. 6 to illustrate
the conflict relationship. We define four conflict types in this
study.

1) Crossing Conflict: CAVs from different lanes have the
potential to collide while crossing the conflict points,
indicated by the 24 red circles. For example, CAV 2
and CAV 3 have a crossing conflict point.

2) Diverging Conflict: The CAVs change lanes in the lane
changing zone, and lane changing and passing are not
permitted in the car-following zone. Thus, vehicles on
the same lane cannot pass the intersection simulta-
neously, as indicated by the 14 orange squares. For
example, CAV 5 and CAV 6 have a diverging conflict
point.

3) Converging Conflict: Vehicles from different lanes can-
not drive into the same lane simultaneously, as shown
by the six green arrows. For example, CAV 1 and CAV
4 have a converging conflict point.

4) Reachability Conflict: CAVs cannot pass the intersection
simultaneously because of the acceleration and velocity
constraints, regardless of whether or not they have the
abovementioned conflicts. CAV 1 and CAV 7 have a
reachability conflict.

The first three conflict types are route conflicts [48], where
CAVs have intersections in their trajectories along their paths.
The fourth conflict type is caused by the velocity and ac-
celeration constraints on the CAVs. For instance, in Fig. 6,
CAV 7 arrives at the car-following zone when CAV 1 nearly
reaches the stop line with the designed virtual platoon velocity.
In this case, CAV 7 cannot catch up with CAV 1 at the
stop line, regardless of whether or not they have any conflict
relationships. This is because of the constraints on the vehicle
velocity and acceleration.

Expanding equation (9) and (10), we obtain the evaluation
condition as follows:

Lprec

vp
<
LCFZ

vmax
+

vmax

2umax
, (11)

where Lprec and LCFZ are the distances from the stop line
to the preceding CAV and to the beginning of the car-
following zone, respectively, and vp is the designed virtual
platoon velocity. Namely, the CAVs that are very close to
the intersection should not be considered in the scheduling
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Fig. 7: Fig. 7a is the conflict directed graph (CDG). The red
unidirectional edges represent the diverging and reachability
conflicts, whereas the black bidirectional edges represent the
crossing and converging conflicts. Fig 7b is the coexisting
undirected graph (CUG), which is the complement graph of
the CDG and describes the coexistence relationship of the
vehicles.

of new incoming CAVs. Notably, most of the existing studies
assumed that the CAVs can reach the stop line under all
circumstances, i.e., the reachability conflict was ignored.

We define different conflict sets to describe the conflict
relationship of the CAVs. For each CAV i (i ≤ N, i ∈ N+),
the crossing, diverging, converging, and reachability sets are
defined as Ci, Di, Vi, and Ri, respectively. Notably, because
the conflict sets are determined when the CAV reaches the car-
following zone, the CAV indexes in the conflict sets are smaller
than those of the CAVs at the border of the car-following
zone, i.e., the elements in the conflict sets satisfy (12).

i < j, if i ∈ Cj ∪ Dj ∪ Vj ∪Rj . (12)

C. Description of Graph-based Conflicts

Based on the conflict set analysis, we further define a
conflict directed graph (CDG) GN+1 to represent the conflict
relationship between the CAVs.

Definition 1 (Conflict Directed Graph): The CDG is denoted
as GN = (VN , EN ). If there are N CAVs in the car-following
zone, we have the node set VN = {1, 2, . . . , N}. The unidi-
rectional edge set is defined as EuN = {(i, j) | i ∈ Dj ∪ Rj},
and the bidirectional edge set is defined as EbN = {(i, j) |
i ∈ Cj ∪ Vj}. The edge set is the union of these two sets as
EN = EuN ∪ EbN .

The CDG of the scenario in Fig. 6 is depicted in Fig. 7a.
The nodes in the CDG represent the CAVs in the car-following
zone. The red unidirectional edges represent the diverging
and reachability conflicts. The existence of a unidirectional
edge (i, j) implies that CAV j is not permitted to pass CAV
i or CAV j is unable to catch up to CAV i because it
satisfies (11). Thus, CAV j cannot reach the intersection earlier
than CAV i. The black bidirectional edges denote the crossing
and converging conflicts, implying that the arrival sequences
of CAVs i and j can be interchanged.

It is straightforward that the CDG describes all the conflict
relationships of the CAVs. From a different perspective, an-

other method to describe the conflict relationships of the CAV
is to describe their coexistence relationships.

Definition 2 (Coexisting Undirected Graph): The coexisting
undirected graph (CUG) is defined as the complement graph
of the CDG GN . Thus, GN =

(
VN , EN

)
, where VN = VN ,

EN = {(i, j) | i, j ∈ VN , i 6= j, and (i, j) /∈ EN}.
In this scenario, the CDG is depicted in Fig. 7a and the

CUG in Fig. 7b. The CDG edge EN implies that two CAVs
have conflicts and the CUG is the complement graph of the
CDG; therefore, the CUG edge VN implies that the two CAVs
are conflict-free, i.e., they can pass through the intersection
simultaneously.

D. Minimum Clique Cover Scheduling

Generally, all the scheduling methods at unsignalized in-
tersections are designed to find a high-efficiency collision-
free passing order of the CAVs, i.e., to schedule the arrival
sequence based on their conflict relationships described in
Section IV-C. In this study, we focus on scheduling the CAVs
based on the CUG defined in Definition 2. The CUG describes
the coexistence of the CAVs, which may pass the intersection
simultaneously. In graph theory, a clique is suitable for de-
scribing the coexistence relationship of CAVs. The definition
of the clique is shown in Definition 3.

Definition 3 (Clique[49]): A clique C in an undirected graph
G = (V,E) is a subset of the nodes, C ⊆ V, such that
every two distinct nodes are adjacent. This is equivalent to the
condition that the subgraph of G induced by C is a complete
graph.

Considering the cliques in the CUG GN , the CAVs in
one clique are conflict-free, i.e., they can pass through the
intersection simultaneously. Therefore, the objective is to find
the minimum number of vehicle groups in the CUG, i.e., the
minimum number of cliques covering all the nodes in the CUG
GN . Therefore, we define the MCC problem as follows.

Definition 4 (Minimum Clique Cover (MCC) [50]): A clique
cover of a graph G = (V,E) is a partition of V into k disjoint
subsets V1, V2, . . . , Vk such that for 1 ≤ i ≤ k, the subgraph
induced by Vi is a clique, i.e., a complete graph. The MCC
number of G is the minimum number of subsets in a clique
cover of G, denoted as θ(G).

The MCC number θ(GN ) of the CUG represents the mini-
mum number of cliques covering it. The cliques in the CUG
represent the CAVs that can pass through the intersection
simultaneously; therefore, these CAVs in the same clique can
be scheduled to simultaneously drive through the intersection.
For example, considering the CUG in Fig. 7b, the MCC
number θ(GN ) = 4, and the corresponding cliques are listed in
Table I. We conclude that for an arbitrary intersection scenario,
the coexistence relationship of the incoming CAVs is depicted
in the CUG GN . Thus, the MCC number θ(GN ) represents
the possible minimum passing order solution.

If we consider solution 1 from Table I and place CAVs of
the same clique into the same layer, a spanning tree G′N+1 is
generated as shown in Fig 8. Node 0 is the virtual leading
vehicle and the CAVs in the same layer are arranged to
simultaneously pass the intersection. Notably, θ(GN ) = 4
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Solutions
Subsets

V1 V2 V3 V4

1 {1, 3, 5} {4, 7} {2} {6}
2 {1, 3, 6} {4, 7} {2} {5}
3 {1, 2} {3, 5} {4, 7} {6}
4 {1, 2} {3, 6} {4, 7} {5}
5 {1, 5} {3, 6} {4, 7} {2}
6 {1, 6} {3, 5} {4, 7} {2}

TABLE I: Possible MCC solutions of Fig. 7b. Note that
θ(GN ) = 4 in this graph.

0

1

5

3 4

627

Fig. 8: Spanning tree generated by the MCC method. The
CAVs in the same layer are collision-free and can pass the
intersection simultaneously. Therefore, the overall depth of the
spanning tree is 4, implying that all the CAVs can pass the
intersection in the platoon passing time of 4 vehicles.

in the CUG in Fig. 7b, implying that the spanning trees
generated by the MCC solutions have a minimum layer of
4. This also indicates that the theoretical evacuation times
of these solutions are the same, i.e., the theoretical values of
tevac are the same. Thus, the evaluation index of tevac in (22)
corresponds to θ(GN ), which is the global optimal passing
order considering the evacuation time. In addition, we further
consider the average travel time delay (ATTD) among these
solutions as a secondary index. The definition of tATTD in (23)
can be rewritten in graphical terms as

min

k∑
i=1

di|Vi|, i ∈ N+,

subject to :

k∑
i=1

Vi = N,

(13)

where Vi represents the nodes in CUG GN and di is the
spanning tree depth of the each CAV node Vi.

In this scenario, it is evident that the subsets Vi should be
arranged in the descending order to decrease the average di of
N CAVs in (13). For example, in Table I, we prefer to choose
solution 1, and the corresponding optimized spanning tree is
scheduled as {1, 3, 5} → {4, 7} → {2} → {6}, as shown in
Fig. 8.

The CUG GN only contains the coexistence information of
the CAVs, whereas the passing order of the CAVs in the same
lane should be strictly according to their relative positions. If
the MCC method generates solutions that cannot be directly
executed, e.g., solution 2 in Table I, the spanning tree is
generated as {1, 3, 6} → {4, 7} → {2} → {5}. However,
this solution is not feasible because CAV 5 is ahead of CAV

Algorithm 2 Minimum Clique Cover Method

Input: Coexisting Undirected Graph GN =
(
VN , EN

)
Output: Spanning Tree G′N+1 =

(
VN+1, E ′N+1

)
1: Calculate the complement graph GN = GN
2: Find the breadth-first search sequence K =

(v1, v2, . . . , vN ) of the nodes in GN
3: for each node vi of GN in the sequence K do
4: assign node vi the smallest possible clique index
5: end for
6: Rank V1, V2, . . . , Vk in the descending order and obtain

the spanning G′N+1

7: Exchange the conflicting CAVs of G′N+1 in the same lane
if necessary

8: return G′N+1

6. We have proved that this can be solved by exchanging the
unfeasible sequence [23], as shown in Lemma 1.

Lemma 1: If the MCC method leads to an unfeasible
solution, where CAVs i and j have conflicting trajectories,
exchanging the positions of i and j solves the conflict. The
new solution is also an MCC solution.

The MCC problem is proved to be an NP-hard problem,
which is difficult to solve during real deployment, especially
when the CAV number N is large. Therefore, we apply a
practical approach to solve the problem heuristically, as shown
in lines 1 to 5 of Algorithm 2. The MCC problem of G is
proved to be reduced to the graph coloring problem of G [51],
and there are numerous heuristic methods to solve the graph
coloring problem. As mentioned earlier, we intend to find the
solutions with larger cliques. Thus, we first generate a node
sequence K = (v1, v2, . . . , vN ) using a breadth-first search
(BFS). Then, we greedily assign node vi the smallest possible
color, i.e., the clique index according to the node sequence
K, forming the subset cliques V1, . . . , Vk. Line 6 depicts the
spanning process, which arranges the cliques into a spanning
tree and has a constant calculation time.

E. Vehicle Control
A virtual platoon is constructed from the spanning tree

in Fig. 8; hence, the controller of CAV i is related to the
communication topology design. Owing to the page limit, we
only present the basic controller design here. Notions aij ,
qij , and lij are related to the designed predecessor–leader
following (PLF) topology. Interested readers may refer to [23]
for further details.

First, a union set Ii is defined to describe the information
exchange of CAV i as follows:

Ii = {j | aij = 1} ∪ {0 | qii = 1} . (14)

The distance and velocity errors are defined as

δ
(i,j)
p = pj(t)− pi(t)− df (dj − di)
δ
(i,j)
v = vi(t)− vj(t)

, j ∈ Ii, (15)

where df is the car-following distance, δ(i,j)p is the car-
following distance error of CAV i, and δ

(i,j)
v is the car-

following velocity error considering all the CAVs in Ii.
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Types Parameter Symbol Value

Simulation
Simulation step - 0.1s

Lane changing zone length LLCZ 500m

Car-following zone length LCFZ 500m

RCS
Group size - 3

One-step time - 4s

Lane changing time - 3s

Controller

Feedback gain of distance error kp 0.1
Feedback gain of velocity error ki 0.3

Steady platoon velocity vp 10m/s

Steady car-following distance df 30m

Constraints

Maximum acceleration amax 5m/s2

Minimum acceleration amin −6m/s2

Maximum velocity vmax 15m/s

Minimum velocity vmin 0m/s

TABLE II: Parameters

A linear feedback controller is designed as follows:

ui = −
∑
j∈Ii

kpδ
(i,j)
p −

∑
j∈Ii

kvδ
(i,j)
v , (16)

where kp and kv are the feedback gains of the distance and
velocity errors of CAV i, respectively. The same gains are set
for all the CAVs because we consider a homogeneous scenario.

As mentioned earlier, we consider second-order vehicle
dynamics as shown in (9). We define the car-following errors
as the new vehicle state.

x̄i =

[
x̄i,1
x̄i,2

]
=

[
p0 − pi −Ddes (d0 − di)

vi − vp

]
, i ∈ N+.

(17)
The vehicle input remains the same, i.e., ūi = ui.

Therefore, the car-following vehicle dynamic model is

˙̄xi = Ax̄i + Būi, i ∈ N+. (18)

The linear feedback controller is simplified to

ūi = −kp
∑
j

(lij + qij) x̄j,1 − kv
∑
j

(lij + qij) x̄j,2, j ∈ Ii.

(19)
Defining k = [kp, ki]

T , we have

ūi = −
∑
j

(lij + qij)k
T x̄i, i ∈ N+. (20)

V. SIMULATIONS

A. Simulation Environment

The traffic simulation was conducted in SUMO, which is
widely used in traffic research[52]. The simulation was run on
an Intel Core i7-7700 @3.6 GHz processor. The intersection
scenario and lane direction settings are the same as shown in
Fig. 1, and the overall length of the lane changing and car-
following zones is 1000m. The CAV arrival is assumed to be
a Poisson distributed flow, given by

P (X = k) =
λk

k!
e−λ, k = 0, 1, · · · , (21)

where X represents the arrival of the vehicle at the control
zone. λ is the expected value as well as the variance of

Ring 1

Ring 2

East-West

t1 t2 t3 t4

t1 t2 t3 t4

North-South

Fig. 9: Dual ring control in constant traffic SPAT. The green
line indicates that the corresponding traffic light is set to green,
and the yellow square denotes the clearance time.

the Poisson distribution. Other key simulation parameters are
listed in Table II.

B. Evaluation Indexes

As mentioned earlier, we aim to propose a cooperation
method to improve both traffic safety and efficiency, i.e., obtain
the collision-free optimal CAV passing order. We assign tini
as the time step when vehicle i enters the lane changing zone
and touti as the time step when it arrives at the intersection.
Several evaluation indexes have been proposed to measure
the scheduling performance. In this study, we chose the
evacuation time as the primary optimization target, as shown
in Definition 5. The evacuation time is related to the spanning
tree depth, which is described in Section IV.

Definition 5 (Evacuation Time): The evacuation time of N
CAVs is defined as the time when the last CAV reaches the
stop line; it is expressed as

tevc = max touti , i ≤ N, i ∈ N+. (22)

Considering N incoming CAVs, tevc represents the arrival
time of the last CAV at the stop line. For N CAVs, smaller
evacuation times indicate that these CAVs pass through the
intersection in a shorter time. Thus, it demonstrates the overall
traffic efficiency performance, i.e., the overall benefits to the
CAVs.

In addition, the vehicle travels through the control zone in
touti − tini time, whereas it travels through it under the free
driving condition in Lctrl/vmax time. Accordingly, the ATTD
is selected to measure the average traffic efficiency of the
vehicles, as described in Definition 6.

Definition 6 (Average Travel Time Delay): The ATTD is
designed to evaluate the average traffic efficiency of N CAVs.
It is expressed as

tATTD =
1

N

N∑
i=1

(
touti − tini −

Lctrl

vmax

)
, (23)

where Lctrl is the length of the control zone and tATTD

represents the average travel delay of the CAVs. The travel
time of every CAV is considered in tATTD; therefore, it
denotes the individual benefits for N CAVs, which is the
secondary optimization target of traffic efficiency.
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(b) ATTD results comparison.

Fig. 10: Comparison of the traffic evacuation times and ATTDs of the algorithms for different numbers of input vehicles.

As mentioned earlier, the control zone is divided into the
lane changing and car-following zones. Although we primarily
focus on the feasible path planning solution in the lane
changing zone as described in Section III, here, we continue to
measure the algorithm performance over the complete length
of the control zone.

C. Benchmark algorithm

In [23], we have proved the optimality of the MCC al-
gorithm in scheduling CAVs. This study further considers
lane changing behavior; therefore, we compare our algorithm
with the constant traffic SPAT method. The lanes leading to
the intersection are divided into the lane changing and car-
following zones, as shown in Fig. 2; therefore, two algorithms
are applied to each zone.

1) Lane changing zone: The formation control method is
used as described in Section III to obtain a parallel struc-

ture formation; therefore, the proposed lane changing zone
algorithm is named as the formation-control lane changing
(FCLC). As mentioned earlier, SUMO provides a lane chang-
ing model [47] to simulate the driver lane changing behavior.
We use the default lane changing model as the benchmark
algorithm, where the lane change timing is determined by
the lane changing model rather than the formation control
methods. Namely, the default lane changing model is called
Sumo lane changing (SumoLC).

2) Car-following zone: As described in Section IV, an
MCC formulation is used to solve the scheduling problem;
therefore, the MCC is referred to as the proposed algorithm.
Constant traffic light (ConstantTL) is set as a dual ring
control [3], as shown in Fig 9. In t1, the traffic light is set
to green for vehicles turning left from either the east or the
west. The yellow square represents the clearance time when
the lights turn yellow. t2 represents the vehicles going straight
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Fig. 11: Comparison of the traffic evacuation times and ATTDs of algorithms for different traffic volumes.

from either the east or the west, and so on. A time of 35 s is
set for each phase, implying that

t1 = t2 = t3 = t4 = 35 s, (24)

with 5 s as the clearance time.
Theoretically, the combinations of two lane changing al-

gorithms and two scheduling algorithms lead to four al-
gorithms. However, SumoLC algorithm has its limitation
that deadlock problem may occur if approaching lane is
not long enough [47]. In our simulation, when vehicle
number exceeds 40 or traffic volume reaches 1500 veh/h,
lane changing failure occurs in one third of the results in
SumoLC+MCC method. In comparison, deadlock does not
happen in SumoLC+ConstantTL method because the control
zone Lctrl is long enough. Moreover, FCLC guarantees the
collision-free paths set is feasible. Similar results have been
observed in [32], [38]. If lane changing fails, CAVs cannot

pass the intersection since there exist directional limitations
on each lane. Therefore, we excluded this method. The com-
parison of the other three algorithms still provides convincing
proof on the effectiveness of the proposed algorithm.

D. Simulation Results for Different Numbers of Input Vehicles

The first simulation was conducted for different numbers of
vehicles. The scheduling problem is highly related to the dis-
tribution of incoming vehicles; therefore, ten iterations of the
simulation were conducted for each number of vehicles and for
each algorithm. Notably, identical vehicle distributions were
applied for the algorithms, i.e., ten sets of vehicle distributions
were randomly generated for each number of vehicles and used
as the same input for the simulated algorithms. Typically, the
number of CAVs in one intersection is less than 100; thus, we
set the number of vehicles to range from 20 to 100. The traffic
volume was set as 2000 veh/lane.
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The simulation result is shown in Fig. 10. The bar plot
shows the average value of the ten sets of simulations. The
standard deviations of each set of results are also provided.
Generally, both the evacuation time and the ATTD increase
with the number of vehicles because of vehicle queuing. It is
apparent that the MCC in the lane changing zone significantly
improves the traffic efficiency. The evacuation time is the
primary optimization target in the MCC scheduling; therefore,
the MCC algorithm reduces the evacuation time by 15.8% to
67.9% for 20 to 100 vehicles.

Regarding the ATTD perspective, it is evident that the
FCLC negatively influences the ATTD. This is because when
SumoLC is applied, CAVs are set to the maximum velocity
vmax = 15 m/s if there are no other vehicles around. However,
the FCLC aims to develop a steady parallel formation with a
platoon velocity vp = 10 m/s. Therefore, the total evacuation
time is unaffected when vehicle number is less than 80
because the intersection is not oversaturated; however, the
ATTD is higher because of the delay in the lane changing
zone. On the other side, the formation control in FCLC helps
to generate a collision-free and feasible path planning set to
MCC. Moreover, the steady parallel formation is convenient
for MCC to adjust the car following distance to desired virtual
platoon positions. MCC algorithm reduces 2.2% to 32.6% of
the ATTD. Moreover, as the vehicle number increases, it has
less improvement on ATTD since ATTD is not the priority
concern in optimization.

E. Simulation Results for Different Traffic Volumes

The second simulation was conducted for different traffic
volumes. Similar to the previous simulation, ten randomly
generated repetitions of the simulation were conducted for
each traffic volume. The number of vehicles was set to 50,
and the traffic volume varied from 500 veh/h to 2500 veh/h.

Generally, as the number of vehicles is constant, the evac-
uation time is decreased as the traffic volume increases. The
MCC exhibits noticeable improvement in the traffic efficiency,
which reduces the evacuation time by 18.8% to 33.2% and
ATTD by 1.9% to 14.5%. The comparison between the
SumoLC and FCLC results agrees with the analysis of the
simulation results for different numbers of vehicles. FCLC
delays the travel time in lane changing zone because of
velocity settings. FCLC+MCC provides a feasible solution
with noticeable improvement in the traffic efficiency.

VI. CONCLUSIONS

In this paper, a two-stage cooperation framework is pro-
posed to improve vehicle safety and traffic efficiency at
intersections where lane changing is permitted. In the first
stage, we design an iterative method to solve the multi-vehicle
target assignment and path planning problem. In contrast to
existing single-vehicle lane changing algorithms, the deadlock
problem is solved in our method and a feasible collision-
free path planning is ensured. In the second stage, a graph-
based method is proposed to schedule the CAV arrival time.
A heuristic algorithm is established to solve the problem with

a low computational burden. Traffic simulations verified the
effectiveness of the proposed algorithm.

Future research directions include studying the relationship
of the two decoupled stages further. In this study, the optimal
arrival plan is calculated when the CAV arrives at the car-
following zone. However, it can also be calculated when the
CAV enters the lane changing zone. Thus, in the lane changing
zone, a CAV can drive to its target position in virtual platoon.
Another interesting topic involves considering HDVs in this
scenario because lane changing would be permitted. There has
been little research on intersections with mixed traffic where
lane changing is permitted.
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