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Abstract

We consider a cell-free massive multiple-input multiple-output (MIMO) system with multi-antenna access points

and user equipments (UEs) over Weichselberger Rician fading channels with random phase-shifts. More specifically,

we investigate the uplink spectral efficiency (SE) for two pragmatic processing schemes: 1) the fully centralized

processing scheme with global minimum mean square error (MMSE) or maximum ratio (MR) combining; 2)

the large-scale fading decoding (LSFD) scheme with local MMSE or MR combining. To improve the system

SE performance, we propose a practical uplink precoding scheme based on only the eigenbasis of the UE-side

correlation matrices. Moreover, we derive novel closed-form SE expressions for characterizing the LSFD scheme

with the MR combining. Numerical results validate the accuracy of our derived expressions and show that the

proposed precoding scheme can significantly improve the SE performance compared with the scenario without any

precoding scheme.

Index Terms

Cell-free massive MIMO, Rician fading, spectral efficiency, uplink precoding.

I. INTRODUCTION

As one of the most promising technologies for enabling future communications, cell-free massive

multiple-input multiple-output (CF mMIMO) has attracted extensive attention recently [1]–[4]. In CF
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mMIMO systems, a large number of access points (APs), all connected to a central processing unit

(CPU), are geographically distributed and jointly serve the user equipments (UEs) via the same time-

frequency resources [2]. In fact, since the CF mMIMO systems can overcome the inter-cell interference

in cellular networks and obtain high macro-diversity gain, it can greatly improve the spectral efficiency,

energy efficiency, and service quality of UEs [5].

The vast majority of existing papers revealed the performance of CF mMIMO with single-antenna

UEs, e.g. [6]–[8]. However, UEs in the fifth-generation (5G) communication networks have already been

equipped with multiple antennas to exploit the spatial degrees of freedom for improving the system perfor-

mance. The authors of [9] analyzed the downlink SE performance of CF mMIMO systems with/without

the downlink pilot transmission. The authors of [10] investigated a CF mMIMO system with a user-

centric approach for multi-antenna UEs. Besides, the authors of [11] analyzed the impact of the number

of antennas per UE on the performance of CF mMIMO. Also, the authors of [12] investigated a CF

mMIMO system with multi-antenna UEs and low-resolution ADCs. However, these works are based on

the overly idealistic and simple assumption of uncorrelated Rayleigh fading channels with limited practical

applications. As a remedy, a more realistic channel model for multi-antenna UEs was proposed in [13],

known as the Weichselberger model, which can capture the joint-correlation dynamics between the AP

and UE-side. Inspired by [13], the UL performance of CF mMIMO systems over the Weichselberger

Rayleigh model was first investigated in [14].

Unfortunately, many of the existing works, e.g. [6], [7], [14], ignored the existence of the line-of-sight

(LoS) path, which is the dominant channel component of practical CF mMIMO systems. A more practical

spatially correlated Rician fading channel was investigated in [8] with both single-antenna APs and UEs.

This considered channel is composed of a semi-deterministic LoS path component with random phase-

shifts and a stochastic non-line-of-sight (NLoS) path component. Moreover, based on [8], the authors of

[15] analyzed the UL performance of CF mMIMO with multi-antenna APs focusing on single-antenna

UEs. Yet, the obtained results from [15] are not applicable to the case of multi-antenna UEs commonly

adopted nowadays due to the setting of single-antenna UEs.

Motivated by the aforementioned observations, we investigate a CF mMIMO system with multi-

antenna APs and UEs over Weichselberger Rician fading channels with random phase-shifts. The major

contributions of this paper are listed as follows.

• For the first time, we investigate the CF mMIMO systems over Weichselberger Rician fading channels
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Fig. 1. A cell-free massive MIMO network.

with random phase-shifts in the LoS component for two practical processing schemes: 1) the fully

centralized processing scheme with global minimum mean square error (MMSE) or maximum ratio

(MR) combining; 2) the large-scale fading decoding (LSFD) scheme with local MMSE or MR

combining. Moreover, novel and exact closed-form SE expressions are computed for the LSFD scheme

with the MR combining.

• To improve the system SE performance, we propose a heuristic uplink precoding scheme based on

only the eigenbasis of the UE-side correlation matrices. The proposed uplink precoding scheme is

shown to improve the SE performance effectively.

Notation: E{·} represents the expectation and ‖·‖2F denotes the squared Frobenius norm. The Kronecker

product and the Hadamard product are denoted by ⊗ and ⊙. vec(X) is the column vector obtained

by stacking the columns of a matrix X. NC(0,R) denotes the circularly symmetric complex Gaussian

distribution with zero mean and the correlation matrix R.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider a CF mMIMO system, where M APs and K UEs are randomly

located within a large area with L and N being the number of antennas per AP and UE, respectively.

We investigate the standard block fading model, where the channel responses remain constant in each

coherence time-frequency block [16]. Specifically, each block has τc samples, where τp and τu = τc − τp

samples are reserved for UL training and data transmission, respectively. Let Hmk ∈ CL×N denote the

complex-valued channel between the k-th UE and the m-th AP. We assume that Hmk are independent for

different AP-UE pairs and Hmk in different blocks are independent and identically distributed (i.i.d.).
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A. Weichselberger Rician Fading Channel

We consider the jointly-correlated Rician fading channel that is composed of a semi-deterministic

LoS path component with a random phase-shift and a stochastic NLoS path component. Based on the

Weichselberger model [13], [14], Hmk is modeled as

Hmk = H̄mke
jϕmk +Umk,r

(

W̃mk ⊙Hmk,iid

)

UH
mk,t

︸ ︷︷ ︸

H̃mk

, (1)

where H̄mk =[h̄mk1, · · · , h̄mkN ] is the deterministic LoS component with h̄mkn ∈ C
L being the channel

between the n-th antenna of UE k and AP m. ϕmk ∼ U [−π, π] is the uniformly distributed phase-

shift of the LoS component. Note that we assume that the phase-shifts from all the antennas of UE

k to AP m are identical, and ϕmk in different coherence blocks are i.i.d. [8], [15]. H̃mk denotes the

stochastic NLoS component and Hmk,iid ∈ CL×N is composed of i.i.d. NC(0, 1) entries. The unitary

matrices Umk,r ∈ CL×L and Umk,t ∈ CN×N are the eigenbasis of the one-sided correlation matrices

Rmk,r
∆
=E{H̃mkH̃

H
mk} and Rmk,t

∆
=E{H̃T

mkH̃
∗
mk}, respectively [13]. Moreover, the eigenmode coupling

matrix is defined as Wmk
∆
=W̃mk ⊙ W̃mk, capturing the spatial arrangement of scattering objects, whose

the (i, j)-th element [Wmk]ij specifies the average amount of power coupling from the i-th column of

Umk,r to the j-th column of Umk,t.

Let hmk=vec(Hmk)∈CLN and the full correlation matrix Rmk
∆
=E{vec(H̃mk)vec(H̃mk)

H}∈CLN×LN

is given by Rmk=(U∗
mk,t⊗Umk,r)diag(vec(Wmk))(U

∗
mk,t⊗Umk,r)

H . Moreover, we can rewrite Rmk into

the concatenation of N2 blocks with the (i, j)-th submatrix being R
ij
mk = E{hmkih

H
mkj}− h̄mkih̄

H
mkj with

hmki and hmkj being the i-th column and j-th column of Hmk, respectively.

Remark 1. The motivations for adopting the Weichselberger Rician channel model in this paper are: 1)

The Weichselberger Rician fading channel model with random phase-shifts in the LoS component is more

practical than the commonly investigated Rayleigh fading channel model; 2) The Weichselberger model

is realistic and suitable for practical scenarios with multi-antenna UEs. In particular, the Weichselberger

model can capture the joint-correlation dynamics between the AP and UE-side [14]. More importantly,

the eigenmode coupling matrix in the model can characterize the spatial arrangement of the scattering

objects between each AP-UE pair in practical environment. In other words, the Weichselberger model

embraces most channels of great interest. Moreover, the measurement campaigns in [13] validated that

the Weichselberger model shows significantly less modeling error than other popular stochastic channel
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models.

B. Uplink Transmission

1) Channel Estimation: We adopt mutually orthogonal pilot matrices for channel estimation and each

pilot matrix is composed of N mutually orthogonal pilot sequences [9]. Let Pk ∈ CN×τp denote the pilot

matrix of UE k such that PkP
H
k′ = τpIN , if k′ = k and 0 otherwise. We investigate a practical case

where more than one UE exploits the same pilot matrix due to the limited system resources [6]. Let Pk

denote the index subset of UEs that adopt the same pilot matrix as UE k including itself. All UEs send

their pilot signals and the received signal Yp
m ∈ CL×τp at AP m is

Yp
m =

∑K

k=1
HmkFkPk +Nm, (2)

where Fk ∈ CN×N is the uplink precoding matrix of UE k that satisfies E{‖Fk‖2F} ≤ pk with pk being

the maximum transmit power of UE k and Nm ∈ C
L×τp is the noise matrix with NC(0, σ

2) elements.

To obtain the estimate of hmk, AP m correlates Yp
m with PH

k as

Y
p
mk = Yp

mP
H
k =

∑

l∈Pk

τpHmlFl +NmP
H
k . (3)

We assume that ϕmk is available at each AP and derive the phase-aware MMSE estimate of hmk as

ĥmk=vec(Ĥmk)= h̄mke
jϕmk+RmkF̃kΨ

−1
mkvec(Y

p
mk), (4)

where h̄mk = vec(H̄mk), F̃k = FT
k ⊗ IL, and Ψmk =

∑

l∈Pk
τpF̃lRmlF̃

H
l + σ2ILN , respectively. The

estimate ĥmk and estimation error emk=hmk − ĥmk are independent random vectors with

E{ĥmk

∣
∣ejϕmk } = h̄mke

jϕmk ,Cov{ĥmk

∣
∣ejϕmk } = Φmk,

E{emk} = 0, Cov{emk} = Cmk,

where Φmk = τpRmkF̃kΨ
−1
mkF̃

H
k Rmk and Cmk = Rmk −Φmk.

2) Data Transmission: During the phase of data transmission, all antennas of all the UEs transmit their

data symbols to all APs. The received signal of AP m is

ym =
∑K

k=1
Hmksk + nm, (5)
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where sk = Fkxk ∈ CN is the transmitted signal of UE k with xk ∼ NC(0, IN) being the data symbol

vector of UE k and nm ∼ NC(0, σ
2IL) is the additive noise vector. We assume that Fk is designed based

on only the channel statistics so is available at all APs and the CPU. Later, we will propose an effective

precoding method to improve the system performance.

III. SPECTRAL EFFICIENCY ANALYSIS

Depending on the required performance and complexity tradeoff in principle, four signal processing

schemes can be implemented in CF mMIMO [6]. In particular, the “fully centralized processing” and the

“LSFD processing” are regarded as competitive schemes for utilizing the potential of CF mMIMO. In this

section, we investigate these two processing schemes and analyze their corresponding SE performance.

A. Fully Centralized Processing

Under the setting of the “fully centralized processing”, APs forward all the received pilot signals and

data signals to the CPU. Indeed, all processing is implemented at the CPU. The collective channel of UE k

is hk=[hT
1k, · · · ,hT

Mk]
T ∈ CMLN with the mean h̄k=[h̄T

1ke
jϕ1k , · · · , h̄T

Mke
jϕMk ]T and the full convariance

matrix Rk=diag(R1k, · · · ,RMk). For the fully centralized processing, we assume that ϕmk is available

at the CPU so channel estimates can be derived by “phase-aware” MMSE estimators at the CPU. For

UE k, the collective channel estimate can be constructed as ĥk=[ĥT
1k, · · · , ĥT

Mk]
T with E{ĥk|ejϕk}= h̄k,

Cov{ĥk|ejϕk}=τpRkF̄kΨ
−1
k F̄H

k Rk, where Ψ−1
k =diag(Ψ−1

1k , · · · ,Ψ−1
Mk) and F̄k=diag( F̃k, · · · , F̃k

︸ ︷︷ ︸
M

).

In addition, the received signal available at the CPU is













y1

...

yM













︸ ︷︷ ︸
=y

=
K∑

k=1













H1k

...

HMk













︸ ︷︷ ︸
=Hk

Fkxk +













n1

...

nM













︸ ︷︷ ︸
=n

. (6)

Besides, the received signal can be expressed as y =
∑K

k=1HkFkxk+n. Furthermore, an arbitrary receive

combining matrix Vk ∈ CLM×N can be designed by the CPU based on the collective channel estimates

to decode xk as

x̂k = VH
k HkFkxk +

K∑

l 6=k

VH
k HlFlxl +VH

k n. (7)
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Based on x̂k, we can derive the achievable SE for UE k by using standard capacity lower bounds [6] as

summarized in the following corollary.

Corollary 1. For the fully centralized processing with a given Vk, the achievable SE for UE k with the

phase-aware MMSE estimator is given by

SE
(1)
k =

(

1− τp
τc

)

E

{

log2

∣
∣
∣IN +DH

k,(1)Σ
−1
k,(1)Dk,(1)

∣
∣
∣

}

, (8)

where Dk,(1)
∆
=VH

k ĤkFk and Σk,(1)
∆
=VH

k (
∑K

l=1 ĤlF̂lĤ
H
l +
∑K

l=1C
′
l+σ2IML)Vk−Dk,(1)D

H
k,(1) with F̂l =

FlF
H
l and C′

l=diag(C′
1l, · · · ,C′

Ml) with the (i, j)-th element of C′
ml being [C′

ml]ij =
∑N

a

∑N
b [F̂l]ba[C

ba
ml]ij .

Proof. The proof follows from [14, Corollary 1], thus is omitted for brevity.

In this paper, we consider two promising combining schemes: the MR combining Vk = Ĥk and the

MMSE combining given by

Vk=

(
K∑

l=1

(

ĤlF̂lĤ
H
l +C′

l

)

+σ2IML

)−1

ĤkFk, (9)

which can minimize MSEk = E{‖xk −VH
k y‖

2|Ĥk} [14]. Note that the MMSE combining can also

maximize (8) as the following corollary.

Corollary 2. The MMSE combining matrix in (9) can maximize (8) with the maximum value as SE
(1)
k =

(1− τp
τc
)E{log2|IN + (D′

k,(1))
H(Σ′

k,(1))
−1D′

k,(1)|} with D′
k,(1)

∆
= ĤkFk and Σ′

k,(1)

∆
=
∑K

l 6=k ĤlF̂lĤ
H
l +

∑K
l=1C

′
l + σ2IML.

Proof. Please refer to Appendix A.

B. Large-Scale Fading Decoding

In this subsection, we investigate a two-layer processing scheme with the local processing at each AP

as the first layer and the LSFD method at the CPU as the second layer [6], [8]. Let Vmk ∈ CL×N denote

the local combining matrix that AP m selects for UE k. At AP m, the local estimate of xk is

x̃mk=VH
mkHmkFkxk+

K∑

l 6=k

VH
mkHmlFlxl+VH

mknm. (10)

Note that Vmk is designed at each AP by exploiting the local CSI. One possible scheme is the

MR combining Vmk = Ĥmk and another handy choice is local MMSE (L-MMSE) combining Vmk =
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(
∑K

l=1(ĤmlF̂lĤ
H
ml +C′

ml) + σ2IL)
−1ĤmkFk.

The local estimates are then converged to the CPU, where they are linearly combined by the LSFD coeffi-

cient matrix Amk∈C
N×N to obtain the final decode x̄k as x̄k=

∑M
m=1A

H
mkx̃mk. Let Ak=[A

H
1k, · · · ,AH

Mk],

Gkl =[(VH
1kH1l)

T , · · · , (VH
MkHMl)

T ]T and n′
k = [(VH

1kn1)
T , · · · , (VH

MknM)T ]T . The decoded signal can

be written as

x̄k = AkGkkFkxk +
∑K

l 6=k
AkGklFlxl +Akn

′
k. (11)

Note that since only the channel statistics are available at the CPU, the classical use-and-then-forget (UatF)

bound [16] is applied to derive the following ergodic achievable SE.

Corollary 3. The achievable SE for UE k is given by

SE
(2)
k =

(

1− τp
τc

)

log2

∣
∣
∣IN +DH

k,(2)Σ
−1
k,(2)Dk,(2)

∣
∣
∣ , (12)

where Dk,(2)
∆
= AkE{Gkk}Fk and Σk,(2)

∆
=
∑K

l=1AkE{GklF̂lG
H
kl}AH

k +σ2AkSkA
H
k −Dk,(2)D

H
k,(2) with

Sk=diag(E{VH
1kV1k},· · ·,E{VH

MkVMk}).

Proof. The proof is similar to Corollary 1, thus is omitted.

Note that Ak can be optimized by the CPU for maximizing the achievable SE in (12) as the following

corollary.

Corollary 4. The achievable SE in (12) can be maximized by

Ak =

(
K∑

l=1

E

{

GklF̂lG
H
kl

}

+ σ2Sk

)−1

E {Gkk}Fk, (13)

which leads to the maximum value SE
(2)
k = (1− τp

τc
)log2|IN+(D′

k,(2))
H(Σ′

k,(2))
−1D′

k,(2)| with D′
k,(2)

∆
=

E{Gkk}Fk and Σ′
k,(2)

∆
=
∑K

l=1 E{GklF̂lG
H
kl}+ σ2Sk −D′

k,(2)(D
′
k,(2))

H .

Proof. The proof is similar to Corollary 2, thus is omitted.

Furthermore, when the MR combining is applied at each AP, we can compute the expectations in (12)

as closed-form and derive the closed-form SE expressions as the following theorem.

Theorem 1. If the MR combining with Vmk = Ĥmk is adopted, we can obtain the closed-form SE
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γ =







∑N
u1

∑N
u2
tr(Φ̃u1i

mkΦ̃
bu1

ml )tr(Φ̃
u2a
nl Φ̃

ju2

nk ), l ∈ Pk\{k},
∑N

u1

∑N
u2
tr(Φ̃u1i

mkΦ̃
bu1

ml )tr(Φ̃
u2a
nl Φ̃

ju2

nk )+
∑N

u1
tr(h̄H

mkih̄mlbΦ̃
u1a
nl Φ̃

ju1

nk )

+
∑N

u1
tr(Φ̃u1i

mkΦ̃
bu1

ml h̄
H
nlah̄nkj)+h̄H

mkih̄mlbh̄
H
nlah̄nkj, l = k,

t = tr((h̄mkjh̄
H
mki +Φ

ji
mk) ·Cba

ml)+
∑N

u1
h̄H
mkiΦ̃

bu1

ml Φ̃
u1a
ml h̄mkj+

∑N
u1
tr(Φ̃u1i

mkh̄mlbh̄
H
mlaΦ̃

ju1

mk )

+







tr(Φji
mkΦ

ba
ml) +h̄H

mkih̄mlbh̄
H
mlah̄mkj , l /∈ Pk,

∑N
u1

∑N
u2
tr(Φ̃u1i

mkΦ̃
bu2

ml Φ̃
u2a
ml Φ̃

ju1

mk ) +h̄H
mkih̄mlbh̄

H
mlah̄mkj , l ∈ Pk\{k},

∑N
u1

∑N
u2
tr(Φ̃u1i

mkΦ̃
bu2

ml Φ̃
u2a
ml Φ̃

ju1

mk ), l = k.

(16)

expressions for UE k as 1

SE
(2)
k =

(

1− τp
τc

)

log2

∣
∣
∣IN +DH

k,(2)Σ
−1
k,(2)Dk,(2)

∣
∣
∣ , (14)

where Dk,(2)
∆
= AkZkFk and Σk,(2)

∆
=
∑K

l=1AkΘklA
H
k + σ2AkSkA

H
k − Dk,(2)D

H
k,(2) with Zk =

[ZT
1k, · · · ,ZT

Mk]
T and Sk =diag(Z1k, · · · ,ZMk) with (i, j)-th element of Zmk ∈ CN×N being [Zmk]ij =

tr(Φji
mk + h̄mkjh̄

H
mki). Θkl ∈ CMN×MN can be structured into M2 blocks with the (m,n)-submatrix

Θmn
kl ∈ CN×N being

Θmn
kl =







Γmm
kl +Tm

kl, m = n

Γmn
kl , m 6= n

(15)

with the (i, j)-th element of Γmn
kl and Tm

kl being [Γmn
kl ]ij=

∑N
a

∑N
b [F̂l]ba γ and [Tm

kl]ij=
∑N

a

∑N
b [F̂l]ba t,

respectively, where γ and t (we omit the subscript “kl,mn, ij, ab” for brevity) are given in (16) at the

top of the next page.

Besides, the LSFD coefficient matrix in (13) can be written in closed-form as Ak =

(
∑K

l=1Θkl + σ2Sk)
−1ZmkFk.

Proof. Please refer to Appendix B.

Remark 2. Note that all achievable SE expressions hold for any Rmk. Besides, only SE expressions for

the LSFD scheme with the MR combining can be computed in the closed-form.

1Note that the phase-shifts in the LoS component are unaware at the CPU for the LSFD scheme so would have an impact on the derivation

of SE. An illustration is the case with l ∈ Pk\{k} as shown in Appendix B.
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C. Precoding Matrix Design

In order to improve the SE performance, the UL precoding can be implemented at the UE side in

the scenario with multi-antenna UEs. Inspired by [17], for CF mMIMO, we propose a heuristic uplink

precoding scheme based only on the correlation feature Umk,t at the UE side as

Fk =
√
pk

∥
∥
∥
∥
∥

M∑

m=1

Umk,t

∥
∥
∥
∥
∥

−1

F

(
M∑

m=1

Umk,t

)

. (17)

IV. NUMERICAL RESULTS

The M APs and K UEs are independently and uniformly distributed within a 1 × 1 km2 area with

a wrap-around setting [16]. For H̄mk, we assume that each AP and UE is equipped with a uniform

linear array (ULA). The large-scale coefficient βmk between AP m and UE k is computed by the COST

321 Walfish-Ikegami model and other parameters are the same as those in [8]. Moreover, we generate

Umk,r and Umk,t randomly in the simulations. We also generate Wmk randomly with one strong transmit

eigendirection capturing the dominant power. Each UE transmits with the same power 200mW. Each

coherence block consists of τc=200 channel uses and τp=KN , unless further specified.

Fig. 2 shows the average SE as a function of M for the fully centralized processing (we shortly call it as

“FCP” in the following) and the LSFD over the MMSE (L-MMSE) combining and the MR combining with

the precoding matrix in (17) applied. The labels “×” generated by the analytical results in (14) coincide

with the curve generated by simulations, which confirms the accuracy of our derived closed-from SE

expressions. Also, we observe that the MMSE (L-MMSE) combining outperforms the MR combining for

both the FCP and the LSFD, since the MMSE (L-MMSE) combining can efficiently adopt all antennas

at each AP to suppress the co-channel interference.

Fig. 3 shows the 95%-likely per-user SE as a function of L for the FCP with the MR combining over

Rician and Rayleigh channels. As observed, the proposed precoding scheme can achieve excellent SE

performance in both Rician and Rayleigh channels. Moreover, the SE performance gap between “with

precoding” and “without precoding” in Rician channels is smaller than that of Rayleigh channels (e.g.

13% and 220% for L = 4, respectively), since the proposed precoding scheme is constructed by exploiting

the eigenbasis of correlation matrices of the NLoS component, which only accounts for a relatively small

proportion of channel power in Rician channels. Although (17) is a heuristic scheme inspired by the

mMIMO scenario, this scheme shows the advantages for the implementation of precoding at the UE-side.
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Fig. 2. Average SE versus the number of AP, M , for the LSFD and the FCP with the MMSE (L-MMSE) combining and the MR combining

over K = 10, L = 2, N = 2, and τp = KN/2.
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Fig. 3. 95%-likely per-user SE versus the number of antennas per AP, L, for the FCP with the MR combining over M = 10, K = 10, and

N = 4.

Fig. 4 shows the average SE as a function of L for different processing schemes: the FCP, the LSFD,

and the classic simple decoding (CSD)2 with the MR combining. We observe that the average SE for

different processing schemes increases with L. Moreover, the average SE for the LSFD is almost twice as

that of the CSD. The reason is that compared to the CSD, the CPU in the LSFD linearly weights the local

estimates from all APs with the optimal LSFD coefficient matrices to maximize the SE. In particular,

when the MR combining is applied, the FCP cannot effectively exploit the advantages brought by the

2In the CSD, each AP locally estimates the channels and the CPU performs detection simply with the average of the local estimates from

the APs, as proposed in [1]. Known as “Level 2” in [6], the CSD is regarded as a simplification of the LSFD.
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Fig. 4. Average SE versus the number of antennas per AP, L, for the MR combining with M = 20, K = 10, and N = 2.
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Fig. 5. Average SE versus the number of antennas per UE, N , for the FCP with the MMSE combining over K = 10 and L = 4.

fully centralized implementation. However, the LSFD can achieve excellent SE performance due to its

two-layer processing scheme.

Fig. 5 shows the average SE as a function of N for the FCP with the MMSE combining over different

M . When M = 10, the average SE increases to its maximum value and then decreases when N increases.

In fact, increasing N would significantly reduce the pre-log factor (τc − τp)/τc in all SE expressions. In

particular, for small values of M , the decreases incurred by the pre-log factor outweigh the gain in having

more UE antennas leading to the SE performance degradation. When M increases, the SE performance

can be improved by allowing each UE to be equipped with more antennas. In general, the SE can greatly
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benefit from a proper number of antennas per UE, especially with a large number of APs. For example,

the average SE with M = 20, N = 4 achieves 110% improvement compared to the single-antenna UE

deployment. Moreover, the UEs in practical networks are usually equipped with a few antennas and the

computational complexity to optimize the system is acceptable.

V. CONCLUSIONS

We investigated the UL SE performance of CF mMIMO systems over Weichselberger Rician fading

channels with phase-shifts and derived novel closed-form SE expressions for the LSFD scheme with the

MR combining. Moreover, we proposed an effective UL precoding scheme based on only the eigenbasis of

UE-side correlation matrices. The numerical results showed that the proposed precoding scheme is more

efficient for Rayleigh channels to improve the SE performance compared with that of Rician channels.

Furthermore, the system SE can greatly benefit from a proper number of antennas per UE, especially with

a large number of APs.

APPENDIX

A. Proof of Corollary 2

Based on the theory of the optimal receiver [14], the optimal receive combining, maximizing (8), is

V∗
k = (A − BBH)−1B, where A =

∑K
l=1 ĤlF̂lĤ

H
l +
∑K

l=1C
′
l + σ2IML and B = ĤkFk. Except from

having another scaling matrix IN − (BHA−1B + IN)
−1BHA−1B, which would not affect the value of

(8), V∗
k is equivalent to the MMSE combining matrix in (9). So the MMSE combining matrix in (9) can

also maximize the achievable SE [16].

B. Proof of Theorem 1

We have Zmk = E{ĤH
mkĤmk} with the (i, j)-th element given by [Zmk]ij = E{ĥH

mkiĥmkj} =

tr(Φji
mk+h̄mkjh̄

H
mki). We structure Θkl = E{GklF̂lG

H
kl} into blocks, where the (i, j)-th element

of Θmn
kl is

∑N
a

∑N
b [F̂l]baE{ĥH

mkihmlbh
H
nlaĥnkj}. Let Φ̃mk = Φ

1/2
mk and we can also structure

Φ̃mk into N2 blocks. So ĥH
mki can be rewritten as ĥmki = h̄mkie

jϕmk +
∑N

u Φ̃iu
mkx

u
mk with

Φ̃iu
mk being the (i, u)-th submatrix of Φ̃mk and xu

mk ∼ NC(0, IL). For m = n, we have

E{ĥH
mkihmlbh

H
mlaĥmkj} = E{ĥH

mkiĥmlbĥ
H
mlaĥmkj} + E{ĥH

mkih̃mlbh̃
H
mlaĥmkj}, where the second

term is given by tr((h̄mkjh̄
H
mki+Φ

ji
mk) ·Cba

ml). If l = k, the first term is h̄H
mkih̄mlbh̄

H
mlah̄mkj +

∑N
u1

∑N
u2
tr(Φ̃u1i

mkΦ̃
bu2

ml Φ̃
u2a
ml Φ̃

ju1

mk ) +
∑N

u1
[tr(h̄H

mkih̄mlbΦ̃
u1a
ml Φ̃

ju1

mk ) + tr(Φ̃u1i
mkΦ̃

bu1

ml h̄
H
mlah̄mkj)] +

∑N
u1

∑N
u2
h̄H
mkiΦ̃

bu1

ml Φ̃
u1a
ml h̄mkj . If l ∈ Pk\{k}, due to the random characteristic of the phase-shifts, we
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have E{(h̄mkie
jϕmk)

H
h̄mlbe

jϕml}=E{(h̄mlae
jϕml)

H
h̄mkje

jϕmk}= 0 compared to the scenario with l = k.

If l /∈ Pk, we derive E{ĥH
mkiĥmlbĥ

H
mlaĥmkj} = tr((h̄mkjh̄

H
mki +Φ

ji
mk)(h̄mlbh̄

H
mla +Φba

ml)). For m 6= n, we

define E{ĥH
mkihmlbh

H
nlaĥnkj}= γ. If l = k, we obtain γ = tr((h̄mkbh̄

H
mki +Φbi

mk)(h̄nkah̄
H
nkj +Φ

aj
nk)

H
). If

l ∈ Pk\{k}, we derive γ =
∑N

u1

∑N
u2
(tr(Φ̃u1i

mkΦ̃
bu1

ml )tr(Φ̃
u2a
nl Φ̃

ju2

nk )).
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